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Automated cell nuclei delineation in whole-slide imaging (WSI) is a fundamental step for 

many tasks like cancer cell recognition, cancer grading, and cancer subtype classification. 

Although numerous computational methods have been proposed for segmenting nuclei in 

WSI images based on image processing and deep learning, existing approaches face major 

challenges such as color variation due to the use of different stains, the various structures of 

cell nuclei, and the overlapping and clumped cell nuclei. To circumvent these challenges in 

this article, we propose an efficient and accurate cell nuclei segmentation method based on 

deep learning, in which a set of accurate individual cell nuclei segmentation models are 

developed to predict rough segmentation masks, and then a learnable aggregation network 

(LANet) is used to predict the final nuclei masks. Besides, we develop cell nuclei 

segmentation software (with a graphical user interface—GUI) that includes the proposed 

method and other deep-learning-based cell nuclei segmentation methods. A challenging 

WSI dataset collected from different centers and organs is used to demonstrate the efficiency 

of our method. The experimental results reveal that our method obtains a competitive 

performance compared to the existing approaches in terms of the aggregated Jaccard index 

(AJI=89.25%) and F1-score (F1=73.02%). The developed nuclei segmentation software can 

be downloaded from https://github.com/loaysh2010/Cell-Nuclei-Segmentation-GUI-

Application.  
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1. INTRODUCTION

Digital pathology along with digital image analysis tools are 

gaining strength in clinical use day-to-day, thanks to the 

significant improvements in equipment, computational 

technology, and storage. In short, whole-slide imaging (WSI) 

stands for the process of digitalizing the glass histology slides 

and capturing high-resolution images using scanning devices. 

WSI technology has allowed pathologists to perform robust 

analysis, processing, and management of thousands of tissue 

biopsies taken from cancer patients [1]. Considering the large 

size of the WSI images and the rich information they contain, 

pathologists do spend a long time analyzing such images 

manually. Over the last years, the employment of 

computerized approaches is rapidly evolving with different 

potential digital pathology applications, such as cell nuclei 

segmentation, cell classification, counting cancer cells, and 

cancer prognosis. 

Cell nuclei segmentation is a key process in the field of WSI 

image analysis. In particular, accurate and robust nuclei 

segmentation tools are required to automatically extract and 

interpret sub-cellular morphologic and shape information in 

WSI images. Given the segmented cell nuclei, different 

features and descriptors like the number and shape of cell 

nuclei are used for determining cancer types, cancer grading, 

and cancer prognosis [2]. In this context, the term ‘cell 

segmentation’ stands for classifying each pixel in the WSI 

image as cell nuclei and non-nuclei pixel. Hence, each nucleus 

can be extracted from the image and made available for further 

analysis. The automated segmentation of cell nuclei is still a 

challenging process because each medical center uses different 

stains (i.e., color variation) to produce the WSI images, as well 

as the presence of adjacent and overlapping cells in WSI 

images. 

In the last decade, deep learning technologies have obtained 

high performance in different image segmentation and 

classification tasks [3-5], thanks to the robust feature 

representation of convolutional neural networks (CNNs). In 

the field of medical and biological-image analysis, deep 

learning has achieved successful results with challenging and 

complex segmentation tasks [6-8]. For instance, mask-RCNN 

was used by Arai and Kapoor [9] to segment nuclei in a fully 

automatic fashion. Mahmood et al. [10] used an unpaired GAN 

architecture to synthesize WSI images with perfect nuclei 

delineation. Then, they used the synthesized WSI images, real 

WSI images, spectral normalization, and gradient penalty to 

train a conditional generative adversarial network (cGAN) for 

cell nuclei segmentation. However, some factors like the 

clumped cell nuclei and overlapping cell nuclei as well as the 

color variation in WSI images (various staining routines) and 

the ambiguous boundary between different cell nuclei limit the 

performance of the existing deep learning-based approaches. 

To circumvent these challenges, we propose an accurate and 

efficient deep learning-based method for segmenting cell 
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nuclei in WSI images acquired from multiple organ and 

multiple centers. Specifically, we use deep CNN architectures 

to develop accurate individual cell nuclei segmentation models 

(ISs). The input WSI images are fed into the trained ISs to 

predict rough cell nuclei masks, and then a deep learnable 

aggregation network called LANet is used to aggregate the 

predictions of ISs guided by the input WSI images. 

The key contributions of this article are highlighted below: 

• We propose an accurate and efficient nuclei segmentation 

method, in which a deep aggregation network (LANet) is 

constructed to fuse the predictions of accurate individual 

cell nuclei segmentation models to obtain precise 

delineation. 

