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Parkinson's disease (PD) is a neurological disease that progresses further over time. 

Individuals suffering from this condition have a deficiency of dopamine, a neurotransmitter 

found in the brain's nerve cells that is critical for coordinating body movement. In this study, 

a new approach is proposed for the diagnosis of PD. Common Average Reference (CAR), 

Median Common Average Reference (MCAR), and Weighted Common Average Reference 

(WCAR) methods were primarily utilized to eliminate noise from the multichannel recorded 

walking signals in the resulting PhysioNet dataset. Statistical features were obtained from 

the clean walking signals following the Local Binary Pattern (LBP) transformation 

application. Logistic Regression (LR), Random Forest (RF), and K-nearest neighbor (Knn) 

methods were utilized in the classification stage. A high success rate with a value of 92.96% 

was observed with Knn. It was also determined that signals on which foot and the signals 

obtained from which point of the sole of the foot were effective in PD diagnosis in the study. 

In light of the findings, it was observed that noise reduction methods increased the success 

rate of PD diagnosis. 
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1. INTRODUCTION

Parkinson's disease (PD), which occurs due to cell 

degeneration, is the second most prevalent age-related 

neurodegenerative disorder after Alzheimer's disease [1]. 

Currently, no specific tests or biomarkers exist for the 

diagnosis of PD. This diagnosis is often based on subjective 

data from the visual observations of clinicians/neurologists to 

establish a score on the UPDRS (Unified Parkinson's Disease 

Rating Scale); therefore, the diagnosis of PD can be difficult, 

particularly in its early stages. 

Thus, the likelihood of misdiagnosis is rather high, and this 

rate is stated to be around 25% by the "Parkinson's Disease 

Foundation". One or more of the four major PD motor 

symptoms must be present for PD diagnosis, and the 

progression of these symptoms may vary from one patient to 

another. This is why the symptoms must be analyzed 

effectively for early diagnosis of PD [1]. 

Although people with PD can do simple straight line 

walking tasks relatively easily, they encounter serious 

hardships when walking and turning, performing simultaneous 

motor or cognitive tasks, overcoming obstacles, or attempting 

to walk in tanglesome public environments [2]. Gait 

disturbance is an early attribute of PD, such as dementia and 

stroke for brain disorders, and leads to apractic walking 

patterns, in which the ability to move properly is foregone. The 

reason for this is the disruption in the human motion control 

and sensory feedback system that controls equilibrium, which 

allows the environment to be processed securely [3]. As PD 

progresses, the patient loses control of his or her movements. 

Individuals with PD exhibit distinct symptoms at different 

phases of the disease, such as difficulty walking and tremors. 

Tremor is a common symptom seen in PD. Tremor refers to 

the unintentional movement of human body parts. Tremor may 

initially be apparent in one arm, leg, or one side of the body 

and then spread to both sides. This resting tremor is a sign of 

PD [4].  

Gait disturbances can manifest themselves in the form of 

reduced walking speed and small steps. Gait disturbance is 

progressive at all stages of the disease. Gait disturbance stems 

from muscle stiffness, decreased overall strength, abnormal 

rhythmicity, asymmetry in left and right parts of the body, and 

abnormal scaling of stride lengths. Symptoms such as gait 

disturbance, slow walking, decreased stride length, decreased 

rhythm, increased double support during posture phase, 

mixing and festination gait, decreased swings in arms, and 

impaired stride length are all observed in PD. Analysis of such 

gait dynamics can be used to measure human neuro-

musculoskeletal diseases [5]. Examining human walking 

patterns through quantitative analysis can assist in diagnosing 

and treating locomotor disorders [6]. Thus, an intermittent tool 

for clinical decision making and automatic disorder 

recognition can be provided by performing pathological gait 

detection, which is an important indicator for many 

neuromuscular skeletal diseases in their early stages [7]. 

