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The development of science and technology has promoted the extensive application of 

surface electromyography (sEMG) collection technique in real-time exercise testing, 

assistive judgment of rehabilitation therapy, and assessment of intelligent artificial limb 

application. However, there is a severe lacking of studies on pattern recognition based on 

effective signal, and evaluation of limb rehabilitation status. To make up for the gap, this 

paper explores the identification and analysis of limb rehabilitation signal based on wavelet 

transform. Specifically, the authors detailed the basic flow of sEMG signal generation in 

motor unit during limb rehabilitation exercise, and proposed a limb EMG pattern recognition 

method. Then, support vector machine (SVM) was selected to recognize the pattern of the 

EMG signal extracted from the limb rehabilitation exercise of patients, and to judge the 

rehabilitation status. Finally, wavelet thresholding was combined with total variation 

denoising (TVD) to effectively remove the noise from EMG signal. The proposed method 

was proved effective through experiments. 
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1. INTRODUCTION

The proliferation of artificial intelligence in rehabilitation 

has brought convenience to our lives [1-6]. The painless and 

noninvasive surface electromyography (sEMG) collection 

technique is being extensively applied to real-time exercise 

testing, assistive judgment of rehabilitation therapy, and 

assessment of intelligent artificial limb application [7-10]. 

Based on the collected EMG signal, it is possible to effectively 

judge the limb rehabilitation stats of patients, and provide 

practical evidence to the development of rehabilitation 

medicine. 

So far, domestic and foreign researchers have deeply 

explored the processing and analysis of sEMG signal, and 

drawn many substantive conclusions [11-16]. To avoid the 

complex and time-consuming preprocessing of surface signal, 

Prasad et al. [17] labeled the EMG signals of four gestures 

(fist-clenching, left movement, right movement, and palm-

opening), divided the training set and test set by signal length, 

and applied convolutional neural network (CNN) to efficiently 

process EMG signal, and recognize and classify the gestures. 

To find the potential causes of chronic non-specific lumbago, 

Lee et al. [18] established the relationship between the degree 

of pain and the peak torque of extensors and flexors, and 

verified the interaction and positive correlation between the 

two factors, according to the degree of muscle pain and the 

root-mean-square of dysfunction index of patients during 

exercise. Shabani and Mahjoob [19] detected and analyzed the 

EMG signal changes of main muscles in the typical Tai Chi 

style “Brush Knee and Twist Step”, extracted the effective 

eigenvalues of the signal, and realized the pattern recognition 

of long- and short-term practitioners, based on 

backpropagation neural network (BPNN). Using support 

vector machine (SVM), Johnson et al. [20] gathered the EMG 

signal from the hands of amputees, and distinguished their arm 

motions from those of able-bodied subjects. To disclose the 

change law of EMG signal of lower limbs in active and passing 

walking, Kurzynski and Wolczowski [21] adopted the three-

dimensional (3D) motion capture and analysis system to 

collect and analyze the EMG signal of 15 subjects during slow 

walking, normal walking, and fast walking, and presented the 

results of 3D gait analysis. 

To sum up, many scholars have explored EMG signal 

processing, especially in terms of collection principle, signal 

preprocessing, and signal feature analysis [22-27]. However, 

there is a severe lacking of studies on pattern recognition based 

on effective signal, and evaluation of limb rehabilitation status. 

To make up for the gap, this paper introduces wavelet 

transform to the identification and analysis of limb 

rehabilitation signal. Section 2 details the basic flow of sEMG 

signal generation in motor unit during limb rehabilitation 

exercise, and proposes a limb EMG pattern recognition 

method. Section 3 chooses the SVM to recognize the pattern 

of the EMG signal extracted from the limb rehabilitation 

exercise of patients, and to judge the rehabilitation status. 

Section 4 combines wavelet thresholding with total variation 

denoising (TVD) to effectively remove the noise from EMG 

signal. Experimental results demonstrate the effectiveness of 

our method. 