• We present a detailed analysis for the proposed cell nuclei 

segmentation method and comparisons with the existing 

cell nuclei segmentation methods (FCN8s [11], UNet [8], 

UNet++ [12], SegNet [13], RIC-UNet [14], DIST [15] 

and cGANs [10]) and existing cell nuclei segmentation 

software (ImageFIJI [16]) using a challenging multiple 

organ and multiple center dataset. 

• We develop a new nuclei segmentation software (with a 

graphical user interface—GUI) that includes the proposed 

method as well as deep-learning-based nuclei 

segmentation methods. The software can be downloaded 

from the following link 

https://github.com/loaysh2010/Cell-Nuclei-

Segmentation-GUI-Application. 

This paper includes 5 sections. Section 2 presents and 

discusses the the-state-of-art methods and highlights their 

limitations. The proposed cell nuclei segmentation method and 

the implementation steps are presented in Section 3. The 

experimental results comparisons with the exiting cell nuclei 

segmentation methods and discussions are provided in Section 

4. The conclusions and the future work are given in Section 5. 

 

 

2. RELATED WORK 

 

In the last years, deep learning technologies have made 

breakthroughs in the analysis of digital images. One of the key 

advantages of deep CNNs is their ability to generate an 

accurate representation of the images. Unlike hand-crafted 

methods, deep CNNs can be trained on an end-to-end fashion 

to learn descriptive representations from the input images. 

Such merits have increased the interest of researchers and 

developers investigating the applicability of DCNNs-based 

methods with the problem of cell segmentation. Several forms 

of the neural network have been derived from CNNs for cell 

segmentation. 

Zhou et al. [12] proposed the UNet++ model, a deep 

learning-based model for semantic (instance) segmentation, in 

which they combined UNets of varying depths into one 

architecture. The decoders of the UNets are densely connected 

via a skip connection mechanism. Besides, they used a deep 

supervision technique to prune the UNet++ model. This 

pruning technique could accelerate inference time of UNet++ 

model without degrading its performance. Zhou et al. [12] 

demonstrated that UNet++ outperformed many medical image 

segmentation models like UNet. 

Pan et al. [17] introduced a deep learning-based cell nuclei 

segmentation called AS-UNet. It should be noted that the main 

difference between AS-UNet and UNet is that AS-UNet 

contains atrous depth-wise separable convolution blocks. The 

key components of AS-UNet are (1) an encoder module to 

extract high-level semantic information from the input images, 

2) a decoder module to restore the spatial information of the 

input images and produce the segmentation masks, and 3) an 

atrous convolution module (cascaded and parallel atrous 

convolutions). In AS-UNet, the atrous convolution module is 

added between the encoding and decoding module. As claimed 

by Pan et al. [17], the use of the atrous convolution can 

improve the receptive fields of the segmentation model 

without increasing the computational complexity. AS-UNet 

achieved good performance on two cell nuclei segmentation 

datasets (MoNuSeg [18] and BNS [19]). It obtained an F1-

socre of 87.35% with MoNuSeg and 86.97% with BNS. 

Zeng et al. [14] proposed the RIC-UNet model for nuclei 

segmentation. They integrated the residual learning, channel 

attention, and multiscale approaches with the UNet 

architecture to segment nuclei precisely. They integrated 

residual connections [5] in the down-sampling path of the 

basic architecture of UNet. The use of residual connections 

helps better represent image features with computational 

efficiency of the inception module [20] while incorporating 

multiscale features with different kernel sizes. Besides, they 

integrated a channel attention mechanism [21] in the up-

sampling path of the segmentation model to manipulate the 

heterogeneity of cell nuclei appearances in the WSI images. 

Zeng et al. also compared their method with well-known 

image analysis software, namely cell profile [22] and Fiji (a 

package based on ImageJ) [16]. They obtained an F1-sore of 

82.78% and AJI score of 56.35% using MoNuSeg [18] dataset. 

Graham et al. [23] presented a deep learning-based method 

called Hover-Net for segmenting and classifying nuclear 

instances in WSI images simultaneously. It should be noted 

that Hover-Net is designed to predict horizontal and vertical 

distances of nuclear pixels from their centers of mass. Hover-

Net also contains an up-sampling branch to recognize the 

nuclear class of each segmented instance. They demonstrated 

the efficacy of Hover-Net with six multiple tissue 

histopathological image datasets and presented a detailed 

comparative study. They obtained an AJI score of 61.80% with 

the MoNuSeg [18] dataset. Qu et al. [24] used partial points 

annotation in WSI images to construct a weakly supervised 

deep learning-based cell nuclei segmentation model. 