Many types of research are conducted to detect PD using 

different types of sensors and analysis methods. For this 

purpose, various wearable sensors such as force-sensitive 

insoles [8] accelerometers and gyroscopes [9] or 

magnetometers are utilized to obtain Bio-signals and detect 

characteristics about gait [10]. Due to PD being a nerve disease 

with symptoms of motion disorder, degeneration in the central 
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nervous system diminishes an individual's ability to control 

locomotor systems in the early stage of the disease. Hence, gait 

is affected, and subsequently, the analysis of gait provides a 

quantitative and non-invasive method for early detection of 

PD [7]. Gait patterns and characteristics are typically 

characterized in three parameters: spatiotemporal, kinematic, 

and kinetic, which have great extent and variability [11]. 

Spatial parameters include stride length that measures the 

distance between the consecutive points of contact by the heel. 

Kinematic data can include joint angles in the frontal plane 

(abduction and adduction), sagittal plane (flexion and 

extension), and transverse plane (external and internal 

rotations) [12]. Kinetic data, kinetic parameters such as ground 

reaction force under various parts of the feet (such as toes and 

heels) while walking can include the forces that cause motion 

[5].  

Power distribution in feet varies for PD and healthy 

individuals. Characteristic features of said power distributions 

can be utilized to tell apart between healthy and sick 

individuals. Gait analysis is often used as part of routine 

clinical testing to evaluate gait performance. Some tests are 

used for early PD diagnoses, such as the up-and-go and 180 

degrees U-turn tests [13]. As gait disorders are progressive 

throughout PD and gait records are easy to obtain, many 

researchers have focused on gait irregularities. In this study, 

Vertical Ground Reaction Force (VGRF) data measured using 

force-sensitive insoles with eight different sensors on each 

foot from PD patients and healthy individuals were used. In 

this study conducted, a different approach has been proposed 

for PD diagnosis. Filter methods were initially applied to 

walking signals. After applying LBP conversion to the 

obtained clean signals, statistical features were obtained. 

These feature vectors are then classified by classification 

algorithms such as Knn (K-nearest neighbor), LR (Logistic 

Regression), and RF (Random Forest). High success rates 

were observed.  

 

 

2. LITERATURE STUDIES 

 

Moore et al. [14] utilized a portable/mobile device in their 

study to monitor Freezing of Gait (FOG) by using frequency 

features pertaining to vertical leg motion for FOG as 

commonly seen in advanced PD patients. They have used this 

device [15], which they developed to determine stride length 

in their previous studies, to detect FOG in 11 patients with 

advanced PD. Vertical linear acceleration of the left leg was 

procured using an ankle-mounted 100 Hz frequency sensor 

array wirelessly transmitting data to a pocket PC. 89% success 

rate was achieved in detecting FOG through this study. A 

similar study for FOG detection was carried out by Tripoliti et 

al. [16]. Signals received from wearable sensors (six 

accelerometers and two gyroscopes) placed on the patient's 

body were utilized to detect freezing of gait (FOG) in PD 

patients. Four classification algorithms were tested in the study 

by using signals recorded from five healthy individuals, five 

patients with FOG symptoms, and six patients with PD but 

without FOG symptoms (Naïve Bayes, Random Forests, 

Decision Trees, and Random Tree). In this study, they were 

able to detect incidents of FOG with 96.11% accuracy using 

the Random Forests classification algorithm. In the study 

conducted by Camps et al. [17], the deep learning method was 

utilized to detect FOG episodes in PD patients. This model is 

trained up via a new spectral data representation strategy that 

takes the information from both previous and existing signal 

windows into account. In this study, the evaluation was 

conducted using the data collected via an inertial measurement 

unit placed on the waist of 21 PD patients who displayed FOG 

episodes. The presented deep learning method is feed-forward 

1D-ConvNet and has shown a performance of about 90%. 

The VGRF data obtained from Physionet, which was also 

used in this study, was utilized to conduct various studies for 

the purpose of PD diagnosis. Alkhatib [18] suggested an 

autoregressive model, which is a statistical method, in one of 

their studies to analyze the VGRF time series data, and in 

another one, they used the K-nearest neighbors (KNN) method, 

which is a supervised machine learning method. In their study, 

they used the data from 18 healthy individuals and 29 people 

with PD. That being said, in this study, only the sensor data in 

the inner arch of the foot sole was utilized for each foot by 

discarding other important sensory information.  

