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Pneumonia, featured by inflammation of the air sacs in one or both lungs, is usually detected 

by examining chest X-ray images. This paper probes into the classification models that can 

distinguish between normal and pneumonia images. As is known, trained networks like 

AlexNet and GoogleNet are deep network architectures, which are widely adopted to solve 

many classification problems. They have been adapted to the target datasets, and employed 

to classify new data generated through transfer learning. However, the classical architectures 

are not accurate enough for the diagnosis of pneumonia. Therefore, this paper designs a 

capsule network with high discrimination capability, and trains the network on Kaggle’s 

online pneumonia dataset, which contains chest X-ray images of many adults and children. 

The original dataset consists of 1,583 normal images, and 4,273 pneumonia images. Then, 

two data augmentation approaches were applied to the dataset, and their effects on 

classification accuracy were compared in details. The model parameters were optimized 

through five different experiments. The results show that the highest classification accuracy 

(93.91% even on small images) was achieved by the capsule network, coupled with data 

augmentation by generative adversarial network (GAN), using optimized parameters. This 

network outperformed the classical strategies.  
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1. INTRODUCTION

Pneumonia, an infectious disease induced by bacteria and 

viruses, poses an adversely effect on human health [1]. It may 

cause death to children under the age of 5, the elderly, and the 

other individuals with a weak immune system [2]. 

Approximately 7% of deaths in the world are attributable to 

pneumonia [3, 4]. Therefore, it is critical to diagnose the 

disease early on. Pneumonia is generally detected by 

radiologists, who evaluate chest X-ray images [5]. According 

to the World Health Organization (WHO), only 33% of the 

global population can reach a radiologist capable of detecting 

the disease from X-ray images [6]. Hence, computer-aided 

decision (CmpAD) systems become increasingly important in 

the analysis of X-ray images. 

CmpAD is the smart software that thinks and decides like a 

human. This software has been applied in many fields, 

especially in medical care [7-9]. In the medical field, CmpAD 

provides a strong assistance to doctors in disease diagnosis. 

Brinker et al. [10] compared the phenomena diagnosis by 

doctors without CmpAD with that by doctors aided by the 

software, and found that CmpAD reduced the diagnosis errors. 

As a result, CmpAD systems have gained popularity among 

doctors. Based on a hybrid deep learning (DL) model, this 

paper proposes a CmpAD system for pneumonia detection 

from X-ray images. 

The application of artificial learning (AL) in medical care is 

mainly bottlenecked by the limited datasets and the difficulty 

in data collection [11]. Besides, lots of manpower, time, expert 

knowledge, and preprocessing technique are needed to label 

and classify the collected medical data. In recent years, many 

common medical datasets have been created and shared with 

researchers for the detection of specific diseases. The studies 

on these datasets have shown that the AL performance is 

proportional to the data volume. Nevertheless, the current 

datasets for pneumonia detection are not large enough, forcing 

researchers to generate synthetic data. In this paper, a deep 

convolutional generative adversarial network (DCGAN) is 

developed to augment synthetic data, and this data 

augmentation approach is contrasted with the classical 

methods. 

As a subfield of AL, DL are widely applied in medical 

practice [11-13]. For example, chest X-ray images can be 

segmented by DL [14], and evaluated through DL to detect 

pneumonia [15]. In one of these applications, feature transfer 

was made from VGG16, VGG19 [16], and AlexNeT [17]; the 

minimum redundancy maximum relevance (mRMR) 

algorithm was called to select the features to be transferred; 

Then, the selected features were imported to a linear classifier 

to determine pneumonia [18]. RetinaNet [19] was also used 

for pneumonia detection; the detection accuracy was as high 

as 90.25% [20]. Recently, some scholars detected pneumonia 

with capsule network (CA), and grouped convolutional layers 

into new capsule models for disease detection [21]. 