Specifically, the Voronoi diagram and the k-means clustering 

algorithm are used to process the input WSI images and the 

shape prior of cell nuclei to produce coarse labels. Afterwards, 

the coarse labels are used to train a deep learning-based nuclei 

segmentation model. The dense conditional random field is 

utilized in the loss function of the segmentation model. Qu et 

al. demonstrated that their method achieved segmentation 

similar to the ones of fully supervised nuclei segmentation 

approaches with few annotated data. 

To circumvent the problem of touching and overlapping cell 

nuclei, Naylor et al. [15] solved the segmentation process as a 

regression task by predicting the distance map of cell nuclei. 

Naylor et al. claimed that close or overlapping cell nuclei are 

delineated as one object, which yields poor segmentation 

results. Naylor et al. demonstrated that their approach can 

segment touching or overlapping nuclei and it outperformed 

other CNN pixel-based classification approaches that do not 

take the topological relationship among cells center pixels and 

those in their neighborhoods into account. 

Furthermore, Naylor et al. [19] proposed a fully automated 

cell nuclei segmentation method based on three deep learning-

based segmentation models, namely fully convolutional 

network (FCN), PangNet, and DeconvNet. Naylor et al. fused 

654



 

the segmentation masks of the three cell nuclei segmentation 

models to obtain accurate segmentation results. However, this 

method often segments touching nuclei as one single object. 

They obtained an F1-score of 80.2% using their own published 

dataset (BNS). Graham and Rajpoot [25] presented a stain-

aware and multi-scale deep CNN-based model called SAMS-

Net. They used a weighted cost function sensitive to the 

intensity of the Haematoxylin (H) stain in the input WSI 

images, which makes SAMS-Net robust to Haematoxylin and 

eosin (H&E) stain variations. SAMS-Net incorporates 

information at different resolutions and employs skip 

connections to distinguish between separate nuclei. 

Although the cell nuclei segmentation methods above 

mentioned have achieved a promising result, the clumped cell 

nuclei and overlapping cell nuclei as well as the color variation 

in WSI images (various H&E routines) limit the performance 

of the existing approaches. To circumvent these issues, we 

propose an efficient approach for segmenting nuclei in WSI 

images based on a set of accurate cell nuclei segmentation 

models and a deep CNN-based learnable aggregation network. 

 

 

3. METHODOLOGY 

 

Figure 1 presents an overview of the proposed cell nuclei 

segmentation method. As shown, the stains of all WSI images 

are normalized. The normalized WSI images are then fed into 

N accurate individual segmentation models (IS) to predict 

coarse nuclei segmentation masks (i.e., coarse labels). The 

coarse nuclei segmentation masks as well as the original RGB 

input image are concatenated and inputted into a deep 

learnable CNN-based aggregation network called LANet to 

produce the final nuclei segmentation mask. Below, we 

explain each step of the proposed method in details. 

 

3.1 Stain normalization 

 

Stain normalization is a fundamental step to segment nuclei 

in multi-center and multi-organ WSI images to reduce the 

color variation and obtain a better color consistency before 

feeding the images into the segmentation methods. In this 

study, we employ the stain normalization method [26], in 

which one image is selected as the target and all other images 

are converted to its color space. It should be noted that the 

inputs and outputs of the stain normalization stage are images, 

where all WSI images are transformed to the color space of a 

predefined target image. The stain normalization can be solved 

as an optimization problem as follows [26]: 
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Here, ‖𝑉 −𝑊𝐻‖𝐹
2  is the non-negative matrix factorization 

used for stain separation and ‖𝐻(𝑗, : )‖1 is L1 sparseness 

regularization on stains 𝐻. 𝑉 is the relative optical density, 𝑊 

is an 𝑚 × 𝑟 matrix called the stain color matrix. The columns 

of 𝑊 include the RGB color of each stain (in our case, m= 3 

RGB channels and r = number of stains). H is an 𝑟 × 𝑛 matrix 

called stain concentration matrix (n = number of pixels). The 

rows of H represent the total amount of stained tissue. λ is a 

sparsity regularization parameter. The objective function of 

the stain normalization method is solved by exchanging 

between W and H (i.e., optimizing one of them while fixing 

the other). 

