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Forest fire recognition is important to the protection of forest resources. To effectively monitor 

forest fires, it is necessary to deploy multiple monitors from different angles. However, most 

of the traditional recognition models can only recognize single-source images. The neglection 

of multi-view images leads to a high false positive/negative rate. To improve the accuracy of 

forest fire recognition, this paper proposes a graph neural network (GNN) model based on the 

feature similarity of multi-view images. Specifically, the correlations (nodes) between multi-

view images and library images were established to convert the input features of graph nodes 

into the correlation features between different images. Based on feature relationships, the 

image features in the library were updated to estimate the node similarity in the GNN model, 

improving the image recognition rate of our model. Furthermore, a fire area feature extraction 

method was designed based on image segmentation, aiming to simplify the complex 

preprocessing of images, and effectively extract the key features from images. By setting the 

threshold in the hue-saturation-value (HSV) color space, the fire area was extracted from the 

images, and the dynamic features were extracted from the continuous frames of the fire area. 

Experimental results show that our method recognized forest fires more effectively than the 

baselines, improving the recognition accuracy by 4%. In addition, the multi-source forest fire 

data experiment also confirms that our method could adapt to different forest fire scenes, and 

boast a strong generalization ability and anti-interference ability. 
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1. INTRODUCTION

Forest fires pose a serious threat to the ecosystem of forests. 

To prevent the spread and hazards of the fire, the key lies in 

early detection of the fire source before the fire evolves into a 

catastrophe [1]. With the rapid development of computer 

vision, forest fire monitoring based on computer vision has 

become a hot topic among researchers of forest fire prevention. 

Color recognition is one of the earliest approaches for fire 

recognition. This approach recognizes the flame based on the 

movement, space, and time features of the color mode [2]. But 

color recognition can only identify large flames in a short 

distance. In recent years, convolutional neural network (CNN) 

has been introduced to forest fire recognition. For example, 

Khan Muhammad identified fire areas with a deep CNN, 

which avoids the tedious and time-consuming extraction of 

features, and automatically learns the rich features in the 

original fire data [3]. Despite its high recognition accuracy, the 

CNN only applies to the recognition of static fire images [4]. 

Saulskii et al. [5] attempted to automatically extract and 

classify fire image features with a deep normalized CNN 

(DNCNN). Noureddine et al. [6] proposed a detection 

framework based on Faster three-dimensional CNN (3DCNN) 

and faster region-based CNN (Faster RCNN). These networks 

face a high application cost, due to their huge computing load. 

Later, Emmy Prema adopts the background difference method 

to find moving pixels, and looks for flame color regions with 

a color model; Afterwards, a spatiotemporal analysis was 

performed on these regions to identify irregular and flickering 

fire features [7]. 

The above studies have only analyzed single-view images. 

In reality, forest fires cannot be monitored effectively without 

multiple monitors deployed in different perspectives. The 

single-view images cannot fully characterize the entire 

appearance of monitoring points. Therefore, it is not ideal to 

recognize fires based on single-view images [8]. However, the 

images on the same forest fire scene must be recognized first, 

in order to analyze the information of images with different 

views. In the same forest fire scene, the images taken from 

different angles usually carry the same fire features, namely, 

fire area, background color, and thermal radiation. Based on 

these features, researchers have designed various metrics for 

the similarity between multi-view images [9]. But these 

metrics emphasize the global similarity over the local 

similarity between two images. Take the measurement of the 

similarity between detection image and target image for 

example. In most cases, feature learning and metric learning 

merely test the pair relationship between single images, failing 

to consider the other relationships between images from 

different sources (e.g., the same image background, and 

similar items in the images). To overcome the problem, it is 

necessary to find the differences between images that reflect 

image features. Through manifold learning, Cao et al. [9] 

mapped images into manifolds, such that the local geometries 
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of images are smoother for the analysis of image similarity. 

Kaliyamurthi et al. [10] relied on the similarity between re-

sorted images to estimate the local similarity between images. 

