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Objection detection has long been a fundamental issue in computer vision. Despite being 

widely studied, it remains a challenging task in the current body of knowledge. Many 

researchers are eager to develop a more robust and efficient mechanism for object detection. 

In the extant literature, promising results are achieved by many novel approaches of object 

detection and classification. However, there is ample room to further enhance the detection 

efficiency. Therefore, this paper proposes an image object detection and classification, using 

a deep neural network (DNN) for based on high-quality object locations. The proposed 

method firstly derives high-quality class-independent object proposals (locations) through 

computing multiple hierarchical segments with super pixels. Next, the proposals were 

ranked by region score, i.e., several contours wholly enclosed in the proposed region. After 

that, the top-ranking object proposal was adopted for post-classification by the DNN. During 

the post-classification, the network extracts the eigenvectors from the proposals, and then 

maps the features with the softmax classifier, thereby determining the class of each object. 

The proposed method was found superior to traditional approaches through an evaluation 

on Pascal VOC 2007 Dataset.  
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1. INTRODUCTION

The recognition of objects in images has been the focus of 

many academicians and practitioners. Over the years, more 

appropriate contemporary algorithms have emerged to 

enhance the performance of object detection. However, most 

object detection algorithms perform poorly, because different 

viewpoints vary in size, angle, perspective, deformation, 

occlusion, illumination, and background clutter. In recent 

years, much efforts have been made to improve object 

detection methods.  

Based on modern technologies like deep learning, numerous 

cutting-edge object detection approaches are now available for 

detecting and classifying diverse objects in images. Most of 

them rely on the deep learning tool of convolutional neural 

network (CNN) to classify the objects, such as to achieve 

remarkable detection performance. This technological 

advancement opens new horizons for researchers, owing to its 

superior performance in many practical disciplines, including 

object detection [1], object localization [2], object tracking [3], 

image generation [4], human pose estimation [5], text 

recognition and detection [6], visual question answering [7], 

action recognition [8], visual saliency detection [9], and scene 

labeling [10]. However, more novel technologies are 

necessary to further enhance the overall detection efficiency. 

In the last decade, many have strived to make detection 

models more efficient. Object detection is a two-step process: 

object proposal (location) generation and post-classification. 

Therefore, the performance of object detection hinges on both 

object proposal algorithms and post-classification networks. 

The location of objects in the image has drawn significant 

attention from the academia. To realize efficient and accurate 

classification, it is necessary to cover as many image objects 

as possible in a few object proposals. This can be achieved by 

reducing the search space for an object’s location, and 

minimizing the number of false alarms in resulting locations. 

Previously, many approaches have been introduced to 

generate a few proposals that cover as many objects as 

possible, namely, constrained parametric min-cuts (CPMC) 

[11], Rantalankila’s method [12], Rahtu’s method [13], 

Objectness [14], binarized normed gradients (BING) [15], 

selective search [16], edge box [17], and Endres’ method [18]. 

Unfortunately, none of these approaches could generate high-

quality proposals. All of them create too many proposals per 

image, resulting a high detection recall at the expense of 

computing cost. Besides, lots of false alarms will appear, and 

the search space will remain large, which undermine the 

performance of subsequent tasks like classification. The other 

prominent defects of the said proposal generation approaches 

include inaccuracy, redundancy, class dependence, and 

excessive locations. What is worse, there is no proper 

mechanism to refine the generated proposals, so as to improve 

classification accuracy at the low cost. Hence, there is ample 

room to improve the proposal generation mechanism to 

produce a few high-quality proposals with a high recall, a high 

computing efficiency, and a high detection performance. For 

this purpose, our research deduces a mechanism that generates 

fewer yet high-quality proposals based on scoring and ranking 

mechanism. 

For object detection, the improvement of proposal 
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generation is beneficial, but not adequate. Any advancement 

in proposal generation needs to be backed up with a robust 

classification network. In recent years, the classification 

accuracy is rising due to the development of deep learning, 

especially the progress of CNN. A variety of powerful CNN 

architectures have been designed to realize desired accuracy in 

classification tasks, such as AlexNet [19], VGGNet [20], 

GoogleNet [21], ResNet [22], DenseNet [23], to name but a 

few. In practice, these networks are pretrained on the 

opensource dataset of ImageNet, and adopted as a backbone 

network for various detection tasks. Nevertheless, it takes a 

long time and a heavy computing load to retrain them for 

classification tasks. The CNN-based based object detection 

methods can be roughly divided into proposal-based 

techniques and non-proposal-based techniques. Each 

proposal-based technique consists of two steps: proposal 

generation, and post-classification, while each non-proposal-

based technique completes detection in one step only. The 

representative proposal-based techniques include region-

based CNN (R-CNN) [24], Fast R-CNN [25], Faster R-CNN 

[26], region-based fully convolutional network (R-FCN) [27], 

and Mask R-CNN [28].  