Samà et al. [19] proposed in their study a machine learning 

method to analyze the signals provided by a three-axis 

accelerometer that is placed on the waist of PD patients for the 

detection of bradykinesia, which is the most important 

symptom of patients with PD and presents itself as the 

slowness of motion. In this method, Support Vector Machines 

were used to determine the sections of the signals 

corresponding with gait. The epsilon-Support Vector 

Regression model was then used to assess bradykinetic gait 

attacks and predict the degree of bradykinesia using the 

frequency content of the steps. The method was tested on 12 

persons with PD, and the frequency content of the steps 

resulted in an accuracy of better than 90% in dividing the 

bradykinesia in two. 

After approximation coefficients and detail coefficients 

were obtained by applying wavelet transformation (WT) to 

VGRF signals by Lee and Lim [20], a classification was made 

with Neural Network with Weighted Fuzzy Membership 

functions (NEWFM). In this study, signals belonging to 93 PD 

and 73 control individuals were classified with the highest 

success performance of 77.33%. In another study by Zhang et 

al. [7], a classification was made with Sparse Representation 

theory and SVM-based classifiers using the Fourier 

Transformation coefficients obtained in these VGRF signals 

to classify patients and healthy individuals. Classification 

accuracies with a percentage of respectively 83.44% and 

81.53% were obtained using Rare Approach and SVM 

classifiers. In a study conducted by Dairi [21], features 

obtained by applying short-time Fourier transform (STFT) to 

the same data set were reduced by the feature discriminant 

ratio (FDR) method and classified with SVM. It is stated that 

the proposed approach categorizes the signals of 93 people 

with PD and 73 healthy individuals control with great success. 

In another study conducted by Zeng et al. [22], a method based 

on deterministic learning theory was proposed to make gait 

analysis from the same VGRF data and diagnose people with 

PD and healthy control individuals. Features were extracted 

from differences in the signals obtained for each foot via the 

wearable sensors, and the subjects whose gait dynamics were 

registered were classified using the radial basis function (RBF) 

neural network. In this study, when the data of 93 people with 

PD and 73 healthy people were classified, success 

performance of 96.39% was obtained. 

In a study conducted by Khorasani and Daliri [23], a data 

set consisting of 16 healthy and 15 sick people was used. 

Hidden Markov Model (HMM) with Gaussian Mixtures was 

used to detect PD, and 90.32% success performance was 
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achieved. In the study conducted by Wu and Krishnan [24] on 

the same data set, the same performance results were obtained 

using the least-squares support vector machine (LS-SVM) 

classifier.  

In the study of Perumal and Sankar [1], the effect of using 

gait and trembling features for early detection and monitoring 

of PD was investigated. Using VGRF data obtained from 

wearable sensors, various features were derived, and statistical 

analysis and machine learning techniques were utilized to find 

out the most distinguishing features among subjects with PD 

and healthy subjects. Accordingly, it was observed that a 

number of gait features such as stride distance, posture and 

phases of oscillation, heel and normalized heel forces provide 

better performance (feature separation) than others. 86.9% 

accuracy rate on average was achieved in the classification 

between a PD patient and a healthy control subject.  

In the study of Abdulhay et al. [4], a new approach was 

proposed to diagnose PD using gait analysis made up of gait 

cycles which can be divided into several phases and periods to 

determine normative and abnormal gait. First of all, raw 

VGRF data obtained from the Physionet database were 

cleaned from noise using Chebyshev type II high pass filter. 

By using peak detection and pulse time measurement 

techniques, the filtered data was used to extract various gait 

features, and different temporal characteristics such as posture, 

oscillation, and stride time were obtained. An accuracy of 

92.7% on average was obtained in the diagnosis of PD from 

gait analysis, and tremor analysis was used to determine the 

severity of PD. 

