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The quick and accurate identification of classroom emotions helps teachers perceive the 

learning state of their students. This paper designs a bimodal identification system for 

classroom emotions based on electroencephalogram (EEG) signals and countenances. The 

system relies on the Internet of things (IoT) technology to collect EEG signals, and extracts 

the signal features with fractal dimension and multiscale entropy algorithm. After that, the 

support vector machine (SVM) was adopted to classify the classroom emotions. Then, the 

features of countenances were extracted by local binary pattern (LBP). Experimental results 

show that our system accurately identified 85.7% of classroom emotions. Compared with 

the traditional countenance-based emotion identification method, the bimodal approach 

could extract rich information on classroom emotions, and achieve a good effect on emotion 

identification.  
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1. INTRODUCTION

In daily life, humans are inevitably affected by each other’s 

emotions. During interpersonal communication, both sides can 

make different responses by observing the emotional changes 

of the other side. The same is true in classroom teaching. 

Teachers can evaluate the students’ knowledge acquisition 

based on their classroom emotions.  

Plutchik [1] defined the most basic countenances of humans: 

happiness, anger, fear, despair, sadness, and disgust. 

Tomarken et al. [2] divided emotions to two basic dimensions: 

valence (V) and arousal (A). The former represents the 

transition from unpleasantness to happiness, and the latter 

represents the transition from depression to excitement. The 

Database for Emotion Analysis (DEAP) [3] splits emotions 

into four states, namely, low A high V (LALV), high A high 

V (HAHV), low A high V (LAHV), and high A low V 

(HALV). Based on HV and LV, this paper decomposes 

emotions into happiness and sadness. 

It is a complex issue to identify human emotions. The 

single-modal identification of emotions has many drawbacks. 

From the perspective of multimodality, the emotions can be 

identified more accurately by extracting the effective 

information of different modals. Currently, human emotions 

are mainly identified based on countenances or 

electroencephalogram (EEG) signals. The countenance-based 

strategy boasts two advantages: the abundance of emotion 

information in each image, and the ease of image collection. 

However, countenance is easy to be covered up, and the 

relevant algorithm is too complex to process. The EEG-based 

strategy is superior in that the EEG signals contain real and 

explicit emotion information, and offer high and easy-to-

process time resolution. The defect of this strategy rests with 

the inaccurate classification of emotions, and the 

inconvenience of the large acquisition instruments. 

Considering realizability and classification accuracy, this 

paper proposes an emotion identification system that 

combines EEG with countenance, and applies the system to 

classroom teaching. The designed system can evaluate student 

emotions from their EEGs and countenances in class, such that 

the teachers can learn the state of their students in class, and 

make timely adjustment to the teaching plan. 

2. RELATED WORKS

The EEG-based emotion identification can be realized by 

using Internet of things (IoT). So far, EEG signals have been 

studied in time and frequency domains [4, 5]. In time domain, 

Nawaz et al. [6] extracted fractal dimension features of EEG 

signals for emotion recognition. The physical significance of 

the fractal dimension is the irregularity of time series. Uchino 

and Nakagawa [7] found that the left hemisphere of the human 

brain is more active in positive emotions, while the right 

hemisphere is more active in negative emotions. To 

distinguish happiness and sadness, Gao et al. [8] calculated the 

fractal dimensions of the AF3 channel in the left brain and the 

F4 channel in the right brain, compared the stability and 

accuracy of fractal dimension and other EEG features, and 

concluded that fractal dimension can stably and accurately 

identify emotions. 

In frequency domain, EEG signals can be divided into five 

frequency bands. Chen et al. [9] held that EEG signals of high 

frequency bands (e.g., 𝛽 and 𝛾) are more suitable for emotion 

research. Chao et al. [10] extracted the differential entropies of 

EEG signals, trained deep belief network (DBN) and DBN-

hidden Markov model (HMM), and achieved high 

classification accuracy of two types of emotions. Aditya and 

Tibarewala [11] preprocessed the EEG signals from ten 

channels through discrete wavelet transform (DWT), extracted 
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energy entropy as features, and classified them with support 

vector machine (SVM) and k-nearest neighbors (KNN) 

algorithm; experimental results show that 𝛾  band was 

classified more accurately than the other low-frequency 

channels [12-16].  