 

3.2 Individual cell nuclei segmentation models (ISs) 

 

In the literatures, there are several deep CNN-based 

semantic segmentation methods that achieved promising 

results with various image modalities. We assessed the 

performance of several efficient deep CNN-based semantic 

segmentation models with the cell nuclei segmentation 

problem [27]. Based on the analysis [27], we selected the three 

best cell nuclei segmentation models (N=3), namely the 

FCDenseNet, SegNet and Self-Correction models to develop 

the individual nuclei segmentation models (ISs). 

As shown in the studies [11, 28], FCN obtained good 

segmentation results with natural images using simple CNN 

architectures. FCN can handle the images regardless of their 

size. Several improved networks have been proposed in the 

literature on the basis of FCN to further improve the 

segmentation result. 

FCDenseNet [29] is an extension of the densely connected 

convolutional networks (DenseNets) [30] proposed to handle 

the semantic segmentation problem. The key idea [29] is to 

connect each layer to all other layers following a feed-forward 

approach. Let xn be the feature maps of the nth layer of a 

standard CNN, a non-linear transformation Hn is applied to the 

feature maps of the previous layer 𝑥𝑛−1  to calculate 𝑥𝑛  as 

follows: 

 

1( )n n nx H x −=
 (2) 

 

The non-linear transformation H is comprises a convolution 

layer followed by a rectified linear activation function 

(𝑅𝑒𝐿𝑈(x)  =  max(x, 0)) and a dropout [30]. As shown in 

Figure 2(a), all previous feature maps are concatenated to 

construct the input of each DenseBlock. This process can be 

formulated as follows:  

 

1 2 3 0([ , , ,..., ])n n n n nx Q x x x x− − −=
 (3) 

 

 
 

Figure 1. Overview of the proposed framework for nuclei segmentation 
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(a) DenseBlock with 4 layers  
(b) IS1: FCDensNet 

 
(c) IS2: PSPSegNet 

 
(d) IS3: Self-Correction 

 

Figure 2. Architectures of the individual nuclei segmentation models used in this study. (a) DenseBlock, (b) FCDenseNet (IS1), 

(c) PSPSegNet (IS2) and (d) Self-Correction (IS3) 

 

In this expression, [. ]  stands for the feature maps 

concatenation. In this case, the non-linear transformation 𝑄 

includes a batch normalization (BN), ReLU, convolution and 

dropout layers [30]. The main aim of DenseNets is to reuse 

feature maps and prevent the feature explosion problem at the 

layers of the up-sampling path. FCDensNet comprises a down-

sampling path, up-sampling path and skip connections (it 

follows the architecture of FCN). For simplicity, Figure 2(b) 

shows FCDenseNet with one denseblock in each of down-

sampling path, up-sampling path and in between as bottleneck. 

In this study, we adopt the FCDenseNet103 architecture 

described in Ref. [24]. FCDenseNet103 includes 103 

convolutional layers. The input layer that receives the WSI 

images, the down-sampling path has 38 layers, the bottleneck 

has 15 layers while the up-sampling path has 38 layers. In our 

study, the trained FCDenseNet103 model includes five 

transition-down (TD) and five transition-up (TU). Each TU 

contains a transposed convolution layer. In turn, each TD 

comprises convolution, ReLU and Pooling layers. It should be 

noted that FCDenseNet103 classifies each pixel in the input 

WSI image should be classified as cell nuclei or non-cell 

nuclei pixel. Thus, the top layer in the FCDenseNet103 

network includes a 1 ×  1  convolution and softmax non-

linearity layers to produce the per class distribution of each 

pixel in the input WSI image. 

PSPSegNet architecture is constructed by combining the 

pyramid scene parsing network (PSPNet) [31] with the SegNet 

[13] model, as shown in Figure 2(c). The SegNet architecture 

includes encoder layers, decoder layers and a pixel-wise 

classification layer. The first 13 convolutional layers of 

VGG16 [32] (VGG16 without the fully connected layers) are 

used to form the encoder of SegNet. In the decoder network, 

the max-pooling indices received from the corresponding 

encoder layers are used to up-sample the feature maps. Indeed, 

the use of the max-pooling indices eliminates the need for up-

sample learning techniques. PSPNet model has been designed 

to use the global context information of the cell nuclei in the 

WSI images by employing a deep residual network (ResNet) 

[5] to extract different patterns from the input images. To 

extract patterns of different scales, the feature maps are fed 

into a pyramid pooling module. The resulting multi-scale 

feature maps are pooled and fed into a 1 ×  1 convolutional 

layer to reduce the size of the extracted features. To capture 

the local and global context information of the cell nuclei in 

the WSI images, the feature maps of the pyramid pooling 

module are up-sampled and concatenated with the inputted 

feature maps. Finally, a convolutional layer is used at the top 

of the network to produce the pixel-wise predictions. 