 

 

3. DATASET 

 

The data set used in this study included the gait 

measurements of 93 PD patients (age average: 66.3 years; 63% 

males) and 73 healthy individuals (CO) (age average: 66.3 

years; 55% males) for control purposes, which were obtained 

from three different studies. The study, labeled as "Ga" by 

Yogev et al. [25] contains 113 (75PD + 38 CO) records 

obtained from 29 PD patients and 18 CO subjects. The study, 

labeled as "Ju" by Hausdorff et al. [26] contains 129 (104PD 

+ 25CO) records obtained from 29 PD patients and 26 CO 

subjects. The study, labeled as "Si" by Frenkel-Toledo et al. 

[27, 28] contains 64 (35PD + 29CO) records obtained from 35 

PD patients and 29 CO subjects. As shown in detail in Table 

1, the data set consists of 306 records in total, 214 of which 

were from 93 patients and 92 of 73 healthy individuals. 

 

 
 

Figure 1. Placement of force sensors on the foot 

 

The vertical ground reaction force (VGRF) records of 

individuals were obtained by carrying out the data set normally 

at self-selected speeds on a flat surface for approximately 2 

minutes. Under each foot of individuals, there are eight sensors 

that measure power (in Newtons) as a function of time (Figure 

1). These 16 sensors were digitized with 100 samplings per 

second, and records were made by adding the sum of the 

sensor outputs on each foot. With this information, it is 

possible to investigate the force recording as a function of time 

and position, obtain measurements reflecting the center of 

pressure as a function of time, and determine timing 

measurements for each foot. The publicly shared data set can 

be accessed from the Physionet website [29, 30]. 

It can be stated that when a person stands comfortably with 

both legs parallel to each other, assuming that the insole (0.0) 

is only between the legs, the sensor positions in the insole are 

approximately in the coordinates (X, Y) while looking at the 

positive side of the Y-axis. Locations of the sensors are given 

in Table 2 [28]. 

The X and Y numbers are in an arbitrary coordinate system 

that reflects the relative (arbitrarily scaled) positions of the 

sensors in each insole. While walking, the sensors in each 

insole remain in the same relative position, but the two legs are 

no longer in parallel to each other. Namely, this coordinate 

system allows a proxy to be calculated for the center of 

pressure (COP) location under each foot. Sampling signals of 

0-15 ms duration belonging to individuals with PD and healthy 

people (CO) are presented in Figure 2. 

 

Table 1. Details about the utilized data set 

 

Data Set 
Number of Subjects 

Recording Time 
Recording Numbers 

Total 
PD CO PD CO 

Ga 29 18 12 minutes 75 38 113 

Ju 29 26 5 minutes 104 25 129 

Si 35 29 12 minutes 35 29 64 

Total 93 73  214 92 306 

 

Table 2. Locations of 8 sensors on each foot on left (L) and right (R) foot, respectively 

 
Sensor L1 L2 L3 L4 L5 L6 L7 L8 R1 R2 R3 R4 R5 R6 R7 R8 

X -500 -700 -300 -700 -300 -700 -300 -500 500 700 300 700 300 700 300 500 

Y -800 -400 -400 0 0 400 400 800 -800 -400 -400 0 0 400 400 800 
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Figure 2. VGRF data from 8 left and right sensors for PD 

and CO  

 

 

4. METHOD 

 

In the method section, noise removal methods from walking 

signals, LBP transformation for feature extraction, and the 

obtained statistical features are presented.  

 

4.1 One dimensional local binary Patterns (1D-LBP) 

 

In the study, 1D-LBP was utilized as a feature extraction 

method to capture important information for the diagnosis of 

PD through the gait signals from individuals. The 1D-LBP 

method has been developed to be used in different application 

areas in data processing for signals with a dimensional 

sequence in the form of a time series [31-33]. Binary codes are 

obtained by making binary comparisons with each value 

determined as the center value on the signal and the 

neighboring values. This process is repeated throughout the 

signal. The values obtained from the decimal equivalents of 

these binary codes make up the 1D-LBP signal [31]. 