Some scholars also combined time and frequency domains 

in EEG research. For example, You et al. [17] normalized EEG 

signals with empirical mode decomposition (EMD) and 

extended multivariate EMD (MEMD), extracted power 

spectral density (PSD), entropy, and eight other features; After 

independent component analysis (ICA), KNN and artificial 

neural network (ANN) were adopted to classify the EEG 

signals; The recognition rates of A and V were 73% and 75%, 

respectively. Combing time and frequency domains, Tafreshi 

et al. [18] extracted the fractal dimension and PSD from brain 

electrical signals in DEAP database, and compared the 

performance of SVM, multi-layer perceptron (MLP), decision 

tree (DT), and other classifiers; In the case of PSD extraction, 

SVM was found to be the most accurate classifier for positive 

and negative emotions. 

Countenance feature extraction targets static or dynamic 

images. In static images, the countenance features can be 

extracted by Gabor filter, local binary pattern (LBP), scale-

invariant feature transform (SIFT), and principal component 

analysis (PCA) [19-21]. In dynamic images, these features can 

be extracted by model approach, geometric approach, and 

optical flow approach [22-24]. With histogram of oriented 

gradients (HOG), Wang et al. [25] described the local contour 

of human faces, and constructed a bottom-up hierarchical DT, 

which can correctly classify the emotions of any image not 

included in the training set. Jeong et al. [26] improved the LBP 

to classify seven kinds of emotions in Japanese Female Facial 

Expression (JAFFE) Database, and confirmed through 

experiments that the improved LBP makes emotion 

identification more accurate. Mayya et al. [27] constructed a 

facial emotion identification model based on deep learning 

(DL), which surpasses the traditional convolutional neural 

network (CNN) by 4% in classification accuracy. 

When it comes to multimodal feature extraction, the initial 

approach is to fuse the countenance data with audio signals, 

trying to improve the reliability and effectiveness of emotion 

computing. Su et al. [28] synthetized the EEG information 

with eye movement signals, and classified emotions with a 

multi-modal DL deep neural network (DNN). Kessous et al. 

[29] fused the extracted speech and countenance features, and 

classified emotions using an SVM. Through DL, Spapé et al. 

[30] combined EEG signals and electromyography (EMG) 

signals, proposed an innovative DL model for countenance 

identification by the two modals; the proposed model 

increases the accuracy of emotion classification. 

 

 

3. SYSTEM DESIGN 
 

This section explains the design of our bimodal emotion 

identification system based on both countenance and EEG 

signals. The system preprocesses the relevant information, 

extracts the features from countenance and EEG signals, and 

fuses the extracted two types of features. Figure 1 illustrates 

the flow of our system. 

Our system firstly collects information from EEG signals 

and countenances. After preprocessing, fractal dimension, 

multiscale entropy, and uniform pattern LBP were extracted, 

respectively. In the feature layer, the features of the two 

modals were merged into bimodal emotion features. Finally, 

the SVM was called to classify happy and sad emotions. 

 

 
 

Figure 1. Flow chart of bimodal emotion identification system 

 

3.1 IoT-based design of EEG modal system 

 

Prefrontal lobe is an important part of the human brain for 

emotion identification. Since FP1 channel contains lots of 

emotional information, the authors decided to collect EEG 

signals from this channel, remove the noises through wavelet 

thresholding, and calculate the features like fractal dimension 

and multiscale entropy of EEG signals. Figure 2 explains the 

flow of EEG modal system. 

During system operation, the EEG signals were collected by 

the IoT. Every subject was asked to wear an electrode cap 

applied with conductive paste. The electrode distribution 

meets the international 10–20 system for electrode placement 

of EEG measurement. The EEG data were collected for 65 s. 

The data in the first 5s were taken as the reference, and those 

in the last 60 s were preprocessed. The sampling rate was set 

to 128 Hz. 

The EEG signals are very weak in microvolt level, and 

easily affected by 50 Hz power frequency alternative current 

(AC), electrocardiogram (ECG), eye electricity, EMG and 

other interference sources. Therefore, this paper chooses to 

remove the residual noises in the EEG signals through wavelet 

thresholding. 
 