It should be noted that we replaced the VGG16 encoder 

network with ResNet101 in the SegNet network. We used the 

pyramid pooling module amidst encoder and decoder 

networks. Besides, we concatenated the feature maps of the 

encoder with the up-sampled feature maps of the pyramid 

pooling module. Then, we fed the concatenated feature maps 

into the decoder of the SegNet model. 

The self-correction model proposed by Li et al. [33] uses 

a self-correction training strategy for developing a human 

parsing (SCHP) model. The network architecture of SCHP is 

influenced by the CE2P network proposed by Ruan et al. [34]. 

As shown in Figure 2(d), the self-correction model includes 

three streams: parsing, edge, and fusion. The loss function of 

A-CE2P can be expressed as follows: 

 

1 2 3segmentation consistent edgeE E E E  = + +
 (4) 

 

There are three different losses: 𝐸𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 , 𝐸𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡, 

and 𝐸𝑒𝑑𝑔𝑒 , each corresponds to a stream. A-CE2P uses three 

weights (𝛼1, 𝛼2 𝑎𝑛𝑑 𝛼3 ) to control the contribution of each 

loss. It should be noted that the A-CE2P model is jointly 

trained by optimizing the loss function 𝐸  in an end-to-end 

manner. After obtaining acceptable nuclei segmentation 

masks using the A-CE2P segmentation model, a self-

correction mechanism uses a cyclically learning scheduler 

with warm restarts [35]. A set of weights (models), 𝑊 =
{𝑤̂ 0, 𝑤̂ 1, … , 𝑤̂ 𝑁} and the corresponding predicted labels, 𝑌 =
{�̂�0, �̂�1, … , �̂�𝑁}  are produced after each cycle of the self-

correction mechanism. The weights 𝑤̂  of the current cycle of 
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the self-correction mechanism are combined with the weights 

of the preceding cycle 𝑤̂ 𝑛−1 to produce updated weights 𝑤̂ 𝑛 as 

follows: 

 

�̂� =
𝑛

𝑛 + 1
�̂�𝑛−1 +

1

𝑛 + 1
�̂� (5) 

 

Similarly, the predicted labels are aggregated as follows: 

 

�̂� =
𝑛

𝑛 + 1
�̂�𝑛−1 +

1

𝑛 + 1
�̂� (6) 

 

Here, 𝑛 donates the current cycle number and 0 ≤ 𝑛 ≤ 𝑁, 

and 𝑦  stands for the pseudo-labels (i.e., pseudo masks) 

generated by the model 𝑤̂ 𝑛. 

 

3.3 Learnable Aggregation Network (LANet) 

 

Let 𝑀𝑖 be a coarse nuclei mask generated by 𝐼𝑆𝑖 , and 𝑀0 is 

the input  WSI image. The input 𝐼  for LANet is the 

concatenation of the coarse masks and the input WSI image: 

 

0

i

i n

I M
= →

=

 
(7) 

 

In this study, 𝑛 is set to 3 (three individual models) and 𝑖 =
0 stands for the input WSI image (i.e., M0). It should be noted 

that in this case, we have an input WSI image with size of 

𝑊 ×𝐻 × 3  (width ×  height ×  number of channels) along 

with the three coarse masks (each mask has a size of 

𝑊 ×𝐻 × 1) which are contiguous along the color channel axis. 

We stacked the WSI image and the three masks together along 

the third dimension (i.e., the channel dimension), and thus the 

input to the LANet, 𝐼, has a size of 𝑊 ×𝐻 × 6.  

Generally speaking, an aggregation operator 𝛷 could be 

represented by a mathematical formula to combine a set of 

values into a single value. In our case, aggregation operators 

are employed to combine N coarse masks generated by ISs into 

a single mask having fine labels. In this context, the weighted 

average is the most well-known aggregation operator, 

however, it is difficult to compute optimal and generalized 

weights. Therefore, our intuition here is to develop a CNN-

based aggregation network (i.e., LANet network), in which the 

weights are optimally computed through the back-propagation 

process. The aggregation function based on LANet can be 

expressed as follows: 

 

0 1( , ,..., ) ( ( ))n i i

i

F M M M BN w x b = = +
 

(8) 

 

Here,  is a non-linear activation ReLU function, BN is the 

batch normalization and 𝑤̂𝑖  and b are the weights of LANet. 