2. EMG PATTERN RECOGNITION BASED ON

MUSCLE SYNERGY

Figure 1 explains the basic flow of the formation of sEMG 

signal in a motor unit during limb rehabilitation exercise. The 

motor unit, stimulated by the neurotransmitter in synaptic cleft, 

produces an action potential on the relevant muscle fiber. The 
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action potential will be transmitted electrochemically. The 

transmission will cause muscle fiber to change and the muscle 

to contract. The repeated muscle contractions continuously 

induce and activate the action potential of the motor unit. In 

this way, a sequence of action potentials will appear. These 

potentials will superimpose each other in time and space, 

thereby producing EMG signal. 

 

 
 

Figure 1. Formation of sEMG signal 

 

If the limbs of the patient are gradually improving, the 

theory of muscle synergy indicates that the central nervous 

system will send a limb control command. After receiving the 

command, the corresponding limb muscles will be regulated 

well. These muscles will be linearly combined in order, and a 

muscle contraction mode will form. In this way, the limb could 

complete the right motion function. Mathematically, the i-th 

correct limb motion function ui equals the linear weighting of 

the muscle synergy gj and activation coefficient qij of M groups 

of limb muscles: 
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Let O be the number of synergic elements; N be the 

dimensionality of the eigenvector; M be the number of 

samples; u be the N×M matrix of muscle motion samples of 

limb rehabilitation; Q be the muscle synergy matrix with N×O 

motion patterns; G be the O×M activation coefficient matrix 

of muscle synergy; F be the N×M matrix of noises. Then, the 

muscle motions of limb rehabilitation can be modeled as: 

 

U Q G F=  +   (2) 

 

Formula 2 is a nonnegative matrix. There are two classic 

multiplicative iteration methods to decompose such a matrix: 

Kullback-Leibler (KL) multiplicative iteration, and Euclidean 

distance iteration. The KL multiplicative iteration can be 

expressed as: 
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The iterative formula to solve formula 3 can be derived as: 
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In Euclidean distance iteration, the muscle motions of limb 

rehabilitation can be modeled as: 

 

   0F U QG s.t.Q,G= −   (5) 

 

Formula 5 shows that ||F||2 must be minimized to solve 

matrices Q and G, while preserving the effective information 

in the original matrix U. Provided that the noise matrix obeys 

Gaussian distribution, the maximum likelihood formula can be 

derived from the training samples of the muscle motions of 

limb rehabilitation:  
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Taking the logarithm of formula 6, the logarithmic 

likelihood function can be established as:  
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Ignoring the variance difference between noises, formula (7) 

is equivalent to: 
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where, (QG)ij can be calculated by: 
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Combining formulas 8 and 9:  
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Similarly, we have:  
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Through gradient descent, Qil can be iteratively calculated 

by: 
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Similarly, Gij can be calculated by: 
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β1 and β2 can be calculated by:  
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Qil and Gij can be iteratively calculated by:  
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Through the above derivation, it is possible to clarify the 

muscle synergy process in limb rehabilitation by decomposing 

the nonnegative matrix (Figure 2).  

 

 
 

Figure 2. Muscle synergy extraction through nonnegative 

matrix decomposition 

 

Through nonnegative matrix decomposition, matrix U was 

decomposed into matrices Q and G. However, the number of 

columns in Q and the number of synergic elements O are both 

uncertain. This is a key factor in solving muscle synergy 

during limb rehabilitation analysis. Once O is determined, it is 

easy to determine the Q and G decomposed from U. 

The common way to determine the number of synergic 

elements O is to calculate the data similarity UDA between the 

reconstructed matrix U'=Q×G of muscle motions in limb 

rehabilitation and the original matrix U: 
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The closer the U' is to U, the greater the UDA. The inverse 

is also true. 

3. LIMB REHABILITATION MODE RECOGNITION 

BASED ON EMG SIGNAL 

 

This paper selects the SVM to recognize the pattern of the 

EMG signal extracted from the limb rehabilitation exercise of 

patients, and to judge the rehabilitation status. The basic idea 

is to judge and classify the mode of EMG signal with the help 

of decision function. Figure 3 shows the principle of the SVM. 