 
 

Figure 2. Flow chart of EEG modal system 
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Fractal dimension and multiscale entropy were extracted 

from the EEG signals. The higher the fractal dimension, the 

more active the brain. Here, Higuchi algorithm [31] is 

employed to calculate the fractal dimension in the following 

procedure: 

(1) Define the length of EEG signal as 𝐿, and describe the 

EEG signals as X(1), X(2), … , X(L). 
(2) Set up a new series: 

 

𝑋𝑘
𝑚: 𝑋(𝑚), 𝑋(𝑚 + 𝑘), … , 𝑋(𝑚 + [

𝐿 − 𝑚

𝑘
] 𝑘)  

 

where, 𝑘 is the interval between two adjacent numbers in the 

new series, 𝑘 = 1,2, … , 𝑘𝑚𝑎𝑥 ; 𝑚  is the initial signal value, 

𝑚 = 1,2, … , 𝑘. 

(3) Compute the length of each new series. 

(4) For each 𝑘 value, calculate the mean length 𝐴𝐿(𝑘) of the 

series: 

 

𝐴𝐿(𝑘)

= {(∑
|𝑋(𝑚 + 𝑖𝑘) − 𝑋(𝑚 + (𝑖 − 1)𝑘)|)

× (𝐿 − 1) (𝐿 −𝑚)⁄

[
𝐿−𝑚
𝑘

]

𝑖=1
} 𝑘⁄  

 

 

(5) Obtain 𝑙𝑛(𝑘) and B under all 𝑙𝑛(𝐴𝐿(𝑘)) values, fit the 

slope by least squares (LS) method, and take the opposite 

number of the slope as fractal dimension. 

After wavelet thresholding, the EEG signals were split into 

30 segments by a window containing 256 points. The fractal 

dimension was extracted from each segment, producing a 30-

dimensional eigenvector (Figure 3). 

 

 
 

Figure 3. Extraction of fractal dimension 

 

Multiscale entropy reflects the complexity of time series on 

different time scales. The original signals must be coarse-

grained to derive the sample entropy on different time scales. 

Coarse-graining means to segment the original signals using a 

window with a non-overlapping length 𝜏. The coarse-grained 

new signals can be defined as: 

 

𝑦𝑗
𝑡 =

1

𝜏
∑ 𝑥𝑖

𝑗𝜏

𝑖=(𝑗−1)𝜏+1
  

 

where, 𝜏 is the current time scale.  

The entropy and dimension of multiscale entropy of a 

sample both depend on the time scale. To adapt the dimension 

of multiscale entropy to emotion classification, our system 

extracts the EEG signals of FP1 channel from 10 subjects in 

DEAP database, and judges the samples with V>6 as happy 

emotions and those with V<4 as sad emotions. Experimental 

results show that the mean sample entropy difference between 

happy and sad emotions was large, at the initial scale of 1. 

With the growing scale of multiscale entropy, the mean sample 

entropies of happy and sad emotions gradually converged. 

After the scale reached 15, the multiscale entropy no longer 

had an obvious classification effect. Therefore, the multiscale 

entropy of the first 15 scales was selected as the eigenvector 

of EEG signals. 

 

3.2 SVM-based design of countenance modal system 

 

 
 

Figure 4. Extraction of uniform pattern LBP 

 

 
 

Figure 5. Feature classification by SVM 

 

The countenance modal system supports face detection, 

preprocessing, and feature extraction. During face detection, 

the OpenCV face detector was loaded to detect the face region, 

which was then extracted. In real life, image acquisition is 

inevitably affected by illumination, head swing, and noise 

pollution, making it necessary to preprocessing the original 

images. Histogram equalization is a common method to 

increase the contrast and clarity of the images. Considering the 

complexity of countenance identification, this paper adopts the 

uniform pattern LBP [32] to extract countenance features in 

the following procedure: 

(1) Construct a 3×3 texture region with the center pixel 

value as the threshold. Compare the value of each of the 

surrounding eight pixels with the threshold, and set the 

neighborhood value to 1 if the threshold is smaller, and 0 if the 

threshold is greater. 

(2) In the 3×3 texture region, record the neighborhood 

values calculated by the surrounding eight pixels as an 8-bit 

847



 

binary number in the clockwise direction. Then, count the 

number of 0 to 1 or 1 to 0 transitions in the binary number. If 

the number is smaller than two, take the decimal number 

corresponding to the binary number as the LBP value of the 

center pixel; if the number if greater than two, set P to 8, and 

the LBP value of the center pixel to P+1=9. 