However, manifold learning and re-sorting are mostly 

unsupervised, and their effects cannot be evaluated easily. 

In recent years, graph neural network (GNN) has attracted 

much attention for its strong ability to generalize image data 

[11]. The GNN transmits information in a graphic structure, 

derives the final representation of each node through graph 

decomposition, and classifies the nodes. In the GNN, each 

image is entirely represented as graph nodes. Compared with 

manifold learning and re-sorting, the GNN enhances the end-

to-end property of training, and facilitates the learning of 

feature representations. The network combines graph 

computing with deep learning (DL) into a DL framework 

robust in similarity estimation and identification. 

For the above reasons, this paper adopts the GNN model to 

recognize forest fires with multi-view images. Firstly, a small 

batch of multi-view images was paired with library images 

through supervised learning of initial visual features. Next, 

each pair of images was treated as a node on the graph, and 

used to generate the similarity between images. After that, the 

image information of model learning was transmitted between 

nodes to update and optimize the pair relationship associated 

with each node. On this basis, feature fusion weights were 

adopted for image recognition, producing the robust similarity 

estimates of multi-view images. 

The main contributions of this research are as follows: 

(1) A GNN of multi-view image similarity (MV_GNN) was 

proposed, which derives a node graph from multi-view images 

to represent the correlations between images, and estimates 

image similarity based on the feature relationship of the 

updated nodes. The proposed MV_GNN fully considers the 

information from multi-view images, and thus improves the 

recognition rate of forest fires. 

(2) A fire area feature extraction method was presented to 

simplify the complex image preprocessing and effectively 

extract the key features from the images. The extracted 

features were imported to our model to increase the 

recognition accuracy of forest fires. 

(3) Experiments on different fire datasets show that the 

proposed method can effectively recognize forest fires in 

different scenes, and boasts a strong application potential and 

anti-interference ability. 

 

 

2. LITERATURE REVIEW 

 

Some forest fire recognition algorithms are implemented 

based on physical technologies. They recognize forest fires 

based on the flame features like color, texture, and movement. 

Barmpoutis et al. [12] identified the dynamic behaviors and 

irregularities of fires in red-green-blue (RGB) and hue-

saturation-intensity (HIS) color spaces. Arrue et al. [13] 

designed classification rules according to the separation 

between color component and brightness in light intensity-

blue/green intensity-red/green intensity (YCbCr) color space. 

Sudhakar et al. [14] studied flame shape and rigid object 

movement, intelligently extracted features by optical flow 

information and flame behaviors, and thereby differentiated 

between different flames. Jilbab et al. [15] combined shape, 

color, and movement attributes into a multi-expert system 

framework for real-time flame recognition. Qin et al. [16] 

experimentally discovered that the flame has a low 

chromaticity in the HSV color space. Based on RGB color 

model, Kingma et al. [17] extracted pixel points from the 

flame, and recognized flames according to their growth and 

unordered features. Jeong et al. [18] quickly estimated the 

movement direction of fires, superimposed the direction on 

time, and recognized fires by the spread feature. 

Thanks to the continuous development of DL, computer 

vision offers new insights to fire recognition. For instance, Sun 

et al. [19] developed a CNN for forest fire recognition, 

augmented the limited training samples by randomly 

initializing parameters, and achieved a good effect in fire 

classification. Heyns et al. [20] integrated traditional 

recognition method with neural network: AdaBoost and local 

binary pattern (LBP) were employed to initially recognize the 

images and extract the candidate regions for flames; Then, the 

features were extracted from the candidate regions and 

classified by the CNN. Attri et al. [21] applied the deep belief 

network (DBN) to recognize flames. Considering the volume 

difference between fire images and normal images, Cuomo et 

al. [22] trained residual network (ResNet) [23] with biased 

data, and recognized flames with the trained network. Alkhatib 

et al. [24] introduce a multi-layer denoising and automatic 

encoding network algorithm, and applied the algorithm to 

dozens of scenarios, including forest fire. Wang et al. [25] 

proposed a cascaded CNN algorithm, which identifies the 

static and dynamic flame features with two independent CNNs, 

respectively, and judged whether an image area is flame 

combining the results of the two networks [26]. Rahim et al. 