The mathematical formula of the binary comparison is as 

follows. Pi; ith neighbors, Pc; indicates the center value. The 

1D-LBP method is described step by step on a section of the 

sampling signal. Figure 3 displays the central points and 

neighborhoods received from the signal to apply the 1D-

LBPmethod. 
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(1) 

The steps required to calculate the 1D-LBP code are as 

follows; In the first stage, the 1D-LBP operator in this given 

signal is obtained as a result of binary comparisons between 

the center value and neighboring values. For each value on the 

signal, a total number of P neighboring values are selected 

before and after. P / 2 neighbor as before and P / 2 as after are 

taken as values. In this study, eight neighboring points were 

determined with P=8. When each point is taken as the center 

value (Pc), it takes place before the center value (Pc), at (P1, 

P2, P3, P4) and then (P5, P6, P7, P8) (Figure 3 (B)).  

In the second stage, binary values are obtained by 

comparing the P = {P1, P2, P3, P4, P5, P6, P7, P8} values 

specified in Figure 4 (B) with the Pc value. It takes the value 

one (1) if the adjacent Pi value is greater than or equal to the 

central value; otherwise, it takes the value zero (0) (Figure 3 

(C)).  

In the third stage, the binary LBP codes take place in center 

values in comparisons. These binary codes represent the local 

structure information around the PC points, to which a decimal 

value is given. Then, this obtained binary string is converted 

to a decimal value (Figure 3 (D)).  

In the fourth stage, the above steps are performed for all 

values on the individual signal. With this method, 1D-LBP 

signal is obtained from the signals in the range between 0-255. 

In other words, the 1D-LBP signal consists of values in the 

range between 0-255. The frequency of each value obtained is 

the expressed version of a pattern. The histogram machine 

learning of 1D-LBP signals is used as a feature vector for 

methods. 

 

4.2 Spatial filter methods  

 

Common Average Reference (CAR), Median Common 

Average Reference (MCAR), and Weighted Common 

Average Reference (WCAR) filter and methods, which are 

commonly used, are described in this section. 

 

4.2.1 Common average reference (CAR) filter method  

In the CAR filtering method, it is assumed that the cleaned 

noise si (t) signal of the observed zi (t) signal in the i channel 

at the time of t and the noise generated by the signals measured 

from other channels is the mixture of n (t) of the term.  

 

𝑧𝑖(𝑡) = 𝑠𝑖(𝑡) + 𝑛(𝑡) (2) 

 

 
 

Figure 3. Calculating 1D-LBP code through the signals of a sample raw signal 
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Here i=1,2,3, ..K refers to channels. t=1,2,3,4.. L indicates 

the length of the signal. In total, there is K number of channels 

and L number of sample values in the signal. In the CAR 

algorithm, the term noise can be estimated by calculating the 

average of all channels, assuming that common noise 

contributes similarly in all channels: 

 

�̂�(𝑡) =
1

𝐾
∑ 𝑧𝑖(𝑡)

𝐾

𝑖=1

 (3) 

 

Here �̂�(𝑡)  indicates the average of all channels for an 

estimate of noise. Accordingly, by removing this average 

noise term from each channel, a clean signal is obtained for 

each channel.  

 

�̂�𝑖(𝑡) = 𝑧𝑖(𝑡) − �̂�(𝑡) (4) 

 

The main disadvantage of the CAR method is that any 

channel-specific noise propagates to all channels. 

 

4.2.2 Median common average reference (MCAR) filter 

method  

In Median CAR, the median of all channels is used to 

estimate noise at each time point: 

 

�̂�(𝑡) = 𝑧𝑖(𝑡)
(

𝐾+1
2

)
   𝑖𝑓 𝐾 𝑖𝑠 𝑜𝑑𝑑 (5) 

 

�̂�(𝑡) = (𝑧𝑖(𝑡)𝐾
2

+ 𝑧𝑖(𝑡)𝐾
2

+1
)/2  𝑖𝑓 𝐾 𝑖𝑠 𝑒𝑣𝑒𝑛   (6) 

 

Here, K shows the total number of channels. Median is more 

sensitive to outliers in data than its average parameter [34]. 