(3) Traverse all the pixels to obtain the LBP values of the 

entire image, and connect the LBP values into an eigenvector 

in sequence, producing the uniform pattern LBP feature of the 

whole image. 

Figure 4 shows how to extract the uniform pattern LBP.  

After dimension reduction, the extracted countenance 

features were classified by the SVM (Figure 5).  

After being computed, the eigenvectors of the subjects 

should be normalized. Compared with the original data, the 

normalized data can shorten the training time and improve the 

test accuracy of SVM classifier. This is because the 

normalization makes the data more compact, which optimizes 

the classification hyperplane. 

Furthermore, radial basis function (RBF) was chosen as the 

kernel function of the SVM classifier. As a special tool of 

nonlinear mapping, the RBF works well on nonlinear 

separable problems with multidimensional vectors. 

 

3.3 Multimodal feature fusion 

 

Multimodal feature fusion intermingles various information 

captured by different sensors, such as text, audio, and video. 

The multimodal feature fusion network consists of a 

classification layer (decision layer), a feature layer, and a data 

layer. From the first to the last layer, the dimension and 

volume of data being processed increase in turn. 

 Data layer fusion is to directly fuse the original data of 

different modals, before extracting and classifying the features. 

The fusion between EEG signals and countenances is a typical 

case of data layer feature.  

Feature layer fusion usually connects the features of 

different modals in series or in parallel. However, the high-

dimensional eigenvectors must go through dimensionality 

reduction to prevent the curse of dimensionality. For 

dimensionality reduction, the redundant features are often 

eliminated by PCA and linear discriminant analysis (LDA).  

Decision layer fusion classifies different types of features, 

and makes a joint decision under certain rules. The input is the 

results of different sensors or modals, and the output is the 

interpretation of several classification results simultaneously. 

Our system adopts bimodal feature fusion. The system 

collects two kinds of signals at the same time, processes each 

type of signals, extracts the corresponding features, and then 

fuses the two features in series. According to our feature 

extraction method, 30 fractal dimensions could be obtained 

from the segments of the preprocessed EEG signals, creating 

a 30-dimensional fractal dimension. Meanwhile, a 15-

dimensional multiscale entropy could be acquired under 15 

different time scales. In this way, the EEG features acquired 

by our approach have 45 dimensions. After the face region was 

extracted, the countenance image was decomposed through 

histogram equalization into 3×3 regions, and the uniform 

pattern LBP was extracted from each region. 

After dimensionality reduction, our system obtains 45-

dimensional EEG features of EEG modal and LBP features of 

countenance. The two kinds of features were combined in 

series. After that, the emotions were classified by the SVM 

classifier. Figure 6 explains the process of multimodal feature 

fusion. 

 

 
 

Figure 6. Fusion of multimodal features 

 

During feature layer fusion, an m-dimensional EEG 

eigenvector 𝑣 = [𝑣1, 𝑣2, … , 𝑣𝑚] is connected in serious with 

an n-dimensional countenance eigenvector 𝑢 =
[𝑢1, 𝑢2, … , 𝑢𝑛] into an m + n-dimensional eigenvector 𝜌: 

 

𝜌 = 𝑢 + 𝑣 = [𝑣1, 𝑣2, … , 𝑣𝑚, 𝑢1, 𝑢2, … , 𝑢𝑛] 
 

 

4. EXPERIMENT AND ANALYSIS 

 

4.1 Model validation and analysis 

 

The theoretical analysis above determines the feature 

extraction method for emotion identification for our system, 

and chooses the SVM to classify happy and sad emotions. 

Here, the FP1 channel of 32 channels in DEAP database is 

selected to study how this channel affects emotion 

classification. For label processing, the value range of V was 

set to 1-9. The samples with V<4 were labeled as sad, and 

those with V>6 as happy. All the samples of happy and sad 

emotions were selected, and divided into a training set and a 

test set by the ratio of 4:1. 

During the experiment, the classification accuracies of 

happy and sad emotions were counted separately. To facilitate 

the analysis, a number of parameters were defined: HS, the 

number of all the samples with happy emotions; HT, the 

number of correctly classified samples with happy emotions; 

SS the number of all the samples with sad emotions; ST, the 

number of correctly classified samples with sad emotions. 