The existing literature provides insights into CNN-based 

object detectors. For example, R-CNN first acquires high-

quality class-independent object proposals from an image 

through selective search, and extracts the regional features by 

forward computing to predict the class of each region. 

However, the high computing cost makes the network unfit for 

actual applications. One of the main impediments of R-CNN 

lies in the slow speed. For a single image, the detection may 

require thousand rounds of forwarding computing. Later, 

Microsoft researchers improved R-CNN into Fast R-CNN. 

This network is more efficient than R-CNN, which shares the 

computing load of the backbone network. Unlike R-CNN, Fast 

R-CNN obtains all the proposals in an image simultaneously. 

This improved region extraction process leads to better 

efficiency. Furthermore, Fast R-CNN adopts a region of 

interest (ROI) pooling layer on the feature map for 

classification and regression tasks. Despite being faster than 

R-CNN, Fast R-CNN faces a main drawback: the dependence 

on selective search for proposal extraction. To acquire more 

robust outcomes, Ren et al. [26] introduced Faster R-CNN, 

which overcomes the computing problems of both R-CNN and 

Fast R-CNN. In Faster R-CNN, selective search is replaced 

with a region proposal network (RPN) to prevent the 

generation of redundant proposals. Thus, the detection 

becomes faster and less costly. In addition, Dai et al. [27] 

proposed another improved CNN-based object detector called 

R-FCN. This network combines the two stages of detection in 

previous approaches into a single stage, using only 

convolutional layers. Besides, fewer convolutional layers are 

adopted to accelerate the detection. He et al. [28] extended 

Faster R-CNN into Mask R-CNN for object detection, which 

achieves a high performance by segmenting the target image 

pixel by pixel. Furthermore, you only look once (YOLO) [29], 

and single shot detector (SSD) [30] were developed for 

regression-based object detection. The two single-stage, 

proposal-free methods are widely used to detect objects in real 

time. In addition, many regularization techniques emerged to 

enhance the classification accuracy of the above networks [31, 

32].  

This paper puts forward a two-stage object detection 

technique. In the first stage, high-quality object proposals were 

generated, and ranked by score to improve classification 

accuracy and reduce computing cost. In the second stage, the 

ranked proposals were combined into an eigenvector by 

modified VGGNet, and the softmax classifier was called to 

classify the objects. The VGGNet was modified to extract 

dense pixel-level features. The modification, i.e., the removal 

of the last layer, substantially improves the overall 

performance of our technique. There are two advantages of 

this modification: First, the time and memory costs of the fully 

connected layer are reduced during training and testing; 

Second, full-size prediction can be realized more accurately, 

thanks to the removal of the last pooling layer, whose output 

is much smaller than the input image. The most significant 

contributions of this research are outlined as follows: 

(1) Proposing a suitable image processing technique to 

generate a few high-quality proposals that may contain the 

objects in the image, and prevent the generation of redundant 

proposals. 

(2) Proposing and validating a robust image processing 

technique that recognizes the objects in the generated 

proposals, and improves the classification performance of the 

overall detection task. 

(3) Proposing and assessing a high-confidence, efficient, 

and precise technique for object detection based on distinct 

class proposals in images.  

The remainder of this paper is organized as follows: Section 

2 presents a thorough literature review; Section 3 introduces 

the proposed method and the dataset used in this research; 

Section 4 evaluates the experimental results; Section 5 draws 

the conclusions and predicts future research directions.  

 

 

2. LITERATURE REVIEW 

 

Object detection approaches generally cover two stages, i.e., 

proposal generation, and object classification. In most cases, 

object proposals are created by proposal generation algorithms, 

and categorized with object classifiers. There are generally 

two kinds of proposal generation algorithms: grouping and 

window scoring.  

