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Electrocardiogram (ECG) is a primary signal utilized in the medical field for the 

identification and interpretation of pathological and physiological phenomenon. In different 

real conditions, the ECG is corrupted by many artifacts out of them is power-line 

interference (PLI). The PLI sternly limits the effectiveness of ECG recordings, and 

therefore, it is vital to remove PLI for better clinical judgment. In this paper, we have 

compared discrete wavelet transform (DWT), empirical mode decomposition (EMD), 

Kalman filter (KF), and KF smoother (KFS) for the elimination of PLI from ECG. These 

methodologies have experimented on different ECG recordings taken from the MIT-BIH 

arrhythmia database in the input signal to noise ratio (SNR) range of -10 to 10dB. The 

simulation results calculated using reconstructed ECG, magnitude spectrum, output SNR, 

and computational cost indicate that the KFS framework gives better denoising performance 

compared to KF, DWT, and EMD. 
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1. INTRODUCTION

The cardiac signal is an electrical expression of the 

contractile activity of the Heart. The electrocardiogram (ECG) 

is replicating the ionic current flow, those origins the cardiac 

muscle to contract & relax; consequently, the generation of the 

understandable graphical time-varying signal. ECG is 

achieved by recording the potential changes between two 

electrodes placed on the skin's surface. It is a crucial 

physiological signal for analysis, judgment, and treatment of 

severe cardiac diseases. During acquisition, these signals are 

contaminated or obscured by noises/artifacts such as baseline 

wander (BW), motion artifacts, electrode movement, and 

power-line interference (PLI). Furthermore, the use of 

telemedical applications requires storage and transmission of 

ECG; artifacts also appear in these applications owing to lousy 

channel conditions. Removal of such noises, which cause 

difficulty in diagnosing cardiovascular diseases, is essential 

for clinical purposes. 

Many researchers have contributed to enhancing the quality 

of the ECG by reducing the noise. The wavelet transform [1-

4] is an efficient tool for reducing noise from a non-stationary

signal with a low signal-to-noise ratio. The method uses

thresholding in the wavelet domain to remove or smooth

coefficients of the decomposed signals. The thresholding used

in the filtering process is given by Donoho [5, 6], and this

method is suited not only to one dimension but also to

outstanding works for a two-dimensional signal. Techniques

that use shrinkage of coefficients (wavelets) are common for

the evaluation of physiological signals. Most ECG wavelet

filtering techniques are built on Donoho’s universal theory [4,

7-9]. Sayadi and Shamsollahi [1] introduced a method to

reduce noise from noisy ECG recordings using bionic wavelet

transform. Singh and Tiwari [10] provided a selection process

of mother wavelet applied to remove noise in the wavelet

domain. However, the DWT method is sufficiently degraded 

its denoising performance in low SNR (<=0 dB) conditions. 

The EMD is another decomposition technique that breaks the 

signal into different intrinsic mode functions (IMFs) and 

behaves as a wavelet-like dyadic filter bank [11]. The EMD 

emerge as a helpful denoising tool [12] for both low and high-

frequency noise removal condition. However, the EMD based 

approach can distort the ECG morphology due to the mode-

mixing problem. In the KF framework, tracking PLI and its 

cancellation using extended KF [13, 14] is studied. In this 

approach, PLI monitoring and deviations are investigated, 

which are vital problems in electrical systems. The variation 

of amplitude and frequency in electrical systems is less, and 

the use of adaptive filters does not require information about 

them. In KF [15], and KFS [16] methods, no assumptions are 

considered regarding the dynamics of the ECG corrupted by 

PLI. The KFS is an extension of the KF, but it requires a 

backward and forward filter. The use of this strategy adds 

better estimation of the PLI besides slight delay in PLI 

estimation [16]. This study concentrates on one PLI not 

reviewed any of its harmonics, but it can be extended by 

adding the dynamics of PLI harmonics.  

In this paper, a comparative study of four different methods 

for eliminating PLI from noisy ECG is presented. Out of them, 

two are decompositional techniques (DWT and EMD), and 

others are based on the Kalman filter framework (KF and 

KFS). This study is considered various aspects performed 

during experiments such as low to high input SNR (-10 to 10 

dB), time-domain analysis for checking reconstructed ECG 

signal morphology after filtering, quantitative evaluation, and 

magnitude spectrum to confirm whether PLI is removed or not. 

Moreover, the study measures the computation cost of all four 

methods, which may be helpful in real-time application. This 

study also helpful for selecting denoising methods in a highly 

noisy environment where PLI sufficiently distorts the ECG 
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morphology. 