This paper proposes a basic CA model [22] for pneumonia 

detection, which uses a GAN for data augmentation. The GAN 

[23] consists of a generator and a discriminator. The two

modules work together to produce new images similar to

training images. GAN techniques have been implemented in

style transfer [24], semantic painting [25], and the solution of
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various medical problems [11, 26, 27]. In this paper, DCGAN 

[28] is designed to generate new chest X-ray images. The new 

images were added to the pneumonia dataset. Then, the 

expanded dataset was inputted to the CA classifier. To 

maximize the classification accuracy, the authors examined 

the effects of the number of convolution layers, the number of 

filters, and the kernel size of the CA. After that, the 

classification performance of the proposed method was 

compared with AlexNET and GoogleNET [29]. Finally, the 

performance of our method was evaluated by statistical 

metrics, and contrasted with that of existing approaches, using 

the pneumonia dataset. 

The rest of this paper is organized as follows: Section 2 

briefly introduces the dataset; Section 3 presents the classical 

strategy of data augmentation and the DCGAN-based data 

augmentation; Section 4 explains the architecture of CA; 

Section 5 describes the proposed hybrid architecture; Section 

6 provides the experimental results of the proposed CA-

DCGAN architecture, and compares the performance of our 

method with that of existing approaches; Section 7 draws the 

conclusions, and proposes ideas of future work. 

 

 

2. DATASET 

 

The pneumonia dataset used in this study encompasses 

5,856 chest X-ray images [30] on retrospective cohorts of 

pediatric patients aged 1-5 in Guangzhou Women and 

Children’s Medical Center. All of them were obtained as part 

of the patients’ routine clinical care.  

The dataset contains 1,583 normal images, and 4,273 

pneumonia images. The images (format: JPEG; color space: 

RGB) are of various sizes. The total size of the dataset amounts 

to 1GB. 

To train the AL system, the chest X-ray images were 

labelled by two specialist doctors, and divided into a training 

set (5,216), a cross-validation set (16), and a test set (624). For 

quality control, all low-quality or unreadable scans were 

removed, such that all chest X-ray images are suitable for 

evaluation [31]. 

 

 

3. DATA AUGMENTATION 

 

3.1 Classical approach 

 

Data augmentation prevents the learning system from 

overfitting [11, 32], and thus contributes to the training and 

test accuracies [33]. The classical approach of data 

augmentation applies the following geometric and color 

transforms on the training image set: 

 

1. Flipping: Flipping an image horizontally. 

2. Rotation: Rotating an image about a random center. 

3. Cropping: Cropping an area from an image. 

4. Shifting: Shifting an image left and right. 

5. Color jittering: Changing an image to random 

brightness, saturation, and contrast. 

6. Noise adding: Adding noises to an image according 

to a specific mathematical model. 

 

Figure 1 gives some images generated by the classical data 

augmentation approach. 

 
 

Figure 1. Some images generated by the classical data 

augmentation approach 

 

3.2 DCGAN 

 

GANs are the first AL models that successfully produce 

synthetic images highly similar to real images. They have been 

applied in various fields, such as art, fashion, and medicine 

[34]. Proposed by Goodfellow et al. [23] in 2014, a typical 

GAN consists of two networks: a generator (G) and a 

discriminator (D) (Figure 2). G filters a randomly generated 

noisy image through specific layers to produce a new synthetic 

image, while D tries to distinguish between real and synthetic 

images (real-1; synthetic-0). Notably, the classification error 

of D is used to update the weights of G: the weights are 

updated as the inverse ratio of D’s classification success. 

 

Generator

Discriminator 

Loss

G(z) 

Training Dataset

Noise

Training 

 
 

Figure 2. The classical GAN architecture 

 

The G network of GAN can be trained in two steps [34, 35]: 

 

Step 1. G takes the random noise vector z as input, and 

generates an image G(z); 

Step 2. G generates synthetic images similar to real images 

to maximize D’s error [23]. The m parameter in the Eq. (1) 

indicates the number of input images. 

 

𝛻𝜃𝑔
=

1

𝑚
∑ 𝑙𝑜𝑔 (1 − 𝐷 (𝐺(𝑧𝑖)))

𝑚

𝑖=1

 (1) 

 

where, 𝛻𝜃𝑔
 is the gradient value for each weight in G. m is the 

number of input images. 