 

4.2.3 Weighted common average reference (WCAR) filter 

method 

The major drawback of the standard CAR is that it assumes 

that common noise spreads similarly in the channels. Zi(t) 

signal registered in the WCAR method, the clean si(t) signal, 

and noise term are modeled with an autoregressive (AR) 

structure between n(t). 

 

𝑧𝑖(𝑡) = 𝑠𝑖(𝑡) + 𝑤𝑖(𝑡)𝑇𝑛(𝑡) (7) 

 

Here n(t)=[n(t)n(t-1)n(t-2)…n(t-M+1)]T indicates the noise 

vector. M is the window size on the signal. W(t) is the weight 

vector indicating the weights of the noise term and is specified 

as w(t)=[w1w2w3w4….wM]T. In the WCAR method, it is 

assumed that the common noise is distributed in channels with 

different amplitudes and polarities. Kalman filter was applied 

to find weight vectors for each channel. Then in order to 

estimate weights, zi(t) signals are expressed in a discrete-time 

Markovian state-space model [35]. 

 

𝑧𝑖(𝑡) = 𝑠𝑖(𝑡) + 𝑤𝑖(𝑡)𝑇𝑛(𝑡) (8) 

𝑤𝑖(𝑡 + 1) = 𝛼𝑤𝑖(𝑡) + 𝛿𝑖(𝑡) (9) 

 

Here α is a fixed number. δi(t) is the noise term with normal 

distribution for each channel. The covariance of this term 𝑉𝑖 =
𝐸(𝛿𝑖𝛿𝑖

𝑇)  and its average are considered to be zero. On 

measured signals, si(t) has an average of zero, and its variance 

is considered as 𝑞 = 𝐸(𝑠𝑖
2). Based on the Kalman filter frame, 

weights wi(t) are estimated in two stages [34]. 

 

1) Status update depending on the previous situation: 

 

�̂�𝑖
−(𝑡) = 𝛼�̂�𝑖(𝑡 − 1) (10) 

 

𝑃𝑖
−(𝑡) = 𝛼𝑃𝑖

−(𝑡 − 1) + 𝑉𝑖(𝑡) (11) 

 

Here 𝑃𝑖
−(𝑡) is the covariance matrix of the estimated error. 

Here α is the state transition parameter. Updates can be 

performed with different values.  

 

𝑋1 = [𝑤1(1). . . . 𝑤𝑖(𝐿 − 1)] (12) 

 

𝑋2 = [𝑤2(2). . . . 𝑤𝑖(𝐿)] (13) 

 

where, L is the sample number in each i channel, the alpha 

parameter corresponding to each channel can be defined as 

follows: 

 

α𝑖 = 𝑋2𝑋1
𝑇(𝑋1𝑋2

𝑇)−1 (14) 

 

2) Change of situation based on new measurement: 

 

�̂�𝑖(𝑡) = 𝑤𝑖
−(𝑡) + 𝐾𝑖(𝑡)[𝑧𝑖(𝑡) − 𝑛𝑇(𝑡)�̂�𝑖

−(𝑡)] (15) 

 

𝑃𝑖(𝑡) = [𝐼 − 𝐾𝑖(𝑡)𝑛𝑇(𝑡)]𝑃𝑖
− (16) 

 

𝐾𝑖(𝑡) = 𝑃𝑖
−(𝑡)𝑛(𝑡)[𝑛𝑇(𝑡)𝑃𝑖

−(𝑡)𝑛𝑇(𝑡) + 𝑞]−1 (17) 

 

Here �̂�𝑖(𝑡) and 𝑃𝑖(𝑡) specify the covariance matrices of the 

updated status and error, respectively. The Ki(t) is the term 

Kalman gain. It adjusts the contribution of new observation 

values to update the status parameter. The Kalman gain can be 

repeated according to the equation above. For more detailed 

information about WCAR, the study conducted by Khorasani 

et al. [35] can be examined. 

 

4.3 Proposed method  

 

In this study, a completely different approach, as opposed 

to other studies, was proposed to detect PD from walking 

signals. The proposed method is a statistical approach that uses 

patterns obtained as a result of comparisons between the 

neighbors of each value on multichannel recorded signals. The 

block diagram of the proposed approach is given in Figure 4.  