The outline of the paper is as follows. In Section 2, four 

denoising methodologies DWT, EMD, KF, and smoother, are 

presented. The simulation results of four methods are provided 

using quantitative analysis, filtered signal, and computational 

time in Section 3. Section 4 gives a discussion about results 

and the concluding remark given in the last section. 

 

 

2. MATERIAL AND METHODS 

 

This section has outlined the requirements and necessary 

implementation details of the DWT, EMD, and Kalman filter 

framework (KF and KFS). 

 

2.1 Discrete wavelet transform 

 

2.1.1 Wavelet filtering principle 

The wavelet transform is a time-frequency method, and it 

can be term data by using the similarity function correlation 

with translation and dilation of a mother wavelet [17]. The 

wavelet transform can be either a continuous or discrete 

version and represents a signal or data as the addition of 

wavelets with different scales and locations [18]. In this work, 

Donoho’s technique is applied to DWT, and the DWT 

definition is given in Eq. (1) as follows [10, 19]: 

 

( , ) ( ) ( ),
Z

W d t s m h mi j
m

= 


 
(1) 

 

where, W(d,t) is dyadic wavelet coefficients, 𝑑 = 2−𝑖 , 𝑡 =

𝑗2−𝑖 , 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑍, 𝑑is scale(dilation), t is the translation, ( )s m

is input signal, and ℎ𝑖,𝑗(𝑚) = 2𝑖/2𝑔(2𝑖𝑚 − 𝑗)  is discrete 

wavelet. DWT uses a dyadic filter bank to develop the multi-

resolution analysis, and it has two filters, namely, high pass 

filter (HPF) and low pass filter (LPF). The cut-off frequency 

of HPF and LPF is half the bandwidth of the given signal. 

 

 
 

Figure 1. Decomposition of the noisy ECG signal 

 

Wavelet analysis is a combination of the down-sampling 

and filtering, and it down-samples the given ECG signal by 2. 

When the ECG signal is passed through LPF, HPF, and down-

sampled, the outcome of the process is named as the first level, 

and decomposition of the signal is given in Figure 1. Here, the 

noisy ECG (s) breaks into two levels. In the first level, App1 

is an approximated coefficient with a frequency range of 0-90 

Hz, and Det1 is a detail coefficient with a frequency range of 

90-180 Hz. The second level is formed by decomposing App1 

into an approximated coefficient (App2:0-45Hz) and detail 

coefficient (Det2:45-90Hz). The reconstruction process also 

uses two filters, but down-sampling is replaced by up-

sampling with zero padding. Different levels and their 

corresponding detail frequency are given in Table 1. 

 

Table 1. Detail coefficients at a different level and their 

corresponding frequency range (Hz) 

 
Decomposition level Frequency range 

Det1 90-180 

Det2 45-90 

 

2.1.2 Thresholding methods 

Hard thresholding in Eq. (2) and Soft thresholding in Eq. (3) 

are widely used algorithms first introduced by Donoho and 

Johnstone for wavelet-based filtering. The thresholding 

process is applied to the detail coefficients and is given by 

Hard thresholding: 

 

,
ˆ

0, .
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i

i
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 (2) 

 

Soft thresholding: 
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where, �̂�𝑒𝑡𝑖  are coefficients after thresholding and Deti are 

coefficients before thresholding. 

 

2.1.3 Denoising parameters and framework 

The denoising process involves choosing the five 

parameters, namely, mother wavelet, type of thresholding, 

thresholding selection rule, number of levels (decomposition), 

and rescaling option [19]. In this method, the first stage 

involves selecting the suitable mother wavelet and its subtype 

for signal decomposition. The wavelet (biorthogonal and 

orthogonal) has a different type, and also each wavelet has 

different subtypes. The mother wavelet considered in this 

study is Coiflet (coif4) due to its similarity with the ECG 

morphology. The choice of the level is based on the type of 

data and experience, and mainly, it is selected based on noise 

characteristics present at a signal. Here, the PLI frequency is 

50 Hz, and hence only two decomposition levels are required. 

Thresholding has two types, soft and hard, and four types of 

thresholding rule. The soft thresholding has been used for 

denoising and the selection of rescaling techniques is available 

as no scaling, first-level estimation, and level-dependent 

assessment. The parameters are given in Table 2. The PLI 

frequency and sampling frequency are known, as shown in 

Figure 1 and Table 1, two decomposition levels are sufficient 

for denoising PLI. 