Suppose there are two mode data (D1 and D2) containing the 

EMG signal in limb rehabilitation. A training set ψ={(A1, 

b1)(A2, b2)…(Am,bM)} could be established with the samples 

extracted from the two mode data, where AM∈ℝn is the 

sampled EMG data, bM=-1 or 1 is a binary function 

corresponding to the label of AM. To classify D1 and D2, the 

decision function e(a) must satisfy:  
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The solving of e(a) is critical to the correct classification of 

mode data. Firstly, the mode data sample set {(AM, bM)}m
M=1, 

AM∈Rn, bM∈{1, -1} was given for training, and the data 

relationship was defined as: If the mode data of the target 

EMG signal belong to class D1, bM=1; if AM belongs to D2, 

bM=-1. Then, the authors searched for the classifier that 

maximizes the distance of the target data point from the 

hyperplane, and then construct the classification function. 

 

 
 

Figure 3. Principle of the SVM 

 

The focus of this research is to explore the muscle synergy 

mode for limb rehabilitation, and recognize limb motions with 

eigenvalues. Therefore, the pattern recognition effect must be 

evaluated. In this paper, the distance measure is chosen, which 

is often used to measure the interclass separability in pattern 

recognition. The calculation process is detailed as follows: 

Let i be the muscle channel; m be the number of mode data 

samples; GE and GR be the data samples obtained from EMG 

signal modes GE and GR, respectively; GEB and GRB be the 
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centroids of the feature data of GE and GR, respectively, with 

suffix B be the centroid. Firstly, the centroid of the feature set 

of each EMG mode can be solved by: 
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,:B i
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Let ξ be the distance between eigenvectors in the feature 

space; ξGR-GEB(i) be the distance from the i-th GR EMG signal 

mode data sample to GEB; ξGR-GEB(i) be the distance between 

the centroids of GR and GE data samples. Then, the distance 

from the centroid of an EMG signal mode to any point in the 

feature space of the other EMG signal mode can be computed 

by:  
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The distance between the centroids of the two EMG signal 

modes can be calculated by:  
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4. EMG SIGNAL DENOISING BASED ON WAVELET 

TRANSFORM 

 

4.1 Denoising principle  

 

During the EMG signal collection from patient limbs during 

rehabilitation, the EMG signal can be divided into upper limb 

EMG signal, lower limb EMG signal, and hand EMG signal, 

according to the placement of electrodes on the patient body. 

In actual clinical detection, the noninvasive sEMG signal 

collection technique is often adopted. However, the collected 

signal is usually too weak and prone to noise disturbance. The 

noisy signal will cause errors to the classification of mode data. 

Therefore, it is important to denoise the EMG signal before 

pattern recognition and evaluation of rehabilitation status. To 

ensure the denoising effect, this paper combines wavelet 

thresholding with TVD (Figure 4).  

 

 
 

Figure 4. Flow of proposed combinatory denoising strategy 

The total variation of the one-dimensional (1D) EMG signal 

can be defined as:  
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Formula 22 can be rewritten as QB(a)=||ξa|| 1, which is the 

l1-norm of ξa. Ξ can be expressed as: 
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Suppose b= b(M) is a signal with additive noise. Then: 

 

b a Q= +  (24) 

 

where, a =a(M)∈ℝm is the clean signal; Q = Q(M)∈ℝm is 

noising signal. 

The proposed combinatory denoising strategy is as follows: 

First, wavelet thresholding is carried out in three steps: 

Step 1. Carry out wavelet decomposition of EMG signal 

b(M) to obtain detail coefficients and scale coefficients, and 

set thresholds for the obtained scale coefficients. 

Step 2. Estimate the standard deviation ε of the noise based 

on the detail coefficients. Suppose the EMG signal length is 

ms. Then, define the optional wavelet threshold as 

ε·(2logems)0.5. Choose the threshold just greater than the 

maximum noise amplitude to process the detail coefficients on 

each scale. 

Step 3. Carry out inverse wavelet transform based on ε, and 

further reconstruct the EMG signal. That is, perform TVD 

regularization on the denoised signal a*(M).  