The grouping algorithms decompose each image into 

multiple hierarchical segments that are expected to contain an 

object, and merge them based on similarities in color, texture, 

size, shape, etc. The performance of grouping algorithms 

exclusively depends on the technique that determines the 

initial segment. Felzenszwalb and Huttenlocher [33] presented 

an efficient and fast approach for segment initialization. More 

suitable than any other public solutions, Felzenszwalb’s 

approach produces a small set of initial segments rapidly, and 

treats the segmentation as a graph problem, where the vertices 

and edges are the components to be segmented [34]. Carerira 

and Sminchisescu [11] and Endres and Hoiem [18] developed 

several models to generate class-independent object proposals. 

In their models, different seeds and parameters are adopted to 

solve multiple graph-cuts for generating two-fold segments 

(foreground and background), and the resulting segments are 

taken as object proposals. These models can efficiently 

forecast the segment that encloses the whole object, according 

to the ranking of the proposals, and generate high-quality 

segmentation masks. However, their speed is dragged down 

by the dependence on gPb edge detector. Similarly, selective 

search [16] prepares high-quality class-independent proposals 

using super pixels and clustering technique, and becomes a 

common approach for object detection. During selective 

search, the initial segments are grouped through hierarchical 
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clustering, in the light of color, shape, size, or texture, and 

various proposals are covered by different color spaces. 

Compared to other methods, selective search generates high-

quality proposals at a high recall and a fast speed. However, 

the proposal generation is not well controlled. The lack of 

scoring and ranking mechanism could bring unwanted 

proposals, which undermine the classification performance. 

Window scoring determines the presence of an object by 

computing the score of each generated window, i.e., the 

likelihood of the object being contained in the window. 

Window scoring algorithms are much faster than grouping 

algorithms, but less accurate in object localization. As a 

popular way to generate object proposals, Alexe et al. [14] 

calculates the probability for an object to present in an image. 

Different image cues, including edge density, saliency, super 

pixel straddling, and color contrast, are used to derive image 

features, and are merged with the Bayesian model to calculate 

the score of each candidate window. Capable of achieving a 

few high-quality proposals, Objectness operates fast but has 

an overall low accuracy of localization. Likewise, edge box 

[17] determines the edges in an image with an edge detector, 

combines the eight neighboring edges into an edge set (object 

proposal), computes the score of each box by sliding a window 

over an image scale, and relies on the score to refine the 

proposals. Similarly, Rahtu et al. [13] generated many random 

proposals (candidate boxes) by Objectness, obtained even 

more proposals through threefold super pixel segmentation 

(i.e., single, double, and triple), and multiplied these proposals 

to obtain candidate proposals. Rahtu’s method improves the 

scoring mechanism of Objectness, and rates each proposal 

with additional low-level features.  

Every object detection task needs to be completed in two 

stages. Apart from improving proposal generation, it is 

important to enhance the overall efficiency with a robust 

proposal classifier. Deep learning neural networks like CNN 

are extensively adopted to improve classification accuracy. 

CNN has achieved exceptional results in machine learning 

problems, notably involving image classification datasets. The 

advancement of CNN and other deep learning techniques has 

greatly promoted image classification precision. Many 

researchers and developers are energized to develop advanced 

models to solve complex problems, which are beyond the 

capacity of standard artificial neural networks (ANNs). In this 

process, CNN has been tailored to various machine learning 

problems (object recognition, object classification, and speech 

recognition), particularly those related to massive image data. 

The earliest CNN was designed by LeCun et al. [35] in 1990, 

and was enhanced in 1998 [36]. LeNet-5 is a multi-layer CNN 

for handwritten digit classification. The network can be trained 

by the backpropagation algorithm [37]. By converting the 

original image into useful representations, LeNet-5 could 

identify visual patterns explicitly from raw pixels without 

laborious preprocessing [38]. Nonetheless, the network 

performance is often dampened by the lack of sufficient 

training data and computing capacity for complex problems, 

such as largescale image and video classification.  

Since the inception of LeNet-5, many other methods have 

been created to overcome the issues through the training of 

deep neural network (DNN). In 2012, Krizhevshy et al. [19] 

proposed a novel deep CNN called AlexNet, an ultradeep 

network of 60,650,000 neurons. The incorporation of high-

performance computing machines like graphics processing 

unit (GPU) enables AlexNet to outperform all the previous 

networks by reducing the error rate by 15.3%. The 

performance gap between AlexNet and the second-best 

performer, which is not a CNN variant, is as much as 10%, a 

huge edge in feature-based object detection. Marveled at the 

prominence of AlexNet, Zeiler and Fergus [39] established a 

model to visualize and comprehend CNN, endeavoring to 

yield better outcomes than AlexNet. After visualizing AlexNet, 

they noted that the minor modification in the network 

perspective could improve classification effect, and 

discovered that AlexNet contains too many parameters, which 

brings a high computing cost. To improve AlexNet, Fan et al. 