Table 1 presents the architecture details of LANet used on the 

proposed nuclei segmentation method as aggregation model 𝛷. 
 

Table 1. Architecture of LANet 

 
Architecture 

Input, ch = 6 

ConvBlock (2 layers), ch = 32 

ConvBlock (2 layers), ch = 64 

ConvBlock (2 layers), ch = 128 

UpConv, ch = 64 

UpConv, ch = 32 

UpConv, ch = 2 

Table 2. Building blocks of LANet 

 
ConvBlock UpConv 

3 × 3 Convolution Up Sample (factor =2) 

Batch Normalization 3 × 3 Convolution 

3 × 3 Convolution Batch Normalization 

Batch Normalization ReLU 

ReLU 

2 × 2 MaxPooling 

 

As one can see in Table 2, the architecture of LANet follows 

the UNet. LANet comprises three convolution blocks in the 

down-sampling path and three up-sampling blocks in the up-

sampling path. Each convolution block includes two 3 × 3 

convolution layers, batch normalization, ReLU and 2 × 2 

MaxPooling. 

In turn, each block in the up-sampling path includes an up-

sampling layer (up-sampling factor=2), 3 × 3  convolution 

layers, batch normalization and ReLU. It is worth noting that 

the concatenation of the input WSI image which contains the 

low-level row information with the coarse nuclei segmentation 

masks which highlights the important regions (Eq. (7)) can 

significantly recuperate missed segmented cells by IS models 

through guiding LANet network and helping to refine final 

mask. 

 

3.4 Implementation of the cell nuclei segmentation method 

 

Algorithm 1 presents the implementation steps of the 

proposed cell nuclei segmentation method for multiple organs 

and multiple centers WSI images.  

 

Algorithm 1. Implementation of the proposed method 
 

1: Read WSI images. 

2: Perform stain normalization for all WSI images. 

3: Split the WSI dataset into train dataset and test sets. 

4: for i = 1: N do 

5: Train ISi using train set. 

6: Save trained ISi model. 

7: end 

8: Obtain coarse masks from each IS. 

9: Concatenate N masks with the WSI image, Eq. (7).  

10: Train the aggregation model Φ 

11: Save Aggregation model Φ 

12 foreach image in test dataset do 

13 Read test image 

14 for i = 1: N do 

15 Get coarse mask of ISi 

16 end 

17 Concatenate N masks with the WSI images, Eq. (7). 

18 Get output mask from aggregation model Φ 

19 end 

 

The key steps of the training and test phases of the proposed 

method are highlighted below: 

a) The dataset is split into training and testing sets. The 

stain of all WSI is normalized. Then, N accurate ISs are 

developed for nuclei segmentation using the training set. 

b) The coarse masks of ISs are then concatenated along 

with the input WSI image, generating a new feature 

map with n + 3 channels input. 

c) The generated feature map is then fed into LANet to 

produce an accurate segmentation mask. 

To assess the performance of the proposed cell nuclei 

segmentation method, we use two widely used evaluation 

metrics for cell nuclei image segmentation, namely the 
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aggregated Jaccard index (AJI) [18] and F1-score (F1). 

However, AJI is a modified version of the Jaccard index, it has 

a more powerful ability to measure the strength of 

segmentation. AJI can be computed as follows: 

 
*

1

*

1

| ( ) |

| ( ) |

L

i ji

K

i j ki K Ind

GT NP i
AJI

GT NP i NP

=

= 


=

 +



   

(9) 

 

Here, 𝐺𝑇𝑖  is the 𝑖𝑡ℎ ground-truth mask of nuclei pixels, 𝑁𝑃𝑖  
is the predicted nuclei segmentation mask, 𝑁𝑃𝑗

∗(𝑖) stands for 

the connected component of the predicted cell nuclei 

segmentation mask that maximizes the Jaccard index, and 𝐼𝑛𝑑 

includes the indices of pixels that do not belong to the ground-

truth. 

The F1-score can be expressed as follows: 

 

2
1

precision recall
F

precision recall

 
=

+
 

(10) 

 

TP
precision

TP FP
=

+  
(11) 

 

TP
recall

TP FN
=

+  
(12) 

 

In these equations, true positive (TP) stands for the number 

of correctly segmented cell nuclei pixels. True negative (TN) 

stands for the number of correctly segmented non-cell nuclei 

pixels. False positive (FP) stands for the number of non- cell 

nuclei pixels wrongly segmented as nuclei. False negative (FN) 

stands for the number of cell nuclei pixels wrongly segmented 

as non-cell nuclei. The F1-score is the harmonic mean of the 

precision and recall. 