[27] designed a DNCNN for fire image recognition, and 

compared it with VGGNet and ZFNet. All three network 

models can accurately recognize single-view images, but 

perform poorly on multi-source samples. To solve the problem, 

Fu et al. [28] introduced the GNN to improve image 

recognition, using the relationships between images. 

Mukherjee et al. [29] proposed a graph-based scheme 

involving Laplacian spectrum and spatial structure. The 

scheme extends the properties of the convolutional filter to 

general graphs, and identifies disasters with the spatial 

structure of graphs. 

Most existing GNNs have an inherent network structure, 

without considering the similarity of data distribution, i.e., the 

correlations between data. Unlike most GNNs, the proposed 

MV_GNN can generate more accurate feature fusion weights 

through the transmission of graph information, and thus 

effectively recognize forest fire images with multiple views. 

 

 

3. DYNAMIC FEATURES 

 

To effectively the extract feature from multi-view images, 

this paper preprocesses the images in three steps: image 

segmentation, fire feature extraction, and dynamic feature 

extraction. Image segmentation cuts out the fire area from each 

image, reducing the background interference; Fire feature 

extraction helps to judge some fire behaviors; Dynamic feature 

extraction enables the prediction of fire occurrence based on 

the spread features. 

 

3.1 Image segmentation 

 

HSV color space describes colors more intuitively than 

RGB color space. The three components, namely, hue, 

saturation, and value, are closely associated with the color 

perception method of neural network [30]. The HSV color 
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space can be defined as: 

 

]},[], x(V),[, x(S)],[x(H)V={x 255025503590   (1) 

 

where, x is a pixel in the HSV color space; x(h), x(s)
 
and x(v)

 are the H, S, and V components of x , respectively. Hence, the 

fire color distribution can be obtained from the sample images 

containing forest fire areas. Figure 1 shows the three 

component values of pixels derived from the sample colors. 

Then, the fire shape was represented by the Gaussian mixed 

model. The pixels of the colors in the range of the distribution 

model were taken as the fire pixels. 
 

 
 

Figure 1. H, S, and V components 

 

To further reduce the amount of calculation, three two-

dimensional (2D) projection planes were adopted to replace 

the three-dimensional (3D) distribution model. That is, the fire 

colors of the sample images were projected to the HS plane, 

HV plane, and SV plane. In each plane, the range of color 

distribution can be easily represented by one or two rectangles. 

Thus, it is possible to define a relatively simple 2D color 

distribution. 

Based on color range, the images were segmented to 

identify the candidate fire areas. As shown in Figure 2, the 

forest fire scene was cut out (green area in the right subgraph) 

clearly. 

 

 
 

Figure 2. Color-based fire area segmentation 

 

3.2 Fire feature extraction 

 

This step aims to acquire the size, roundness, and contour 

of each segmented fire area. Forest fires are initially unstable 

flames. Since fire pixels increases with fire area, size is an 

important feature of fire [7, 18]. To recognize the variability 

of fire area, the size change of fire area was calculated based 

on two consecutive images. Any size change surpassing the 

predefined threshold means the fire grows. The threshold 

could be the boundary chain code, roundness, and contour line 

of the fire. 

(1) Boundary chain code and roundness 

For a given segmented fire area, the connected boundary 

chain code could be obtained easily by searching for the 

boundary of the area with the Laplacian operator. On this basis, 

the boundary circumference L could be calculated at ease. 

Then, the roundness of the fire area can be derived from L and 

the size of the fire area [25]. This parameter indicates the 

complexity of fire area shape. The more complex the shape, 

the greater the roundness. In early fire recognition, roundness 

helps to eliminate the interference by irregular bright objects. 