The TVD consists of three steps: 

Step 1. Compute the allowance AL(M) of b(M) and a*(M): 

 

( ) ( ) ( )AL M b M a M= −  (25) 

 

Step 2. Let β be the regularization parameter to adjust 

weights; ξ be the first-order differential matrix. Denoise AL(M) 

through TVD regularization: 
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Formula 26 shows that the denoised allowance contains a 

fidelity term and a TVD regularization term. If the latter term 

does not play a punitive role, β=0; if the latter term dominates 

the process, β approaches ∞. In the latter case, the TVD 

regularization term must be very small to reconstruct the EMG 

signal. However, a small TVD regularization term will 

dampen the denoising effect, and reduce the fidelity. Therefore, 

a suitable β value should be selected to optimize the denoising 

effect. 

Step 3. Let a(M) be the noise-free clean EMG signal. 

Reconstruct the original signal from the denoised signal of 

wavelet thresholding and that of TVD regularization: 
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( ) ( ) ( )a M a M AL M = +  (27) 

 

It is difficult to find the derivative of the TVD term ||ξAL^||1 

in the absolute form. To overcome the difficulty, this paper 

iteratively solves the derivative alternating direction method 

of multipliers (ADMM). According to the TVD regularization 

denoising model, formula 26 can be converted into a constraint 

minimization problem: 
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The objective function of the optimization problem can be 

described by:  
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Let μ=(μ1; μ2; …; μm
s
-1) be the augmented Lagrange 

multiplier; σ be the penalty parameter. Then, formula 29 can 

be converted into an unconstrained optimization problem:  
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Because it is impossible to directly find the derivative of 

absolute value, make v=vl and find the derivative of AL* in 

formula 30: 
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Solving formula 31: 
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Let Φ(∙) be the 1D contraction operator. Combining formula 

32 with formula 30 to solve vl+1:  
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4.2 Evaluation of denoising effect 

 

This paper evaluates the denoising effect of EMG signal 

with root mean square error ERMSE, signal-to-noise ratio ESNR, 

and Pearson correlation coefficient EP. Let CX(M) be the clean 

EMG signal before adding any noise; a(M) be the denoised 

EMG signal. Then, ERMSE can be calculated by: 
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E a M CX M
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The smaller the ERMSE, the better the denoising effect. ESNR 

can be calculated by: 
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The greater the ESNR, the better the denoising effect. The 

Pearson correlation coefficient EP measures the correlation 

between two signals. The value range of the coefficient is [-1, 

1]. If EP=1, then the two signals are positively correlated; If 

EP=-1, then the two signals are negatively correlated. Let 

CX'(M) and a'(M) be the mean of CX(M) and a(M), 

respectively. Then, EP can be calculated by:  
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The greater the EP, the better the denoising effect. 

 

 

5. EXPERIMENTS AND RESULTS ANALYSIS  

 

 
(a) Upper limb girdle muscles 

 
(b)Forearm muscles 

 

Figure 5. Muscle synergy of different motions 
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To verify the effectiveness of our algorithm, patient 

habitation experiments were designed, and the sEMG signals 

of patients in different motion spaces were preprocessed and 

decomposed by nonnegative matrix method. Figures 5 and 6 

show the processed muscle synergy matrices and activation 

coefficient matrices, respectively. Figures 5(a) and 5(b) 

present the muscle synergy of the patients moving their upper 

limb girdle muscles and forearm muscles, respectively; 

Figures 6(a) and 6(b) present the activation coefficient 

changes as the patients stretch their upper limbs and rotate 

their forearms, respectively.  

When the body performs various limb motions, each 

relevant muscle is in a synergistic state. The muscle synergy 

could activate muscles in a fixed order or any muscle by 

random. The activated muscle will produce an EMG signal. 

The number of synergic elements must be suitably determined 

to fully extract the key EMG information. This number was 

set to 1 in our experiments. During the rehabilitation, the 

patients execute the same motions. The eigenvalues of the 

motions are distributed in the feature space, and differ in the 

distribution pattern. The difference can reflect the clustering 

relationship of the motion modes. Figure 7 shows the 

distribution of features of the same motion of limb 

rehabilitation in the feature space. 