[10] offered an architecture of much fewer neurons, namely, 

network in network (NIN) (7.5 million vs. 60 million). 

Google’s team extended AlexNet into a deep CNN called 

Inception [40, 41], which curtails the neurons further to 4 

million. For object detection, Inception utilizes the same 

method as R-CNN, except that the proposals are generated by 

multi-box technique and selective search: half of the proposals 

are produced through selective search, while 200 are selected 

by multi-box technique [42]. Dai et al. [43] improved 

Inception into ResNet, which enhances the efficiency of CNN 

with two new models, namely, deformable convolution and 

deformable ROI pooling. The VGGNet team also built a 

network much deeper than CNN, and indicated that image 

object detection hinges on the depth of the convolutional 

mechanism. The team designed 19 weighted layers, along with 

a convolutional stride of 1 and a small 3 × 3 convolutional 

filter, and proved that no piece of information is squandered 

during the detection of object features.  

Much efforts have been made to improve the robustness and 

efficiency of CNN in various computer vision tasks, and to 

solve the varied problems in adopting CNN and its 

components, such as network optimization, regularization, 

layer design, activation and loss functions, computing speed, 

etc. For instance, Iandola et al. [44] introduced a small DNN 

architecture with 50𝑥  fewer parameters, and attained 

comparable accuracy on ImageNet as AlexNet. The 

architecture can be compressed to less than 0.5 MB, 510𝑥 

smaller than the latter. Redmon et al. [29] designed YOLO 

based on CNN architecture for unified and real-time object 

detection. The network contains 24 convolutional layers, 

followed by two fully connected layers. To reduce the feature 

map from previous layers, each convolutional layer can be 

adjusted to 1 × 1. Besides, the convolutional layers are pre-

trained on the ImageNet database by setting the resolution of 

an input image to half ( 224 × 224 ). Furthermore, the 

resolution is doubled for detection purposes. To realize 

efficient feature-based object detection, Gehring et al. [45] 

presented a CNN-based architecture for sequence-to-sequence 

learning, which outshines the existing approaches, which are 

unable to discover compositional structure in the sequences. 

Their architecture can parallelize all the elements during the 

training phase for better computations. Besides, nonlinearities 

are made constant and independent of the input length, making 

the optimization more natural. In addition, Bansal et al. [46] 

put forward PixelNet to enhance the overall pixel-based 

detection performance for representations. However, the 

network is not sufficient to achieve state-of-the-art detection 

performance. The proposal-based object detection methods 

with CNN as a classifier include R-CNN [24], Fast R-CNN 

[25], Faster R-CNN [26], R-FCN [27], and Mask R-CNN [28].  

This paper offers a method to detect and classify objects in 

images using object proposals and deep learning neural 

network, with the aim to eliminate the problems with the above 

techniques in object detection. Firstly, high-quality class-
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independent object proposals were generated from each image. 

Next, all the pixels of these proposals were warped to the input 

size of the deep neural feature detector, producing a fixed-

length input eigenvector for each proposal. After that, these 

features were imported to the softmax classifier to categorize 

objects. The research provides a brand-new paradigm 

compared to the earlier studies. 

3. METHODOLOGY  

 

Figure 1 explains the proposed method for object detection, 

which uses the deep learning network based on class-

independent proposals, stage by stage. There are three major 

steps of our method: proposal generation, feature computing, 

and object classification. 

 

 
 

Figure 1. Roadmap of our method 
 

3.1 Proposal generation 

 

 
 

Figure 2. Proposal ranking 
 

The first step is to obtain a small set of high-quality 

proposals for an object, which are independent of the class 

(Figure 2). The traditional window scoring technique was 

integrated with hierarchical segmentation to obtain high-

quality class-independent object proposals efficiently. First, 

agglomerative clustering was implemented to acquire the 

proposals (bounding boxes). Second, each proposal (box) was 

rated by subtracting the sum of the strengths of all the edges in 

each edge set with the strength of the edges that overlap the 

box. Third, the proposals were ranked by the score. Fourth, the 

proposal with the highest score (top-ranking proposal) was 

chosen for object classification. This strategy can generate 

object proposals in a very short time, lower the false positive 

rate, and dramatically improve the classification performance. 