(2) Contour line 

The shape of the fire area changes due to the air flow. Thus, 

the degree of fire can be measured by the fluctuations of the 

contour. Suppose there are N points on the boundary, which 

can be described as complex numbers }+jy=xz{z iiii
, where 

( )ii yz ,
 
is the coordinates of the i-th point on the fire area 

boundary in the clockwise direction. Then, the discrete Fourier 

transform of 
iz  can be obtained: 

 

 iw)
N

(-jz
N
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N

i=

iw 
1

2
exp

1 
 (2) 

 

where, F  is the center of gravity of the one-dimensional (1D) 

boundary. Contour description is only needed for a few dozens 

of Fourier coefficients [4, 9, 16]. The first 32 

( )
2322221 F,,F,FD= 

 
were selected empirically. Then, the 

difference between two adjacent Fourier coefficients can be 

obtained as: 
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N

(-jz
N

=F
N

i=

iw 
1

2
exp

1 
 (3) 

 

If Ti is greater than the time threshold Td, and lasts longer 

than Tm, then the fire area shape has changed violently, 

indicating the possible occurrence of a fire. Td and Tm are 

thresholds obtained from test statistics. 

 

3.3 Dynamic feature extraction 

 

As the forest fire spreads, continuous fire images will carry 

the dynamic features of the fire. This is of great significance 

for fire detection [26]. This paper defines a dynamic feature 

containing n continuous images. The value of n should be a 

relatively small number to ensure the real-time detection of 

fires. In general, the flame flickers at a feature frequency of 

10Hz, while the videos are recorded at 30 frames per second 

(fps) [22]. According to the needs of the real scene, the n value 

was set to 5, that is, the dynamic feature reflects the fire 

features of five continuous images. For the flame features in 

the images, an nm matrix was constructed, where n=5 is the 

number of continuous images, and m=3 is the number of flame 

features, including size, roundness, and contour [12]. Suppose 

X(i,j) is an element corresponding to the i-th image and j-th 

flame feature. Then, the dynamic feature based on that matrix 

can be described by mean and mean squared error (MSE) [21]: 
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X(i, j)
n

E(j)=
1

1
 (4) 

 

( )( )
n

i=

jX(i, j)-E
n

S(j)=
1

21  (5) 

 

Therefore, any forest fire image has a dynamic feature, i.e., 

the mean and MSE of the image matrix. Our machine learning 

model was trained on forest fire images, supplemented by the 

information segmented from the images, fire features, and 

dynamic feature of the fire. 

 

 

4. GNN BASED ON MULTI-VIEW IMAGE FEATURES 

 

To evaluate our forest fire recognition algorithm, the test 

dataset was defined as the combination of a detection set and 

a library image set. The former tests the model performance, 

and the latter verifies the similarity between images in 

different fields. After being given a pair of detection images 

and multi-view images of the same scene, the forest fire 

recognition model aims to robustly determine the visual 

similarity between detection images. Our model was trained 

by a small batch of images. During the training, different 

image pairs were evaluated one by one, i.e., the similarity 

between images was measured one pair after another. In this 

way, the evaluation of one pair is not affected by other image 

pairs. Figure 3 explains the structure of the proposed 

MV_GNN model. A graph was generated from the inputs of a 

detection image and multiple library images. Each node 

models a pair of library images. The model outputs the 

similarity score of each library image. Through the end-to-end 

training, the deeply learned information was transmitted 

between the nodes, and used to update the relationships 

associated with each node, making similarity estimation more 

accurate. 
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Figure 3. MV_GNN 

 

4.1 Graph representation and node features 

 

In the proposed GNN model, each node represents a pair of 

library images. For a given library and n forest fire images, a 

complete undirected graph G(V, E)
 
can be constructed, where 

V={v1, v2,…, vn} is the node set, and E is the edges between 

the nodes. 

Firstly, the similarity score of each library image was 

evaluated. For any node, the complex relationship between the 

corresponding library images is encoded by the input feature. 