 

Table 2. Wavelet denoising parameters and their range 

 
Parameters Range 

Mother wavelet 
Biorthogonal, Symlet, 

Daubechies and Coiflet. 

Decomposition level 1-2. 

Rescaling approach 
No scaling, single level, and 

multiple levels. 

Thresholding Soft or Hard. 

Thresholding 

selection rule 

Rigsure, Minimax, Sqtwolog, and 

Heursure. 
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2.2 Empirical mode decomposition 

 

In conventional EMD, the signal is broken into its 

subcomponents, called IMFs. If the ECG signal is 

contaminated by PLI and termed as noisy ECG s(m), then the 

upper (u(m)) and lower (l(m)) envelopes are measured by 

interpolating the local minima and maxima with splines. To 

obtain �̃�(𝑚), the average of envelopes is deducted from s(m), 

and the signal is produced as: 

 

( ) ( ) ( ) ( ) 1 2s m s m l m u m= − +  (4) 

 

The above process is repeated on �̃�(𝑚) using Eq. (4) and 

succeeding data until the average value of envelopes is nearly 

zero. The obtained resulting signal is termed as the first IMF, 

and for the subsequent IMF that is for the second IMF, the 

above process is performed on residue r1(m)=s(m)-IMF1(m). 

Every repetition of the IMF production process generates new 

IMF and its residue until the process is terminated when 

residue becomes monotonic. The final signal is represented in 

Eq. (5) as: 

 

( ) ( ) ( )
1

I

j I

j

s m IMF m r m

=

= +  (5) 

 

where, rI(m) is the residue after the abstraction of IMFI. The 

decomposition of noisy ECG using EMD is shown in Figure 

2. The noisy ECG signal is divided into several IMFs, and the 

lower IMFs (e.g., IMF1, IMF2, etc.) have high frequency, and 

the higher IMFs have a lower frequency (e.g., IMF7, IMF8, 

etc.). The PLI frequency considered in this work is 50 Hz. 

Most of the ECG features are below this frequency range, and 

hence to remove the PLI, the first IMF is subtracted from noisy 

ECG. 

 

 
 

Figure 2. Decomposition of noisy ECG into different IMFs 

2.3 Kalman filter framework 

 

In this approach, as we consider PLI as interference in ECG, 

the dynamical model should be formed using the PLI signal. 

Let us consider, f0 is the PLI and fs sampling frequency, then 

single tone PLI with an amplitude and phase [15] is expressed 

as: 
 

0cos(2 )n sx C n f f = +  (6) 

 

After applying trigonometric identities and the addition of 

model error parameter (vn), now the Eq. (6) can be shown in 

terms of the dynamical model [15] as: 
 

1 1 02cos(2 )n n s n nx x f f x v− ++ = +  (7) 

 

In practical cases, the model error parameters such as 

frequency and phase are not additive, as the PLI signal does 

not have rapid variations. However, to make the above model 

more flexible, it is common to add (vn) in the Kalman filter 

approach. 

The ECG signal with PLI contamination plus noises or other 

biosignal is given as  
 

n n ny x g= +  (8) 

 

where, xn and gn are the PLI and zero mean random terms, 

respectively, representing total noises and signals other than 

PLI. However, this study only considering PLI; we neglecting 

that gn can be a combination of noises and biosignals. 

The dynamical model in Eq. (7) and Eq. (8) is needed to 

change into state-space form to apply the Kalman filter 

framework to estimate and eliminate PLI. The state-space 

form is expressed as: 
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1
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 
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. 

The above dynamical model in Eq. (9) is ready to apply on 

PLI contaminated ECG using KF [15] in equations Eqns. (10)-

(12) as: 

Time Propagation: 
 

1

1

ˆ ˆ
n n

T T
n n n

x Bx

P BP B q cc

− +
+

− +
+

=

= +
 (10) 

 

Kalman Gain: 
 

n
n T

n n

P l
L

l P l k

−

−
=

+
 (11) 

 

Measurement Propagation: 
 

ˆ ˆ ˆT
n n n n n

T
n n n n

x x L y l x

P P L l P

+ − −
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 (12) 
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where, 𝑞𝑛 = 𝐸{𝑣𝑛
2} , 𝑘𝑛 = 𝐸{𝑔𝑛

2} , priori �̂�𝑛
− =

�̂�{𝑥𝑛|𝑦𝑛−1,𝑦𝑛−2, . . . , 𝑦1} and posterior �̂�𝑛
+ =

�̂�{𝑥𝑛|𝑦𝑛,𝑦𝑛−1, . . . , 𝑦1}  estimation of state vector xn with 

observations y1 to yn-1. Similarly, the covariance matrices prior 

𝑃𝑛
− and posterior 𝑃𝑛

+ estimates of state vector for the nth stage 

are defined, and Kalman gain is Ln. 