Then, the identification accuracies of happy and sad emotions 

can be respectively calculated by HT/HS and ST/SS. The 

identification accuracy of both emotions can be calculated by 

(HT+ST)/(HS+SS). Figure 7 shows the classification 

accuracies observed in the experiment. 
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Figure 7. Experimental classification accuracies 

 

As shown in Figure 7, 74.5% of happy emotions, 77.1% of 

sad emotions, and 75.2% of both emotions were correctly 

classified in the experiment. The classification effect is close 

to the accuracy of traditional multi-channel classification. This 

confirms the reasonability of the method of EEG modal 

preprocessing and feature extraction. 

Then, SVM was used to classify the emotions of happiness 

and sadness in countenances. A total of 61 images were 

selected from the JAFFE database, including 31 happy 

countenances and 30 sad countenances. Face detection and 

histogram equalization were performed on the selected images. 

Then, LBP features were extracted from uniform pattern, and 

SVM was used to classify the selected images. 

In our experiment, the mean precision of SVM 

classification was calculated by five-fold cross validation. 

Twelve samples are selected as the test set and other samples 

as the training set. The classification accuracy of SVM is 

recorded in Figure 8. 

 

 
 

Figure 8. Classification accuracy of SVM 

 

The classification accuracy of SVM averaged at 72.7%, 

mainly because the dimension of eigenvector is still too small. 

 

4.2 Classroom emotion identification experiment 

 

To verify its accuracy and feasibility, our system was 

applied for classroom emotion identification. The videos and 

images of students in an actual classroom were collected via 

Bluetooth transmission. Since the camera is far from the 

students, the images captured are the upper bodies, which 

contains many parts other than faces. Therefore, the OpenCV 

face detector was called to extract the facial regions in each 

image, facilitating the subsequent processing of facial regions. 

Twenty students received two rounds of 16 experiments, 

with 8 experiments in each round. The first round generated 

160 samples, which were taken as the training set for the SVM 

classifier. The second round generated another 160 samples, 

which were treated as the test set for classification. At the end 

of the experiments, every student was asked to evaluate his/her 

emotions against a self-evaluation scale. Table 1 shows the 

classification accuracy of happy and sad emotions of the 20 

students. 

As shown in Table 1, the mean classification accuracy of 

the 20 students was 77.5%. The accuracy was low only on 

student 17, probably due to his/her emotional motivation. 

The control variate method was adopted to compare the 

classification accuracies of our bimodal approach with EEG 

modal and countenance modal. The data were collected from 

the same students as above. Table 2 compares the accuracies 

of the three methods. 

 

Table 1. Classification accuracy of happy and sad emotions 

of the 20 students 

 
Student 

number 

Classification 

accuracy  

Student 

number 

Classification 

accuracy  

1 89.5% 11 80% 

2 75% 12 82.5% 

3 62.5% 13 92.5% 

4 92.5% 14 80% 

5 70% 15 85% 

6 80% 16 80% 

7 65% 17 45% 

8 75% 18 75% 

9 75% 19 75% 

10 90% 20 80% 

 

Table 2. The accuracy of emotion classification of the three 

methods 

 

Method Happiness  Sadness 
Both 

emotions 

EEG modal 72.5% 75% 73.75% 

Countenance modal 65% 72.5% 68.75% 

Bimodal emotion 

identification system 
80% 82.5% 81.25% 

 

Obviously, the bimodal emotion identification system 

achieved the highest accuracy, which considers both EEG and 

countenance features. This means the accuracy of emotion 

classification can be improved by collecting signals of 

different modals, and fusing the features of these signals into 

a multimodal feature. 

Using only one EEG channel FP1, our system identified 

both happy and sad emotions with an accuracy of 81.25%, 

which surpasses the accuracy of the traditional multi-EEG 

channel-based approach. 

 

 

5. CONCLUSIONS 

 

This paper adds the countenance modal to the EEG-based 

emotion classifier. The EEG and countenance features were 

extracted, and the eigenvectors were fused through proper 

methods. On this basis, a bimodal emotion identification 

system was established based on the fused bimodal features. 

The effectiveness of our system was validated through 

experiments on students in a real classroom: our system, which 

considers both EEG features and countenance features, 
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outperformed EEG modal and countenance modal in emotion 

identification. 
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