The proposal generation is summarized as follows: 

Step 1. Segmentation 

Initialize a set of proposals with Felzenszwalb and 

Huttenlocher’s graph-based segmentation methods. 

Step 2. Hierarchical clustering 

Group the obtained proposals by the similarity ratio 

amongst the neighboring proposals. 

Step 3. Edge detection and edge grouping 

Plot image edges with the structured edge detector, and 

group neighboring edges in the edge map by their similarity in 

orientation. 

Step 4. Proposal scoring 

Rate each proposal group by subtracting the edge strength 

in the proposal with that of the edges that overlap the box. For 

each edge set, compute the value of 𝑤𝑏(𝑠𝑖) to see if the set is 

wholly enclosed in the proposal. If 𝑤𝑏(𝑠𝑖) = 0, the edge set is 

not entirely enclosed in the box. If the edge set is wholly 

enclosed in the box b, (𝑠𝑖) can be calculated by: 

 

𝑤𝑏(𝑠𝑖) = 1 − 𝑚𝑎𝑥𝑡 ∏ 𝑎(𝑡𝑗 − 𝑡𝑗+1)
|𝑇|−1

𝑗
  (1) 

 

where, 𝑎 is the affinity; 𝑡 is the order path with length 𝑇. Thus, 

formula (1) yields the order path with the maximum affinity 

within each edge set. Then, the score of each proposal can be 

computed by: 

 

ℎ(𝑏) =
∑ 𝑤𝑏(𝑠𝑖)𝑚𝑖𝑖

2(𝑏𝑤+𝑏ℎ)𝑘   (2) 
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where, 𝑏𝑤  and  𝑏ℎ  are box width and box height, 

respectively; 𝑘 is the bias of large boxes. 

Step 5. Ranking 

Rank the proposals by score. 

 

3.2 Feature computing 

 

So far, the proposals have been obtained. The next step is to 

extract the features from the obtained proposals. First, the 

proposals were wrapped into a fixed-length input required by 

the feature detector. Then, a fixed size eigenvector was 

generated by the detector through each forward computing. 

Finally, the eigenvectors were mapped to classify each object. 

The feature computing takes place in two stages. 

 

3.2.1 Proposal warping 

The feature detector in our model requires the input to be 

224 × 224 × 3 in size. However, the proposals obtained in 

step 1 are not necessarily of that size. To generate fixed-length 

eigenvectors, the proposals were converted regardless of their 

sizes or aspect ratios into the input size required by the feature 

detector. In our experiments, 2,000 proposals were extracted 

from each image, and then wrapped to the said input size 

(Figure 3). 

 

 
 

Figure 3. Obtained proposals 
 

3.2.2 Feature detection 

As shown in Figure 4, our object detection model relies on 

VGGNet to extract features from the obtained proposals. 

Developed by Simonyan and Zisserman [20], VGGNet is an 

ultradeep network of 13 convolutional layers and 3 fully 

connected layers. The network is very attractive for its uniform 

architecture. It has been widely adopted to extract features 

from images in the field of computer vision. Karen’s team 

discovered that the depth of CNN has a considerable impact 

on object detection, and eliminated information loss by 

adopting 19 weighted layers, 3 × 3 small convolutional filters, 

and a convolutional stride of one. Figure 5 presents the 

standard architecture of VGGNet. 

In our approach, the first model extracts the features, and 

the second predicts the class of each object, using softmax 

classifier. Tables 1 and 2 describe the layers of the first and 

second models, respectively. For comparison, the baseline 

VGGNet was trained on an extensive dataset (ImageNet) that 

contains 1,000 classes of objects. The trained network could 

extract universal features in images. To verify the robustness 

of our system, most experiments were conducted on images 

from Pascal VOC 2007 database. The dataset contains 9,963 
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images about 20 classes of objects: Person, Animal, Vehicle, 

and Indoor. Unlike the baseline VGGNet, our model does not 

contain the final prediction layer to improve the performance. 

Besides, the eigenvectors obtained by the feature extractor 

model are passed to the prediction model for object 

classification by Softmax classifier. 