Figure 3(a) shows the input relationship feature obtained by 

our scheme. For a given library image and n forest fire images, 

each input image was imported to the share modular to encode 

the pair relationship feature. 

The structure of the proposed share modular model is 

illustrated in Figure 3(a). The idea of ResNet [23] was adopted 

to prevent vanishing gradients, and share the CNN of network 

flow Scl and the parameters of fully connected layers (FCs) 

with the subsequent network layers, e.g., the edge for Scl and 

FC in Figure 2. This configuration enhances the soft mask of 

the information of network flow model, such that the model is 

more complete, accurate, and suitable for forest fire image 

recognition. The aim of Scl is to find the area that facilitates the 

target recognition in forest fire images. The CNN of the 

network flow involves classic optimization techniques like 

pooling layer, dropout, etc. Three FCs are right behind the 

CNN. The parameters of the FCs were shared with the 

subsequent network layers, and associated with the loss 

function. 

Soft mask function was designed to reflect the importance 

of different model parameters [5, 24]. The function manifests 

the area in support of network prediction in the imported 

multi-view images, and enables the attention operation on the 

task of interest in the training network. Then, the information 

of forest fire images recognized by the network model is 

exactly what the model is expected to focus on (e.g., the 

specific forest fire color of the target). For this purpose, the 

soft mask of the network is trained from end to end, using the 

novel Mish activation function [25].  

The last global mean set features of the two images in share 

modular were subtracted against each other to obtain pair 

relationship feature. These features were processed into 

differential features ,n),,(i=di 21 , i.e., the deep visual 

relationship between library images and the i-th image. The 

differential features were inputted to node i  on the graph. The 

task on the graph is to classify the nodes, i.e., import the input 

features of each node into the linear classifier to output the 

similarity score, without considering the pair relationship 

between nodes. The loss function of our model takes the form 

of cross entropy: 

778



 

−
n

i=

iiii ))-f(d()-y))+((f(dyL=
1

1log1log  (6) 

 

where, f() is the sigmoid function of the classifier [27]; yi is 

the label of the i-th library image pair; l means the detection 

image has the same label as the i-th library image. 

Besides measuring the similarity between a pair of detection 

images, the basic model in Figure 3(a) can calculate the 

similarity between detection image pairs. This facilitates the 

transmission of deep information, and the update of the 

relationship feature between detection image pairs. To transfer 

information more effectively, the image relationship feature di 

was imported to a two-layer message network for feature 

encoding (Figure 3(b)). Then, the similarity scores of the 

library were fused with the relationship feature of the library 

into a message transmission and feature fusion scheme. 

 

4.2 Similarity guidance 

 

This paper designs a similarity guidance scheme to help our 

model make full use of the similarity between different fields. 

The simple node classification model (6) ignores the valuable 

information between library pairs. To utilize this important 

information, an edge E was added on the fully-connected 

graph G. The edge E stands for the set of the relationships 

between library pairs. The scalar edge weight Wij, i.e., the 

importance of the relationship between nodes i and j: 
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(7) 

 

where, gi and gj are the i-th and j-th images, respectively; S(gi, 

gj) is the similarity estimation function for a pair of images. 

The function estimates the similarity score between gi and gj , 

and establishes a model in a way similar to the node 

classification model. 

To enhance the pair relationship feature between nodes, the 

deeply learned message was transmitted through all connected 

nodes. Then, the node features were updated into the weighted 

summation of all input messages and the original node features. 

Before the message transmission, each node must encode the 

deep message, so that it can be transmitted to the connected 

nodes. The input relationship feature di of each node was 

imported to a message network, which consists of two FCs, 

namely, Bayesian network (BN), and rectified linear unit 

(ReLU) [28]. The network would generate a deep message ti 

(Figure 3(b)). This process learning is suitable for the update 

of node relationship feature.  