The D network of GAN can be trained in two steps [34, 35]: 

Step 1. D takes real and synthetic images as inputs; 

Step 2. The gradient of each weight in D can be updated by 

[23]: 

 

𝛻𝜃𝑑
=

1

𝑚
∑ [𝑙𝑜𝑔𝐷(𝑥𝑖) + 𝑙𝑜𝑔 (1 − 𝐷 (𝐺(𝑧𝑖)))]

𝑚

𝑖=1

 (2) 
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where, 𝛻𝜃𝑑
 is the gradient value for each weight in D. To 

improve the performance of classical GAN, Radford et al. [28] 

proposed a high-quality image generation network called 

DCGAN. In this network, G and D have the following unique 

features: 

1. The pooling layer in D is replaced with strided 

convolutions, and that in G with fractional-strided 

convolutions. 

2. Both D an G adopts batch normalization. 

3. No fully-connected (FC) layer is included for deeper 

architectures. 

4. In G, most layer are activated by rectified linear unit 

(ReLU), and the output layer by tanh. 

5. In D, the layers are activated by LeakyReLU. 

 

Table 1 lists all the layers in G and D of DCGAN. The G 

network contains 1 FC layer and 3 convolution layers. The D 

network contains 4 convolution layers, one flatten layer, and 

one FC layer. The FC layer of D has one cell. 

For each class of images, the DCGAN architecture was 

trained for 3,000 iterations, and then optimized by Adam 

algorithm (learning rate α=0.0002; exponential decay of the 

rate for moment estimates β=0.5) [36], which combines the 

merits of optimizers like Adagrad and RMSprop. Adam 

algorithm is a simple and low-cost strategy to capture 

momentum changes. It can be applied with a small memory, 

and relaxed requirements on parameters. The DCGAN is 

suitable to handle large and noisy datasets. Figure 3 shows 

some chest X-ray images generated by DCGAN. 

 

 
 

Figure 3. Chest X-ray images generated by DCGAN 

 

Table 1. Layers in the G and D networks of the DCGAN 

 

 Layers Feature Map Output Size Kernel Size Stride Activation Function 

G 

FC - 6272 - - ReLU 

Reshape - 7×7×128 - - - 

UpSampling2D - 14×14×128 - - - 

Convolution2D 128 14×14×128 3×3 1 - 

Batch Normalization - 14×14×128 - - - 

Activation (ReLU)  14×14×128   - 

UpSampling2D - 28×28×128 - - - 

Convolution2D 64 28×28×64 3×3 1 - 

Batch Normalization - 28×28×64 - - - 

Activation (ReLU)  28×28×64   - 

Convolution2D 1 28×28×1 3×3 1 - 

Activation (Tanh)  28×28×1   - 

  

D 

Input - 28×28×1 - - - 

Convolution2D 32 14×14×32 3×3 2 - 

Droupout (0.25) - 14×14×32 - - - 

Convolution2D 64 7×7×64 3×3 2 - 

Zero Padding - 8×8×64 - - - 

Batch Normalization - 8×8×64 - - - 

Activation (LeakyReLU(α=0.2)  8×8×64   - 

Droupout (0.25) - 8×8×64 - - - 

Convolution2D 128 4×4×128 3×3 2 - 

Batch Normalization - 4×4×128 - - - 

Activation (LeakyReLU(α=0.2)  4×4×128 - - - 

Droupout (0.25) - 4×4×128 - - - 

Convolution2D 256 4×4×256 3×3 1 - 

Batch Normalization - 4×4×256 - - - 

Activation (LeakyReLU(α=0.2)  4×4×256 - - - 

Droupout(0.25) - 4×4×256 - - - 

Flatten - 4096 - -  

FC - 1 - - Sigmoid 

 

 

4. CAPSULE NETWORK  

 

The capsule network, created by Sabour et al. [22], aims to 

prevent the loss of features in the pooling layer of 

convolutional neural network (CNN). The architecture of the 

capsule network is shown in Figure 4. 