 

 

 
 

Figure 4. The proposed system for PD diagnosis 
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Table 3. Statistical features from the signals [30] 

 
No Feature Equation 

1 Mean 𝑓1 =
∑ 𝑋𝑖

𝑁
𝑖=1

𝑁
 

2 Standard Deviation 𝑓2 = √
∑ (𝑋𝑖 − 𝑓1𝑁

𝑖=1 )2

𝑁
 

3 Energy 𝑓3 = √
∑ (𝑋𝑖

𝑁
𝑖=1 )2

𝑁
 

4 Entropy 𝑓4 = − ∑
𝑋𝑖

𝑓3
𝑙𝑜𝑔(

𝑋𝑖

𝑓3
)

𝑁

𝑖=1

 

5 Correlation 𝑓5 = ∑
𝑖 ∗ 𝑋𝑖 − 𝑓1

𝜎𝑥

𝑁

𝑖=1

 

6 Consecutive absolute differences 𝑓6 =
∑ |𝑋𝑖+1 −𝑁

𝑖=1 𝑋𝑖|

𝑁
 

7 Kurtosis 𝑓7 =
√𝑁(𝑁 − 1)

𝑁 − 2
(

1
𝑁

∑ (𝑋𝑖 − 𝑓1)3𝑁
𝑥=1

1
𝑁

∑ (𝑋𝑖 − 𝑓1)2𝑁
𝑥=1

)

3/2

 

8 Skewness 𝑓8 =
𝑁 − 1

(𝑁 − 2)(𝑁 − 3)
[(𝑁 + 1) ((

1
𝑁

∑ (𝑋𝑖 − 𝑓1)4𝑁
𝑥=1

1
𝑁

∑ (𝑋𝑖 − 𝑓1)2𝑁
𝑥=1

) − 3) + 6] 

9 Median F9 = (N +1) / 2nd element 

10 Minimum f10 = min {X1, X2, X3, X4….XN} 

11 Maximum f11 = max {X1, X2, X3, X4….XN} 

12 Variance coefficient 𝑓12 =
𝑓1

𝑓2
 

 

Block 1: Indicates walking signals recorded from raw 

multichannel patients and healthy individuals. These are 

signals measured from a total of 18 channels. 

Block 2: Noises coming directly from the recorded 

multichannel signals were cleared by CAR, MCAR, and 

WCAR methods. These three different methods were applied 

to the signals separately. 

Block 3: 1D-LBP conversion was applied to the signals 

obtained from all channels. This method provides distinctive 

patterns for the diagnosis of PD. 

Block 4: After the 1D-LBP signals were obtained, 

histograms of these signals were procured in each channel. 

Block 5: Statistical features were extracted from the 

histograms of 1D-LBP signals. Twelve different statistical 

features were gathered. Statistical features extracted from 

histograms are presented in Table 3. 

Block 6: It is the classification stage. LR (Logistic 

Regression), RF (Random Forest), and Knn (K-nearest 

neighbor) machine learning methods were used. The 

classification process was carried out according to the tenfold 

cross validity test with the WEKA software. 

Block 7: is the decision phase. It indicates whether the 

signal belongs to a healthy or sick person. Common Average 

Reference (CAR), Median Common Average Reference 

(MCAR), and Weighted Common Average Reference 

(WCAR) filter and methods, which are commonly used, are 

described in this section. 

 

4.4 Performance criteria 

 

The accuracy rate belonging to the most popular and simple 

model was examined to determine how successful the 

proposed model was. This ratio was defined as the ratio of the 

number of correctly classified (TP + TN) samples to the total 

number of samples (TP + TN + FP + FN) [35]. Sometimes, on 

the contrary, the performance rate of the model is found by 

determining the error rate, which is expressed as the ratio of 

the number of incorrectly classified samples to the total 

number of samples [36]. Accuracy, precision, and f-criterion 

criteria were utilized in this study. 