The KFS uses the information of future observations to 

provide better estimates of the present state. This noncausal 

behavior is expected to give better performance compare to KF 

[15]. The KFS generally consists of a KF forward step 

followed by a backward recursion smoothing action. There are 

two smoothing algorithms, namely, fixed interval or lag 

smoothing [16]; the fixed lag algorithm is generally used in 

real applications. 

 

 

3. RESULTS  
 

This section is divided into three parts. The first part of the 

section provides details about datasets and quantitative 

measures taken during experiments. In the next part, the 

denoising results obtained after filtering are compared. Finally, 

the computational cost required for these methods is provided. 

 

3.1 Database and quantitative evaluation 

 

The ECG recordings were taken from the MIT-BIH 

arrhythmia database [20] for both filtering and analyzing 

purposes. In this simulation, three ECG signals were taken 

with record numbers-105, 119 and 210, respectively, in which 

synthetic PLI (50 Hz) was added to make contaminated ECGs. 

The ECG records sampling frequency is 360Hz, and for all 

experiments, 3600 samples or 10 seconds window is used. The 

ECG with PLI signal s(m)=d(m)+b(m) is filtered, and the 

reconstructed signal is �̂�(𝑚). The signal d(m)is pure and b(m) 

is PLI; the combination of both is a contaminated signal s(m). 

The quantitative valuation is measured by using the output 

signal to noise ratio (SNR) [12]: 
 

Output SNR
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and input SNR is given as: 
 

InputSNR
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3.2 Denoising results 
 

In this subsection, the efficacy of the four methods is 

evaluated by studying synthetic PLI that appears in the ECG 

signal. And the synthetic PLI is generated by using sinusoids. 

All ECG signals considered in this simulation have a sampling 

frequency of 360 Hz. After the generation of synthetic PLI, 

this PLI added to pure ECG to obtain a contaminated version 

of ECG. In DWT, we considered the coif4 mother wavelet 

with a soft thresholding technique to remove PLI from ECG. 

As the sampling of ECG is 360Hz, after decomposition of 

noisy ECG, the PLI appears in second level decomposition for 

all ECG data. In EMD, the high-frequency noise is available 

at lower IMFs, and PLI is seen in the first IMF. Therefore, to 

eliminate PLI from noisy ECG recordings, we just need to 

subtract the first IMF from noisy ECG. In KF and KFS, all the 

initial parameters are taken from the researches [15, 16] for 

filtering purposes.  

The clean ECG record “105” and corrupted version of it 

with synthetic PLI are shown in Figures 3a and 3b, 

respectively. After applying DWT, EMD, KF, and KFS, the 

filtering results are shown in Figures 3c-3f. From Figures 3c-

3f, it is clear that KFS is more close to the actual morphology 

of clean ECG, followed by KF, EMD, and DWT. After an 

inspection of time-domain filtering results, the spectra of the 

same are shown in Figure 4. The magnitude spectrum also 

offers the same results given in the time domain. In Figure 4c, 

the DWT shows some PLI remains in ECG even after filtering 

the noisy records. The EMD method though it is more suitable 

for high-frequency elimination, due to the mode mixing 

problem, some of the content of clean ECG leaks into other 

IMFs, which causes a decrease in performance. In the case of 

KF and KFS, as it does not requires any tuning parameters, 

and it is a stable filter, the denoising performance of the KF 

framework is high in low as well as high noisy environments. 

The filtering results in the time and frequency domain show 

that the KF and KFS provide better reconstructed ECG after 

denoising. Now, quantitative analysis is tabulated in Table 3, 

the DWT gives output SNR of 6.27 to 23.20dB, the EMD 

offers 19.89 to 22.94dB, the KF provides 21.54 to 22.92dB, 

and the KFS presents 21.82.23.39dB for input range -10 to 

10dB. It is clear from Table 3 that the Kalman framework (KF 

and KFS) is more suitable for removing PLI from ECGs. 
 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

 

Figure 3. Denoising results for record 105 at 0dB, (a) Noisy 

ECG, (b) Clean ECG, (c) DWT, (d)EMD, (e) KF, and (f) 

KFS 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure 4. Magnitude spectrum, (a) Noisy ECG, (b) Clean 

ECG, (c) DWT, (d)EMD, (e) KF, and (f) KFS 

 