 

 
 

Figure 4. Workflow of feature detector in our system 

 

 
 

Figure 5. Standard architecture of VGGNet [20] 

 

Table 1. Layers of feature detector 

 
Layer (type) Output size Number of parameters 

block1_2Dconv1 (Conv2D) (None, 64, 224, 224) 1,792 

block1_2Dconv2 (Conv2D) (None, 64, 224, 224) 36,928 

pool1 (MaxPooling2D) (None, 64, 112, 112) 0 

block2_2Dconv1 (Conv2D) (None, 128, 112, 112) 73,856 

block2_2Dconv2 (Conv2D) (None, 128, 112, 112) 147,584 

pool2 (MaxPooling2D) (None, 128, 56, 56) 0 

block3_2Dconv1 (Conv2D) (None, 256, 56, 56) 295,168 

block3_2Dconv2 (Conv2D) (None, 256, 56, 56) 590,080 

block3_2Dconv3 (Conv2D) (None, 256, 56, 56) 590,080 

pool3 (MaxPooling2D) (None, 256, 28, 28) 0 

block4_2Dconv1 (Conv2D) (None, 512, 28, 28) 1,180,160 

block4_2Dconv2 (Conv2D) (None, 512, 28, 28) 2,359,808 

block4_2Dconv3 (Conv2D) (None, 512, 28, 28) 2,359,808 

pool4 (MaxPooling2D) (None, 512, 14, 14) 0 

block5_2Dconv1 (Conv2D) (None, 512, 14, 14) 2,359,808 

block5_2Dconv2 (Conv2D) (None, 512, 14, 14) 2,359,808 

block5_2Dconv3 (Conv2D) (None, 512, 14, 14) 2,359,808 

pool5 (MaxPooling2D) (None, 512, 7, 7) 0 

flatten_6 (Flatten) (None, 25,088) 0 

dense_22 (Dense) (None, 4,096) 102,764,544 

dense_23 (Dense) (None, 4,096) 16,781,312 

Total params: 134,260,544 Trainable params: 134,260,544 Non-trainable parameters: 0 

 

Table 2. Layers of prediction model 

 
Layer (type) Output size Number of parameters 

dense_1 (Dense) (None, 64) 262,208 

dense_2 (Dense) (None, 20) 1,300 

Total params: 263,508 Trainable params: 263,508 Non-trainable parameters: 0 
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3.3 Object classification 

 

The next task is to create an efficient classifier to 

differentiate between objects based on the features obtained 

from Step 2, with the focus on all classes of VOG. Hence, a 

softmax classifier was created by: 

 

𝑌 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊(𝑓𝑡))  (3) 

 

where, W is the weight matrix of dense layers in the prediction 

model; ft is the features obtained by the feature extractor. The 

weight matrix was trained by minimizing the cross-entropy 

loss between predicted 𝑌′ and actual labels of Y. 

To train the classifier with the obtained eigenvectors, it is 

necessary to have two kinds of labeled data, namely, images 

with ground-truth labels and the coordinates of the 

corresponding bounding boxes. Therefore, any proposal 

tightly enclosing an object was considered a positive sample, 

while any proposal containing no part of an object was 

considered a negative sample. However, it is hard to label the 

proposals that overlap an object. To solve the problem, the 

intersection over union (IOU) overlap threshold value was 

introduced. It is the similarity between predicted and ground-

truth boxes. If the threshold is greater than 0.5IoU, a region 

overlapping an object will be considered positive; otherwise, 

it will be considered negative. 

 

 

4. EVALUATION AND RESULTS 

 

The performance of our technique was evaluated on a 

popular and challenging dataset: Pascal VOC 2007 [47]. This 

database was selected because our technique intends to detect 

objects on both large scale and small scale. The 9,963 images 

in the dataset were divided into a training set of 2,501 images, 

a validation set of 2,510 images, and a test set of 4,952 images. 

Every image contains at least 20 objects, which meet the 

detection purpose of our technique. 

The proposal quality was measured by the average best 

overlap (ABO) and the mean ABO (MABO). The latter is an 

intersection of the obtained bounding box area and the ground-

truth bounding box area of the corresponding object class over 

their union: 

 

𝐼𝑜𝑈 (𝑏𝑜𝑥, 𝑔𝑡𝑟𝑢𝑡ℎ) =
𝑎𝑟𝑒𝑎(𝑏𝑜𝑥)∩𝑎𝑟𝑒𝑎 (𝑔𝑡𝑟𝑢𝑡ℎ)

𝑎𝑟𝑒𝑎(𝑏𝑜𝑥) ∪𝑎𝑟𝑒𝑎 (𝑔𝑡𝑟𝑢𝑡ℎ)
  (4) 

 

The detection efficiency of our technique was evaluated by 

mean average precision (mAP), the primary quality criterion 

in object detection [48]. The mAP refers to the mean value of 

the average precision over all classes. In contrast, average 

precision (AP) stands for the precision over a class depending 

on the intersection of a proposal with the ground-truth over an 

area of their union (IoU) [49, 50].  