The capsule network filters the input images with a 

convolution layer. At the start of training, the weights of these 

filters are assigned randomly in the range 0-1. The convolution 

process determines the number and size of filters. Through the 

filtering, a new image can be generated by: 

 

621



 

𝑥𝑖,𝑗
𝑙 = ∑ ∑ 𝑤𝑎𝑏

𝑛

𝑏

𝑛

𝑎

𝑦(𝑖+𝑎)(𝑖+𝑏)
𝑙−1  (3) 

 

where, y is the input image; w is the convolution filter. Spatial 

derivatives (e.g., horizontal, vertical, and angular edges) and 

color derivatives of each input image are obtained through the 

convolution. The convolution results are passed to the 

squashing function: 

 

𝑣𝑗 =
‖𝑠𝑗‖

2

1 + ‖𝑠𝑗‖
2

𝑠𝑗

‖𝑠𝑗‖
  (4) 

 

where, 𝑣𝑗 is the output vector of the 𝑗-th capsule; 𝑠𝑗  is the total 

input. This stage is called the primary capsule. 

The next stage is known as the class capsule. The prediction 

vectors �̂�𝑗|𝑖 is calculated by multiplying each input vector of 

this stage with the corresponding weight (𝑤). Then, the total 

input to a capsule 𝑠𝑗 is calculated as the weighted sum �̂�𝑗|𝑖. The 

output of weighted prediction vector can be expressed as: 

 

𝑠𝑗 = ∑ 𝑐𝑖𝑗�̂�𝑗|𝑖 ,        

𝑖

�̂�𝑗|𝑖 = 𝑤𝑗|𝑖𝑢𝑖    (5) 

 

where, 𝑐𝑖𝑗  is a coupling coefficient determined by iterative 

dynamic routing: 

 

𝑐𝑖𝑗 =
exp (𝑏𝑖𝑗)

∑ exp (𝑏𝑖𝑘)𝑘

   (6) 

 

where, 𝑏𝑖𝑗  is the log prior probability of the 𝑖-th capsule to be 

coupled with the 𝑗-th capsule. Then, an agreed scalar value is 

calculated between each capsule output 𝑣𝑗  in layer 𝑗 and the 

predicted �̂�𝑖𝑗 of the 𝑖-th capsule: 

𝑎𝑖𝑗 = 𝑣𝑗�̂�𝑗|𝑖    (7) 

 

The output of the class capsule layer is predicted by the 

dynamic routing algorithm, whose pseudocode is given in 

Table 2. The number of iterations of the algorithm varies with 

the routing constant of the dataset. 

The dynamic routing algorithm calculates the lengths of 

class capsule outputs, which represent the class probabilities 

of capsule input. Then, the margin error of the capsule network 

is calculated by: 

 

𝐿𝑘 = 𝑇𝑘 max(0, 𝑚+ − ‖𝑣𝑘‖)2

+ ∆(1 − 𝑇𝑘) max(0, ‖𝑣𝑘‖ − 𝑚−)2 
(8) 

 

where, Tk is 1 if each class of the image has a single value; 

m− = 0.1, m+  = 0.9, and ∆ = 0.5 are constants set for the 

pneumonia dataset. These constants depend on the size of the 

dataset, and the overlap conditions.  

The capsule network also has a decoder module, which 

receives the output from each layer of the class capsule. The 

loss of the capsule network is defined as the sum of margin 

loss and decoder loss.  

 

Table 2. Pseudocode of the dynamic routing algorithm [22] 

 

Routing Algorithm 
1: Routing (�̂�𝒋|𝒊, 𝒓, 𝒍) 

2: for all capsule i in layer l and capsule j in layer l+1: 𝒃𝒊𝒋 ← 𝟎  

3: for 𝒓 iterations do 

4:     for layer 𝒍: 𝒄𝒊 ← 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(𝒃𝒊) 

5:     for layer 𝒍 + 𝟏: 𝒔𝒋 ← ∑ 𝒄𝒊𝒋�̂�𝒋|𝒊𝒊  

6:         for layer 𝒍: 𝒗𝒋 = 𝒔𝒒𝒖𝒂𝒔𝒉(𝒔𝒋) 