 

 

4. EXPERIMENTS AND RESULTS 

 

4.1 Dataset 

 

In our experiments, we use a challenging multiple organ and 

multiple center dataset called MoNuSeg dataset [18] to 

validate the proposed cell nuclei segmentation method. This 

dataset has been prepared by the Indian Institute of 

Technology Guwahati. MoNuSeg dataset includes annotated 

H&E stained WSI images captured at 40𝑥 magnification. The 

dataset comprises a total of 30 WSI images with around 22,000 

nuclear boundary annotations from colon, breast, stomach, 

kidney, prostate, bladder and liver organs. The WSI images 

were collected at different medical centers (image size is 

1000 × 1000). 

 

4.2 Implementation and training details 

 

In our experiments, we split the MoNuSeg dataset as 

follows: 23 WSI images for training and 7 WSI images for 

testing (the test set includes one WSI image of each organ). 

The resolution of the WSI images is 1000 × 1000 pixels. The 

input patch size of the IS models varies from 512 × 512 to 

256 × 256. Specifically, to train the ISs we scaled each image 

in the training set (23 WSI images) to 1024 × 1024. Four 

non-overlapping sub-images of size 512 x 512 were extracted 

from each scaled image. Besides, we extracted a total of 200 

randomly cropped patches with a size of 512 × 512 from each 

image in the training test. In total, 4692 patches (23 × 4 +
23 × 200) of size 512 × 512 were used to train the ISs. Note 

that we could avoid overfitting with this amount of data. It 

should be noted that the variation in the input image size is due 

to the design restrictions of each architecture. Here, the input 

image sizes of FCDenseNet, PSPSegNet, and self-Correction 

are 512 × 512, 256 × 256, and 128 × 128, respectively. To 

train LANet, a total of 2300 non-overlapped sub-images of 

size 128 × 128 were extracted from the coarse masks of the 

IS models. In turn, we scaled each testing image to 

1024 × 1024  and then we divided it into four non-

overlapping sub-images of size 512 × 512 . Of note, the 

resulting cell nuclei masks corresponding to the four patches 

of each testing image were stacked while keeping the spatial 

order to get the final cell nuclei mask. 

It should be noted that the batch size used in our 

experiments was 2 and the number of epochs was 100. We 

used the cross-entropy loss function and the stochastic 

gradient descent (SGD) optimizer for training all segmentation 

models. The values of the initial learning rate, momentum and 

weight decay were 1e-1, 0.99 and 1e-8, respectively. All 

models were implemented with python3.8 and pytorch1.5. The 

experiments were carried out in a computer with the following 

specification: AMD Ryzen 5 3600 6-core CPU, 32 GB 

memory and Nvidia RTX2060 8GB GPU. 
 

4.3 Results and discussion 
 

Table 3 presents the F1 and AJI-scores of the IS models as 

well as the proposed method. As one can see, the three 

developed individual nuclei segmentation models obtain 

promising segmentation results (AJI Score >69% and F1 

score >87%). The proposed method achieves a noticeable 

improvement on both F1-sore and AJI-score.  
 

Table 3. Evaluation of the proposed method 
 

Model F1-Score AJI-Score 

FCDenseNet103 88.45% 71.34% 

PSPSegNet 88.42% 70.95% 

Self-Correction 87. 45% 69.23% 

LANet w/o concat. RGB 89.21% 72.59% 

Proposed 89.25% 73.02% 
 

Our method obtains an F1 and AJI scores of 89.21% and 

72.59%, respectively, without concatenating the input WSI 

with the coarse nuclei masks (LANet w/o concat. RGB). 

However, concatenating the WSI with the coarse nuclei masks 

at the aggregation network improves the F1 score to 89.25% 

and the AJI Score to 73.02%. The obtained cell nuclei 

segmentation results prove that the suggested aggregation 

approach, LANet, not only can aggregate the coarse masks of 

the IS models, but also it can refine the coarse labels and 

produce accurate nuclei segmentation masks. 

Figures 3 and 4 show the boxplots of the F1 and AJI scores 

of the ISs and our method. As shown, the proposed cell nuclei 

segmentation method achieves the highest median AJI and F1 

scores (median F1 score 85% and median AJI 73% 

approximately.) when compared to the IS models. It is worth 

noting that all cell nuclei segmentation methods have not 

outliers on both evaluation metrics and the minimum values of 

F1 and AJI scores are higher than 78% and 64% respectively. 