 

, N,,)  for  i==F(dt ii 21  (8) 

 

where, F() is the two-layer FC network for deep message 

transmission. After the edge weight Wij and deep message ti of 

each node have been obtained, the node relationship feature di 

can be updated by: 

 

, N,, for  i= tW +) d-=(d
N

j=

)(

jij

)(

i

)(

i 211
1

001

  (9) 

 

where, d(1) i is the relationship feature of the i-th image; d(0) i is 

the i-th input relationship feature; t(0) j is the deep message from 

node j;  is a weighted parameter to balance fused feature and 

original feature. The weighted fusion of relationship feature 

can be implemented iteratively: 

 

, N,, for  i= tW +) d-=(d
N

j=

)(k

jij

)(k

i

(k)

i 211
1

11


−−

  (10) 

 

where, k is the number of iterations. The refined relationship 

feature d(k) i can replace the relationship feature di in formula 

(8) for loss function calculation and GNN training. During the 

training, formula (10) can update the framework and model 

through error backpropagation [24]. 

 

 

5. FOREST FIRE IMAGE DATASET 

 

There are only a few low-resolution opensource image 

datasets about forest fire recognition. The authors collected 

and labeled lots of forest fire videos, and prepared a forest fire 

dataset based on the labeled videos. The dataset was uploaded 

to the opensource website 

(https://github.com/chunjiongzhang/fire-data). The fire 

dataset was formulated by crawling online forest fire images, 

segmenting the fire areas, and saving the segmented parts. 

 

5.1 Techniques 

 

Crawler is a technology that automatically collects the 

required information or resources online. This paper selects 

Python crawlers like Requests and Beautiful Soup [17]. 

OpenCV [31] is a cross-platform computer vision and image 

processing library. The Python interface of OpenCV was 

adopted for this research. Specifically, Cascade and Classifier 

are the cascading classifier of OpenCV for target recognition. 

The classifier uses the LBP to import the specific classifier 

files, e.g., image classifier, to realize the identification of 

targets [23]. 

 

5.2 Specific implementation 

 

The preparation of forest fire image dataset must reduce the 

difficulty of manual check, in addition to ensuring quality and 

speed. In other words, the result of the program processing can 

only contain a very small number of non-fire images. Thus, 

this paper designs a screen module. 

Single-threaded data writing, data analysis, and waiting for 

server response consume too much time, making it impossible 

to fully utilize the bandwidth. Therefore, the selected crawlers 

operated in a multi-threaded manner. The crawling speed 

depends on the upper limit of the bandwidth. 

All the fire images acquired by the crawlers were processed 

by the cascade classifier of OpenCV. The saved fire images 

were subjected to local recognition, and the fire areas were 

segmented from the images. OpenCV alone cannot accurately 

recognize fire images. If there are sufficient original images, 

lots of non-fire images would be generated. Hence, the 

unqualified images were filtered out by the Dlib module. 

As shown in Figure 4, the dataset was prepared in three 

steps: collecting images with crawlers; cropping the fire areas 

in fire recognition module; filtering out the unqualified images 

in Dlib module. Figure 5 shows the contents of the prepared 

dataset. 
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Figure 4. Preparation of forest fire dataset 

 

 
 

Figure 5. Contents of forest fire dataset 

 

 

6. EXPERIMENTS 

 

6.1 Dataset 

 

(1) The forest fire images were collected online with the 

technique proposed in Section 5. A total of 2,826 forest fire 

images were collected, including the images on fire outbreak 

and the images on fire spread. Meanwhile, 932 non-forest fire 

images were collected. All these images were collectively 

referred to as the forest fire dataset. 

(2) xBD dataset [32] is one of the public datasets of high-

resolution labeled satellite images. The dataset on natural 

disaster images is updated by the Massachusetts Institute of 

Technology (MIT). It covers 22,068 images of 19 different 

disasters. The image resolution is 1,024×1,024. Every building 

in the dataset has an identifier. This paper only uses the images 

containing forest fires in xBD dataset. 