7:         for all capsule i in layer l and capsule j in layer l+1:  

𝒃𝒊𝒋 ← 𝒃𝒊𝒋 + �̂�𝒋|𝒊𝒗𝒋  

8: return 𝒗𝒋 
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Figure 4. Process steps in a Capsule Network Architecture [22] 
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Figure 5 is the typical structure of the decoder network. The 

output of the network is an image reconstructed based on the 

capsule values. As shown in Figure 5, the decoder network 

consists of class CA and FC for dealing with the chest X-ray 

dataset. Then, the decoder network is trained by adjusting the 

number of Cas and the size of mini-batch. During the training, 

the decoder loss is added to the CA loss multiplied by 0.005. 

This is because the loss of the decoder layer does not change 

with CA loss [22]. Then, all weights of the network are 

updated by the Adam optimization [36]. 

 

 

5. PROPOSED HYBRID NETWORK 
 

The classification performance of medical images is 

positively correlated with the visual diversity of the dataset. 

Therefore, this paper attempts to improve the performance by 

adding synthetic data generation module to the classical 

classification architecture based on the CA.  

In this section, a hybrid DL model (CA-DCGAN) is 

proposed for the classification of chest X-ray images. As 

shown in Figure 6, the CA-DCGAN integrates DCGAN with 

CA. The parameters of DCGAN layers in Table 1 are adopted 

for data generation. Unlike classical techniques of data 

augmentation, the GAN was selected to increase the 

originality of the architecture. 

Facing the high-dimensional chest X-ray images, it is very 

complex to train the CA architectures. To reduce the training 

time to an acceptable length, dimensionality reduction was 

performed on the visual dimensions of the input. In this way, 

the X-ray images of different sizes (e.g., 2,090×1,858×3 and 

1,553×1,044×3) were normalized as 28×28×1. The 

normalization speeds up the training of CA-DCGAN, and 

improves the efficiency of hardware utilization. 

Different numbers of images were produced by DCGAN, 

and the training and test processes were analyzed, aiming to 

examine how the number of synthetic images added to the 

dataset influences the classification performance. Specifically, 

1,800, 2,700, 3,600, 4,500, and 5,400 synthetic images were 

generated by DCGAN, and added to each class of the training 

dataset, respectively. Then, the synthetic and real data were 

combined and given to the CA network. 

After that, the CA was trained with each of the above 

training datasets. The classification performance of the CA 

classifier on each dataset was recorded with different numbers 

of test images. 
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Figure 6. The proposed network architecture 

 

 

6. EXPERIMENTAL RESULTS 

 

The experiments were carried out under the framework of 

TensorFlow and Keras, using the programming language of 

Python. In the first experiment, the CA was trained on the 

original dataset augmented by the classical approach. 

Accordingly, the chest X-ray dataset was divided into a 

training set and a test set. The former includes 1,583 normal 

images, and 4,273 pneumonia images; the latter contains 234 

normal images, and 390 pneumonia images. The test dataset 

was determined by the data provider [31].  

The CA used in the experiment was trained with constants 

m− = 0.1, m+ = 0.9 , and ∆= 0.5 . The cost of the CA 

architecture depends on whether the image is classified 

correctly. If yes, the capsule output is the minimum probability 

with m+ parameter; otherwise, the output is the m− parameter. 

Since the probability falls between 0 and 1, m+and m− were 

set to 0.9 and 0.1, respectively. The decay ∆  coefficient 
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provides the refutation of the cost for negative classification 

result. The empirical value of this coefficient is 0.5. In addition, 

the batch sizes (32 and 64) for training were examined, and the 

learning rate was selected as 0.001. The CA was trained with 

random weights for 50 epochs. The training was carried out 5 

times, and the mean results were calculated. 

The experimental results were obtained using a server 

computer with Intel Xeon ® 2.2 GHz processor and 64GB 

RAM, operating on Windows Server 2012 R2. The computer 

programs are run on Nvidia Quadro M4000 8GB video RAM 

GPU card. 