 

  
(a) Upper limb stretching (b) Forearm rotation 

 

Figure 6. Activation coefficient variation of different motions 

 

 

 
 

Figure 7. Distribution of features of the same motion of limb rehabilitation in the feature space 
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Figure 8. Pattern recognition results of motions in limb rehabilitation 

 

Table 1. Evaluation results on EMG signal denoising by different methods  

 
SNR Metrics Preset thresholding Adaptive thresholding Iterative thresholding Our method 

1 

ESNR 9.435 9.6497 10.3821 11.3581 

ERMSE 0.6153 0.5634 0.5657 0.4515 

EP 0.9864 0.935 0.9536 0.9628 

2 

ESNR 13.3082 10.6012 11.5652 14.4832 

ERMSE 0.4769 0.5120 0.4876 0.356 

EP 0.9321 0.9325 0.9548 0.9641 

3 

ESNR 14.7687 14.5841 16.1025 17.4527 

ERMSE 0.3564 0.3784 0.2617 0.2539 

EP 0.9538 0.9353 0.9547 0.9728 

4 

ESNR 22.3041 18.1842 22.4525 23.652 

ERMSE 0.1573 0.1865 0.1462 0.1235 

EP 0.9867 0.9837 0.9816 0.998 

 

Further, the eigenvectors of the same motions in different 

stages of rehabilitation were constructed for each patient based 

on muscle synergy, the spatial distribution of motion 

eigenvalues was derived, and the centroid distance between 

each patient and a healthy subject was calculated. The centroid 

distances of all patients were collected and averaged, revealing 

the EMG mode of the same motion in different stages. Figure 

7 shows that the same motion in different stages clustered well 

in space. The distribution pattern indicates a slight shift in the 

centroid position of the said motion. In the future, even if the 

eigenvalue samples of the motion in different stages of 

different subjects are mixed together, the EMG pattern of the 

motion can be derived from the centroid of motion eigenvalues, 

as long as the motion is the same. In other words, it is possible 

to know the stage of rehabilitation of every patient. 

The SVM was coupled with 5-fold orthogonal method to 

classify the motion pattern and rehabilitation stage of each 

subject. The recognition rate of the motions was counted. The 

training set and test set of EMG signal data samples were 

divided by 5:1. For each subject, 250 samples were randomly 

selected from the data sample set for training, and 50 for 

testing. Finally, the pattern recognition rates were obtained for 

five different motions. Figure 8 shows the recognized stage for 

each action of each subject. From the recognition rates of all 

subjects, it can be seen that the recognition rate was higher in 

the last stage of rehabilitation X5 than the early phases. The 

recognition rate of the same motion varied among the subjects, 

but the different was not large. Among all subjects, the 

recognition rate peaked at 97.64% and minimized at 87.42%. 

Therefore, the recognition rate of all motions, and the 

habitation stage judgement of all subjects are both on a 

satisfactory level. 

To verify the effectiveness of the proposed wavelet 

transform-based EMG signal denoising method, Gaussian 

white noises were added to the collected sEMG signal to reach 

different SNRs. Then, the noisy signals were separately 

processed by the wavelet-based preset thresholding, wavelet-

based adaptive thresholding, wavelet-based iterative 

thresholding, and our method. The denoising effect of each 

method was evaluated by ERMSE, ESNR and EP. Table 1 and 

Figure 9 compare the evaluation results. It can be seen that, 

our method achieved better denoising effect, and stronger 

robustness than the other three denoising methods. In addition, 

our method was least disturbed by noise. 

695



 

 
 

Figure 9. SME signal denoising effects of different methods 

 

 

6. CONCLUSIONS  

 

This paper probes deep into the identification and analysis 

of limb rehabilitation signal based on wavelet transform. 

Firstly, the authors detailed the basic flow of sEMG signal 

generation in motor unit during limb rehabilitation exercise, 

and presented a limb EMG pattern recognition method. Next, 

SVM was selected to recognize the pattern of the EMG signal 

extracted from the limb rehabilitation exercise of patients, and 

to judge the rehabilitation status. Through experiments, the 

authors plotted the processed muscle synergy matrices and the 

activation coefficient matrices, disclosed the distribution of 

the features of the same motion in limb rehabilitation in the 

feature space, and judged the EMG pattern and the stage of 

rehabilitation. Finally, the wavelet thresholding was integrated 

with TVD to improve the noise removal effect of EMG signals. 

The EMG signal denoising effects of multiple methods were 

compared through experiments. The comparison shows that 

our method achieved the best denoising effect, the highest 

robustness, and the strongest interference resistance. 
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