In our experiments, the IoU was set to 0.5, the learning rate 

to 0.01, the batch size to 64 to control the size of training set, 

and the maximum number of iterations to 150 to regulate the 

number of complete passes through the training set. The 

iterative learning algorithm of stochastic gradient descent 

(SGD) was selected as the optimizer to update our model.  

In addition, domain-specific finetuning was adopted to train 

our network. The ImageNet-specific 1,000-channel 

classification layer of VGGNet was replaced with a 64-

channel random dense layer, followed by a 20-channel 

classification layer. The rest of the VGGNet architecture was 

kept unchanged. Then, the weights were learned for the two 

alternative layers. During the training, only the proposals with 

IoU overlap > 0.5 with ground-truth were selected from the 

2,000 proposals. Further, an upper limit was imposed on the 

top 50 training samples, i.e., 𝐼𝑜𝑈 > 0.5. During the training, 

the domain-specific finetuning lasted only 5h per session. 

Finally, the testing took a total of 83s, including 15s for 

proposal generation, 66s for feature extraction, and 2s for 

object classification. Figures 6-9 display the qualitative results 

of our experiments. 

 

 
 

Figure 6. Variation of MABO with the number of proposals 

 
 

Figure 7. Comparison of ABOs for all Pascal VOC classes on top 1,000 proposals 
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Table 3. Comparison of proposal generation ability 
 

Proposals Methods Type  Segmentation Scoring mechanism Computational Time (sec) 

Selective search [16] Grouping ✓  10 

CPMC [11] Grouping ✓ ✓ 250 

Endres’ method [37] Grouping ✓ ✓ 100 

Rantalankila’s method [12] Grouping ✓  10 

Objectness [14] Window scoring  ✓ 3 

Rahtu’s method [13] Window scoring  ✓ 3 

Edge box [17] Window scoring  ✓ 0.3 

BING [15] Window scoring  ✓ 0.2 

Our technique Grouping and window scoring ✓ ✓ 5 

 

Table 3 compares the proposal generation abilities of our 

technique with multiple competitors. Unlike most competitors, 

our technique adopts both segmentation and scoring 

mechanism. The former provides insights into the image 

structure, guides the sampling process, and improves object 

localization, while the latter ensures that high-quality 

proposals are selected for post-classification. Our technique 

only consumed 5s for proposal generation, which is acceptable 

for most real-time applications. As shown in Table 3, most 

window scoring methods, namely, Objectness [40], Rahtu’s 

method [41], and edge box [42] took less time to generate 

proposals than our technique, because they do not need to 

segment the images. However, the lack of segmentation results 

in low-quality proposals, and suppresses the overall detection 

performance. By combining segmentation and scoring 

mechanism, our technique can generate a few high-quality 

proposals, and consume a limited time. 
 

Table 4. MABOs on Pascal VOC 2007 
 

Methods Test set Number of proposals MABO  

Edge box 4,952 1,000 0.828 

Selective search 4,952 1,000 0.840 

Our technique  4,952 1,000 0.867 

 

Table 5. ABOs for 20 classes of VOC on top 1,000 proposals 
 

VOC Classes Edge box’s ABO Selective search’s ABO Our technique’s ABO 

Plane 0.871 0.806 0.827 

Bicycle 0.884 0.877 0.901 

Bird 0.798 0.842 0.856 

Boat 0.789 0.801 0.824 

Bottle 0.699 0.703 0.718 

Bus 0.871 0.874 0.886 

Car 0.798 0.795 0.828 

Cat 0.857 0.926 0.949 

Chair 0.788 0.789 0.878 

Cow 0.897 0.849 0.864 

Table 0.871 0.901 0.941 

Dog 0.857 0.905 0.92 

Horse 0.865 0.883 0.893 

Bike 0.842 0.849 0.866 

Person 0.766 0.774 0.784 

Potted plant 0.776 0.784 0.799 

Sheep 0.854 0.804 0.867 

Sofa 0.833 0.923 0.977 

Train 0.811 0.876 0.883 

TV monitor 0.841 0.853 0.892 

Tables 4 and 5 compare the ABO and MABO of our 

technique with other baselines, respectively. As shown in 

Figure 7, our technique achieved a higher ABO for all Pascal 

VOC classes than the contrastive methods. The variation of 

MABO with the number of proposals (Figure 6) indicates that 

our technique had an MABO of 0.867 for 1,000 proposals, 

indicating that the proposals are good enough for post-

classification task. Compared to other approaches, our 

technique can generate a few high-quality, class-independent 

proposals with a high recall. 