The performance of our algorithm and the classical method 

was measured by Accuracy (Acc), F-score, Precision (Pr), and 

Sensitivity (Se) [37]: 

 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝐹𝑁) + (𝐹𝑃 + 𝑇𝑁)
  (9) 

 

𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
    (10) 

 

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
     (11) 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑥𝑇𝑃

(2𝑥𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
    (12) 

 

where, TP and TF are the number of correctly classified 

pneumonia images and normal images, respectively; FP and 

FN are the incorrectly classified pneumonia images and 

normal images, respectively. Acc, Pr, Se and F-score metrics 

are derived from the confusion matrix. Acc is the ratio of the 

number of correctly predicted images of the total number of 

images. Pr and Se are the precision and sensitivity values of 

pneumonia disease detection, respectively. The higher these 

values, the better the pneumonia disease is detected. The F-

score is the harmonic mean Pr and Se. 

A total of five experiments were carried out. In the first 

experiment, the dataset was expanded with the classical data 

augmentation approach to examine the classification 

performance of the CA. The shifting (1%), rotation (random 

in 0-2π), and cropping (1%) operations were implemented. 

Then, the CA training was initiated with the batch sizes of 32 

and 64. Table 3 shows the classification results of the CA with 

different filter sizes. 

 

Table 3. CA classification results with different filter/kernel 

sizes 

 

Bach Size Kernel Size Filter Size Routing Acc (%) 

32 9×9 256 3 83.0 

64 9×9 256 3 81.5 

32 5×5 256 3 84.3 

64 5×5 256 3 82.0 

32 3×3 256 3 84.5 

64 3×3 256 3 82.4 

 

As shown in Table 3, the classification accuracy peaked at 

the filter size of 3×3. A relatively large filter size reduces the 

scale of the image inputted to the subsequent layers, causing a 

degradation of image quality. This suppresses the 

classification accuracy of the network. 

In the second experiment, the most accurate capsule 

network (filter/kernel size: 3×3; batch size: 32; number of 

dynamic routings: 3) in the first experiment was applied with 

the DCGAN. The synthetic images (1,800 normal and 1,800 

pneumonia) were added to the original dataset. Then, the CA 

was trained by the parameters of different filters and different 

number of convolutions. The results obtained are given in 

Table 4. 

 

Table 4. Result obtained for CA with different filter sizes 

and increased DCGAN data  

 
Layer 

Size 

Filter 

Size 

Synthetic/Real 

Images  
Acc (%) 

1 256 1800,1800 88.1 

1 512 1800,1800 88.3 

1 1024 1800,1800 88.5 

2 128,256 1800,1800 90.0 

 

As shown in Table 4, the number of filters used affected the 

total accuracy. The total accuracy did not change significantly, 

using a single convection layer and 1,024 filters. The number 

of convolution layers was doubled from that of the first 

experiment, and retraining was carried out. In this way, the 

highest accuracy was obtained. Hence, DCGAN data 

enhancement improves the classification accuracy by 5% than 

the classical data augmentation approach. 

In the third experiment, the parameters of the convolution 

layer and filter numbers were fixed to analyze how the number 

of images synthetized by DCGAN affects the accuracy of the 

CA network. The relevant results are given in Table 5. 

 

Table 5. CA different filter number and DCGAN data 

increase and results obtained 

 

Layer 

Size 

Filter 

Size 

Synthetic/Real 

Images 
Acc (%) 

2 128,256 1800,1800 90 

2 128,256 2700,2700 90.2 

2 128,256 3600,3600 91.0 

2 128,256 4500,4500 93.9 

2 128,256 5400,5400 93.0 

 

As shown in Table 5, the classification accuracy of the CA 

increased with the number of data. After this stage, the 

following numbers were all increased: the number of training 

data, the number of convolution layers, and the number of 

filters. After a certain level, it was seen that the increase in the 

number of layers, the number of filters and the number of 

sample images in the training set did not affect the test 

accuracy. Figure 7 presents the training loss, training accuracy, 

and validation accuracy of the decoder layer in the CA. It can 

be observed that the network achieved an accuracy of 93.91%. 