 

6.2 Setup 

 

Our model was realized under the framework of Keras and 

TensorFlow. The operation system is Ubuntu19.04; the 

graphics processing unit (GPU) is GeForce GTX 1080Ti; the 

central processing unit (CPU) is Intel Core i710500U with a 

RAM of 16GB and a hard disk of 1TB. Our model was 

compared with DL models like ResNet and DenseNet [28], 

using the learning rate of 0.01 and batch size of 64. 

The proposed GNN recognizes forest fires based on the 

designed share modular. All input images were adjusted to the 

size of 256×128. Firstly, the basic CNN model was pretrained 

with the initial learning rate of 0.01 on all datasets. After 50 

epochs, the learning rate was reduced by 10 times, and then 

maintained for 50 epochs. The weight of the linear classifier 

trained during the basic model training was adopted to 

initialize the weight of the linear classifier for image similarity 

measurement. The model was optimized by Adam [23], with 

the weighted parameter is 0.9. 

 

6.3 Results 

 

Table 1 records the number of parameters, training times, 

and test results of different models. 

 

Table 1. Test results of different models 

 
 Model N* P* T A 

xBD 

Datase 

ResNet 50 23,602,904 724.94 94.33 

DenseNet 50 1,477,058 1,153.9 96.15 

MV_GNN 50 768626 867.8 98.33 

Forest 

fire 

dataset 

ResNet 50 21,702,355 701.35 95.67 

DenseNet 50 1,142,587 1,023.44 97.85 

MV_GNN 50 548,633 804.83 99.02 
Notes: N* is the number of layers, P* is total parameters, T is training time/s 

A is accuracy/%. 

 

As shown in Table 1, our GNN model consumed a much 

shorter training time on the two datasets than DenseNet. The 

model can effectively utilize images of multiple views or 

sources, and converge quickly through data accumulation. 

Meanwhile, our model consumed comparable training time as 

ResNet, but with much fewer parameters. Besides, our GNN 

surpassed ResNet by 4% in accuracy. This is because our 

model extracts the dynamic feature of forest fire images in 

advance, and thus quickly learns the deep information of the 

images. Besides, our model has similarity guidance on forest 

fire images of multiple views or sources. In addition, our 

framework boasts the fewest parameters, which reduces the 

memory overhead. Overall, our model achieved good 

accuracies on different training sets, without producing 

overfitting. The results show that our scheme has a strong 

generalization ability, and a good robustness. Capable of 

identifying forest fire images of different views, our approach 

can satisfy the forest fire monitoring needs in different scenes. 

 

 
 

Figure 6. Loss and accuracy of model training 
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The loss decline in the left subgraph of Figure 6 indicates 

that our method converged faster than the baselines during 

xBD training, and remained stable throughout the training. 

Our model was completely trained in 27k epochs, while the 

latest DenseNet was not fully trained until the 32k-th epoch. 

During the training, the accuracy of our scheme almost 

increased linearly (right subgraph of Figure 6), and always had 

the highest training accuracy. The slight oscillation of 

accuracy fell in the allowable range. In general, the fast 

convergence and stability of our method are attributed to the 

adaptive learning ability of dynamic feature; In addition, the 

similarity guidance mechanism of training loss and accuracy 

solves the heterogeneity of multi-source data; Thanks to the 

mechanism, the model remains stable in training, and avoids 

vanishing gradients included by the excessive depth. On the 

contrary, ResNet had an unstable training accuracy, and did 

not converge well. The comparison shows that our GNN 

framework can alleviate overfitting, and outperform ResNet in 

generalization. 

Dynamic feature analysis: A series of experiments were 

conducted on the forest fire dataset to demonstrate the 

reasonability of using the dynamic feature. In each experiment, 

one of the following features were discarded, including image 

segmentation, boundary chain code and roundness, contour 

line, mean, and roundness. As shown in Table 2, the algorithm 

accuracy was suppressed by discarding any feature. For 

example, the removal of mean caused a soaring false positive. 