This analysis confirms the suitability of the IS models as 

candidates for constructing the proposed nuclei segmentation 

method. 
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Figure 3. Boxplots of the F1-score for the IS models and the 

proposed method 

 

 
 

Figure 4. Boxplots of the AJI-score for the IS models and 

proposed method 

 

Figure 5 compares the cell nuclei segmentation masks of the 

individual nuclei segmentation models and the proposed 

method for WSI images of different organs. It is worth noting 

that we compare our method with three recently published cell 

nuclei segmentation methods: FCDeneNet [27], SegNet [27] 

and Self-Correction [35]. As one can see, the proposed method 

produces accurate segmentation results for the different organs. 

For instance, the proposed method can accurately segment the 

WSI images of the liver and bladder organs that have big cell 

nuclei with intense overlapping. Specifically, the proposed 

method achieves AJI and F1 scores of 72 and 81% respectively, 

with these WSI images, noting that the AJI score of the 

proposed method is 1.25 points higher than the IS models. 

Besides, in the case of the WSI images of the breast, colon and 

prostate organs, the proposed method surpasses the IS models 

with AJI scores of 67, 65 and 74% respectively (approximately 

1.1 points higher). Also, Figure 5 presents the WSI images of 

kidney and stomach organs that have a dense number of cell 

nuclei. With these images, the proposed method achieves AJI 

scores of 73 and 80% respectively (an improvement of 1.1 

points when compared with the IS models). 

 
 

Figure 5. Segmentation results of the proposed cell nuclei 

segmentation method, IS1--FCDenseNet [27], IS2--

PSPSegNet [27] and IS3--Self-Correction [35] (three recently 

published nuclei segmentation models) with the WSI images 

of the liver, breast, colon, kidney, bladder, prostate, and 

stomach organs 

 

Table 4 compares the cell nuclei segmentation results of our 

method and some state-of-the-art semantic segmentation 

networks (UNet [8], FCN8s [11] and SegNet [13]) trained to 

segment cell nuclei in WSI images. Also, the proposed method 

is compared with recently published cell nuclei segmentation 

networks ([10, 12, 14, 15]) along with a popular segmentation 

software [16]. All models have been trained on the MoNuSeg 

dataset [18] under the same experimental conditions. As one 

can see in Table 4, our method beats the compared cell nuclei 

segmentation methods. Specifically, the proposed achieves 

AJI score 1.10 points higher than the UNet [8] and SegNet [13]. 

Also, it achieves an F1 score 1.30 points higher than [14, 15]. 

It should be noted that the cGANs model [10] has been trained 

with original WSI and synthesized WSI images. However, the 

cGANs model [10] is a heavy model with 58 million 

approximately trainable. It obtains 1% AJI score lower than 

our method. Additionally, we compared our method with a 

popular segmentation software called ImageFIJI [16]. 

ImageFIJI obtains an AJI score much lower than the proposed 

method.  
 

Table 4. Comparing the F1 and AJI scores of the proposed 

cell nuclei segmentation method with state-of-the-art eight 

methods 

 
Model F1-Score AJI-Score 

FCN8s [11] 88.17% 70.86% 

UNet [8] 87.84% 70.02% 

SegNet [13] 86.48% 68.28% 

UNet++ [12] 88.24% 70.88% 

RIC-UNet [14] 82.78% 56.35% 

DIST [15]  78.63% 55.98% 

ImageFIJI [16] 75.52% 53.30% 

cGANs [10] 86.60% 72.10% 

Proposed 89.25% 73.02% 
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Based on the above analysis, the proposed cell nuclei 

segmentation method with a graphical user interface (GUI) 

could be a powerful fully automated tool that would highly 

assist pathologists in obtaining fast and accurate cell nuclei 

delineation for WSI images of different organs collected from 

different centers. 

 

 

5. CONCLUSIONS 

 

This article has proposed an accurate cell nuclei 

segmentation method based on a deep learnable aggregation 

network called LANet and a set of accurate deep CNN-based 

individual cell nuclei segmentation models. With a 

challenging multiple organ and multiple center WSI image 

dataset, the proposed method achieved an AJI score of 73%, 

which is 3 points higher than UNet (the popular medical image 

segmentation model), and 1 point higher than the cGAN-based 

cell nuclei segmentation model [10]. Future research will be 

focused on the use of different aggregation approaches to fuse 

robust deep learning-based cell nuclei segmentation models to 

further enhance the segmentation accuracy and reliability. 
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