In the fourth experiment, the classification performance of 

the proposed hybrid CA-DCGAN was compared with that of 

two popular classifiers, namely, AlexNet [17] and GoogleNet 

[29]. AlexNet has 5 convolution layers and 3 FC layers, and 

receives images of the size 227×227×3. The first three layers 

of the network are responsible to extract a general feature. The 

weights of these layers are transferred from the trained 

architecture. After being filtered through these layers, the 

inputs are passed through two FC layers, and classified by 

softmax. GoogleNet is a CNN of 22 layers. The last 

classification layer of this network is first removed from the 

general structure, and substituted by a layer trained for the 

classification of chest X-ray dataset. As such, the final 

classification layer of the network is retrained. The first layers 

of the network are responsible for feature extraction. For this 
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reason, the weights of the first 10 layers are kept constant in 

the training stage. AlexNet, GoogleNet, and CA-DCGAN 

were trained for 50 epochs, at the learning rate of 0.001 and 

the batch size of 32. The classification accuracy and confusion 

matrix are recorded in Table 6 and Figure 8, respectively. In 

the confusion matrix, the values of 1 and 2 represent the 

normal class and the pneumonia class, respectively. Accuracy 

alone cannot fully demonstrate the classification performance. 

Therefore, two additional metrics were adopted, including the 

precision and sensitivity. 

 

 
(a) Training loss, Training/validation accuracy 

 

 
(b) Decoder layer output 

 

Figure 7. The proposed DCGAN-CA classification 

architecture results 

 

Table 6. CA-DCGAN, AlexNet and GoogleNET results 

 
Method Acc(%) Pre(%) Se(%) Fscore(%) 

AlexNET 91.51 90.67 91.50 91.40 

GoogleNET 92.31 94.17 89.91 91.43 

CA-DCGAN 93.91 94.25 92.74  93.40 

 

It can be seen that GoogleNet achieved the best FP, AlexNet 

realized the best FN, and our network boasted the best 

accuracy, sensitivity, and precision. 

 
 

Figure 8. The confusion matrix obtained by the networks (CA-DCGAN, GoogleNET and AlexNET) 
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In the fifth experiment, our method was compared with 

existing methods for pneumonia classification. The 

classification performance is presented in Table 7. The first of 

the contrastive methods is CNN-based transfer learning 

proposed by Kermany et al. [30]. This method uses the weights 

transferred from the Inception3 model. After being trained for 

100 epochs with a learning rate of 0.001, this method ended up 

with an accuracy of 92.8%. The other contrastive method is 

developed by Livieris et al. [38]. This method operates with 

the maximum likelihood selection scheme and semi-educated 

learning model. The proposed CA-DCGAN facilitates image 

classification by reducing the large images to the size of 

28×28×1. As a result, our method classified low-dimensional 

images with a success rate of approximately 93.91%. 

 

Table 7. Comparison with studies in the published literature 

on pneumonia classification  

 
Study Model Acc(%) 

Proposed Method CA-DCGAN 93.91 

[38]  Machine Learning 83.49 

[30]  Inception V3 92.80 

 

 

7. CONCLUSIONS 

 

This paper looks for the most suitable DL architecture for 

pneumonia dataset. Rather than conventional deep networks, 

capsule network was adopted to realize the goal. Different data 

augmentation approaches (classical and DCGAN) were tested 

to improve the performance of capsule network. With the aid 

of DCGAN, the dataset was expanded, and the classification 

accuracy of the capsule network was maximized. 

Experimental results show that the proposed CN-DCGAN 

model is more accurate in classification than classic 

approaches (AlexNeT, GoogleNeT, Livieris’ method, and 

Kermany’s method). The proposed CA-DCGAN hybrid 

architecture can differentiate between pneumonia images and 

normal images with a success rate of 93.91%. In the next study, 

our network will be applied to limited datasets on diseases like 

COVID-19. 
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