Table 3. Output SNR for different filtering methods 

 
Output SNR     

Input SNR 105 119 210 Average 

 DWT    

-10 6.71 6.42 5.69 6.27 

-5 10.92 10.68 9.86 10.49 

0 14.46 15.39 14.69 14.85 

5 20.13 20.22 19.52 19.96 

10 22.38 24.92 22.31 23.20 

 EMD    

-10 20.14 19.36 20.16 19.89 

-5 21.11 20.15 21.59 20.95 

0 22.24 21.69 21.95 21.96 

5 23.05 23.87 22.67 23.20 

10 22.59 24.19 22.03 22.94 

 KF    

-10 22.24 21.14 21.25 21.54 

-5 22.56 21.56 22.55 22.22 

0 23.33 21.84 22.73 22.63 

5 23.69 22.32 23.21 23.07 

10 23.11 23.01 22.64 22.92 

 KFS    

-10 22.31 21.17 21.97 21.82 

-5 22.76 21.88 22.87 22.50 

0 23.54 22.07 23.08 22.90 

5 24.01 22.66 23.68 23.45 

10 23.85 23.27 23.04 23.39 

 

3.3 Computational cost 

 

After comparing results quantitatively using output SNR, 

the reconstructed ECG after removing PLI in time-domain, 

and frequency domain evaluation using the magnitude 

spectrum, now methods are compared using the average time 
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taken to remove PLI in the range -10 to 10 dB. In Table 4, the 

average time to remove 50Hz noise from ECG signals using 

DWT, EMD, KF, and KFS are shown. From Table 4, we can 

see that KF and KFS methods require less time, followed by 

DWT and EMD, respectively. 

 

Table 4. The average computational cost for different 

denoising techniques 

 
Methods Computational cost (Seconds) 

DWT 1.4744 

EMD 2.1956 

KF 1.0240 

KFS 1.0244 

 

 

4. DISCUSSION 

 

The results section provides valid reasons to eliminate PLI 

noise from pure ECGs, as the information present in this signal 

is medically more valuable. The four methods are tested on 

highly noisy PLI (-10dB) and low noisy (10dB) environments. 

The DWT and EMD are decomposition-based techniques that 

divide the given signal into several small parts. The DWT 

scheme operation depends on the sampling frequency of the 

given signal, while the EMD is a purely data-based method. It 

is observed that for input SNR -10 to 0dB, the DWT 

performance is not good, and also it contains traces of PLI, 

which means the process is not entirely able to eliminate PLI 

from corrupted ECGs. After 0dB input SNR, the performance 

is sufficiently increased and competitive to other methods. In 

EMD, the denoising performance is nearly constant in the low 

to high SNR, and the reconstructed ECGs after filtering PLI 

show that it is a powerful tool for noise elimination. 

The KF and KFS methods are used to estimate or track the 

PLI noise, and filtered signals can be obtained by subtracting 

this estimate from noisy ECG. The Kalman filter framework 

is more stable, and its estimates track PLI more efficiently 

even though in high noise contamination. These techniques 

convergence depends on the observation noises and 

covariances of the given model (other words, it merely 

depends on the ratio of it). The denoising results also provide 

evidence that the property (optimality) of the KF framework is 

achieved.  

The methods presented in this work are sufficiently general 

to be applied to other biosignals such as electroencephalogram, 

electromyogram, etc. These methods are more flexible and can 

be adapted to PLI harmonics. 

 

 

5. CONCLUSION 

 

Electrocardiogram (ECG) is a primary signal utilized in the 

medical field for the identification and interpretation of 

pathological and physiological phenomenon. In different real 

conditions, the ECG is corrupted by many artifacts out of them 

is power-line interference (PLI). The PLI sternly limits the 

effectiveness of ECG recordings, and therefore, it is vital to 

remove PLI for better clinical judgment. In this paper, a 

comparative study of four different ECG filtering techniques 

based on DWT, EMD, KF, and KFS framework is performed. 

This comparison provides the selection of the best denoising 

method in a boisterous environment and computational cost. 

The filtering results show that KF and its smoother methods 

give the best performance in terms of the ECG morphology, 

computational cost, and denoising PLI, followed by EMD and 

DWT. 

The study presented here is based on 50Hz PLI. In future 

work, the experiments will be performed on 60Hz PLI, and 

also, we have not considered any harmonics of 50 or 60Hz PLI. 

Therefore, the effect of harmonics in ECG is an area of further 

scope. The techniques presented in this work are employed on 

ECG signal only, as these methods are sufficiently general can 

be applied to other biosignals. 
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