Tables 6 and 7 present the overall classification 

performance of our technique on Pascal VOC 2007 dataset. 

The object detection effect of our technique was contrasted 

with that of existing techniques, which generate object 

proposals before classifying them with VGGNet. It can be 

observed that our technique achieved superior performance in 

object classification, with an mAP of 69.21% compared to 

other approaches. The results also illustrate that our technique 

can detect objects much more accurately than the other 

methods. By our technique, the high-quality proposals were 

generated with a higher ABO than that of any other traditional 

approach. The best performance in proposal generation 

undoubtedly contributes to classification accuracy. In addition, 

our technique performed the best on non-rigid classes like cat 

(86.09%), horse (83.15%), and dog (82.60%). The superiority 

of our method is also demonstrated by the variation of 

detection recall with IoU overlaps (Figure 8). In summary, our 

technique is both practical in proposal generation, and efficient 

in object classification. 
 

Table 6. Overall detection results 
 

Method Number of boxes mAP 

Selective search (VGGNet) 2,000 68.19 

Edge box (VGGNet) 2,000 67.01 

Our technique 2,000 69.20 
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Figure 8. Variation in detection recall with IoU overlaps 

 

Table 7. Comparison of detection performance on Pascal VOC 2007 
 

VOC classes Edge box’s mAP (2,000) Selective search’s mAP (2,000) Our technique’s mAP (2,000) 

Plane 74.31 74.79 77.07 

Bicycle 78.54 78.68 79.61 

Bird 69.32 69.82 69.91 

Boat 53.28 51.96 53.78 

Bottle 36.69 35.66 37.67 

Bus 77.41 79.86 81.68 

Car 78.78 79.63 79.08 

Cat 82.17 85.06 86.09 

Chair 40.83 42.79 42.80 

Cow 72.27 75.29 75.30 

Table 67.81 68.59 69.89 

Dog 79.39 82.35 82.60 

Horse 79.15 81.28 83.15 

Bike 73.81 74.79 75.46 

Person 69.55 69.17 69.96 

Potted plant 30.46 30.74 31.75 

Sheep 65.14 64.79 68.28 

Sofa 70.28 74.60 74.90 

Train 75.80 77.56 77.63 

TV monitor 65.21 66.42 67.68 
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Figure 9. Object detection results of our technique 

 

 

5. CONCLUSIONS 

 

This paper mainly proposes an efficient object detection 

method. Firstly, high-quality class-independent object 

proposals were generated. Then, the eigenvector of each 

proposal was extracted by a DNN, and used to classify each 

object. Experimental results show that our technique generated 

high-quality class-independent proposals with the highest 

ABO, which promotes the performance of post-classification. 

This means the adoption of DNN in post-classification can 

boost classification effect. Our technique also achieved the 

best mAP of 69.21%, indicating that it is slightly better than 

conventional methods. 

Of course, our technique still has several defects. First, the 

number of proposals was reduced to 2,000 locations per image, 

but an enormous amount of time is needed to classify these 

locations. Hence, our technique is expensive to implement for 

real-time applications. It takes about 83s to classify an object 

for a new test. Second, the proposal generation stage adopts a 

fixed algorithm. The absence of learning might create lousy 

candidate proposals.  

Despite these defects, our technique remains an efficient 

tool of object detection. It provides a useful solution to a broad 

range of applications, where object detection is the top priority. 

The possible fields of application include transport, security, 

robotics, retrieval, consumer electronics, and human-computer 

interaction. 

In the future, deep learning and fractional calculus will be 

introduced to improve the robustness in both stages. Proposal 

generation can be improved with deep learning features and 

fractional calculus. The two techniques help to remove 

unnecessary proposals, and further increase the efficiency of 

post-classification, making object classification more robust. 
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