Every feature is indispensable. Together, the features can lead 

to a very high recognition accuracy, and greatly promote false 

positive and robustness.  

 

Table 2. Contribution of dynamic features to fire recognition 

 

Dynamic features 

True 

positive 

(%) 

False 

positive 

(%) 

Accuracy 

(%) 

All features 99.37 0.3 99.02 

No image segmentation 90.3 0.58 92.38 

No boundary chain 

code and roundness 
92.3 1.2 93.8 

No contour line 91.2 0.72 92.69 

No mean 95.3 2.13 94.73 

No roundness 96.5 1.25 92.04 

 

Dynamic features accurately describe the physical and 

optical properties of the fire. Thus, this paper has a smaller 

false positive than the traditional RGB color space-based 

method. Then, the dynamic features were compared with the 

RGB model (Table 3). 

 

Table 3. Comparison between dynamic features and RGB 

model 

 
Metrics Dynamic features (%) RGB model (%) 

Accuracy 99.02 94.04 

True positive 99.78 93.24 

False positive 0.12 13.8 

 

In Table 3, the dynamic features achieved a higher 

recognition accuracy than the RGB model on positive samples. 

However, the latter recognized negative samples more 

accurately than dynamic features, i.e., achieved a higher false 

positive. 

To improve the recognition accuracy, this paper further tests 

on whether the proposed dynamic features can reduce false 

positive under the interference of flame photometry and smoke. 

As shown in Figure 7, our dynamic feature method can provide 

more physical features for fire recognition. The reason is that 

the RGB color space is transformed into multiple single 

spectral spaces. With different features, the detected 

temperature distribution blocks can be quickly estimated by 

the two-color high temperature method. In Figure 7, the left 

subgraph is the recognized area; the center subgraph is the 

temperature distribution estimated by dynamic features, such 

that the model can learn deep information of forest fire images; 

the right subgraph is the RGB black-and-white mode. 

Obviously, our method mapped very realistic temperature 

distribution. Of course, there is a certain limitation of our 

method: the difficulty in handling the scenario of smoldering, 

which does not emit bright lights but faces smoke interference. 

 

 
 

Figure 7. Temperature distribution in the detection area 

 

6.4 Graph visualization 

 

The GNN nodes were classified and visualized on the 

collected dataset. As shown in Figure 8, each node 

corresponds to a node in the graph, and its color corresponds 

to the node class. It can be observed that the nodes of some 

classes were clustered, while those of other classes were 

dispersed. For example, Class-1 (magenta) and Class-9 (green) 

belong to the same cluster. Therefore, they approach each 

other, but stay away from other classes. This is the result of 

the similarity guidance by the dynamic features of multi-view 

images. 

Each image could be approximately classified according to 

the node relationship features between multi-view images and 

library images. Some points of different colors overlapped 

each other, suggesting that these relationship features can well 

update the information of other nodes. The similarity between 

images from different sources was also considered, and used 

to update the dynamic features of the library, creating graph 

nodes of different classes. However, the points of different 

colors were classified excellently. This means our framework 

does well in learning the correlations and differences of 

images from different sources and views.  
 

 
 

Figure 8. Visualization of GNN nodes 
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7. CONCLUSIONS 

 

This paper firstly proposes a GNN based on the similarity 

of multi-view forest fire images, which successfully estimates 

the similarity between images. Then, a dynamic feature 

method was proposed to segment the fire areas from images. 

This method simplifies the complex preprocessing of images, 

and effectively extracts the key features of images, enhancing 

the robustness of forest fire recognition. In addition, a self-

made forest fire image dataset was contributed. The 

experiments on the dataset show that our method applies to 

various fire scenes, and achieves good generalization and anti-

interference abilities, compared to several DL methods. The 

future research will design a fire recognition and monitoring 

system with dynamic views, e.g., regularly patrol and flame 

monitoring by unmanned aerial vehicles (UAVs) in forests. 
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