 

Accuracy =
TP + TN

TP + TN + FP + FN
 (18) 

 

Error rate =
FP + FN

TP + TN + FP + FN
 (19) 

 

Precision = TN/(TN + FP) (20) 

 

Recall = TP/(TP + FN) (21) 

 

F − Measure = (2𝑥𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)/(𝑅𝑒𝑐𝑎𝑙𝑙
+ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) 

(22) 

 

In these equations, T, F, P, and N denote True, False, 

Positive, and Negative, respectively. For example, TP is the 

number of correctly classified positive samples; FN indicates 

the number of incorrectly classified negative samples. 

 

 

5. RESULTS  

 

In this study, an approach is proposed for the diagnosis of 

PD from the walking signals recorded through 18 channels 

consisting of sensors on each foot and a total of 8 sensors 

located on the left and right feet. When the signals are 

measured from multiple channels, channels may affect each 

other. These effects are expressed as noise. Clearing these 
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noises can facilitate the diagnosis of PD. For this purpose, 

CAR, MCAR, and WCAR methods were used to remove the 

noises from the signals. When these filter methods are applied 

to walking signals, the changes in the signals are given in 

Figure 5.  

 

 
 

Figure 5. Application of CAR, MCAR, and WCAR filter methods to walking signals 

 

After filter methods were applied to walking signals, LBP 

transformation was applied to the formed signals. After this 

transformation, 12 statistical features were obtained from the 

signals. In addition, statistical attributes were obtained from 

the signals that occurred after LBP was applied to the signals 

without using filter methods. Using the features obtained in the 

last stage, PD was tried to be diagnosed by different machine 

learning methods. Three different classification algorithms, 

such as LR, Knn, and RF, were used. The achieved success 

rates are given in Table 4. 

 

Table 4. PD diagnosis success rates 

 
Filter Method Logistic Regression Knn Random Forest 

CAR 78.18 81.04 83.66 

MCAR 79.47 81.41 84.33 

WCAR 83.00 88.56 86.27 

Without Filter 76.14 76.79 80.39 

 

Table 5. Performance measures with Knn 

 

Filter Method+Classifier 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 Recall F-Measure 

CAR 0.812 0.817 0.823 

MCAR 0.815 0.813 0.829 

WCAR 0.885 0.886 0.889 

Without Filter+Knn 0.771 0.764 0.768 

 

When Table 4 is considered, the highest success rates were 

obtained with the features obtained by applying the WCAR 

filter to the walking signals. WCAR filter provided more 

effective features than other filter methods and unfiltered 

situations. Even with three different classification algorithms, 

high success rates were attained with the features obtained by 

applying WCAR. When the success rates are analyzed, it is 

observed that the success increased as a result of applying 

filter methods to the signals. Less successful results were 

observed with the features obtained from the signals without 

applying a filter. RF classification algorithm was observed as 

the most successful model in applications apart from WCAR. 

The highest success rate was achieved with Knn as 88.56%. 

The least successful method was LR. The performance criteria 

obtained with the most successful classification method Knn 

are given in Table 5.  

 

 
 

Figure 6. Knn algorithm success rates according to WCAR 

parameters 

 

The WCAR method has three important parameters, which 

are V, q, and 𝛼. According to the different values of these 

parameters, noise removal was performed from the 

Parkinson's walking signals. After cleaning, LBP 

classification processes were carried out with Knn, LR, and 

RF using the extracted features. The changes in the success 
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rates according to these parameters are given in Figures 6, 7 

and 8 for the three classification methods. Figures are shown 

in 4 dimensions. In order to understand whether it was 

successful, the transition of colors is checked in that the values 

are looked over to see for which parameters values they 

increase. 

 

 
 

Figure 7. LR algorithm success rates according to WCAR 

parameters 

 

 
 

Figure 8. RF algorithm success rates according to WCAR 

parameters 

 

As mentioned earlier in the data set includes the entirety of 

three different studies. These studies are labeled as "Ga," "Ju," 

and "Si," and the performance values of all groups are given 

in Table 6. Success values were found separately for each 

group after the WCAR filter was applied. As seen in Table 6, 

the highest success in the data sets of "Ga" and "Ju" groups 

was found as 92.92% and 90.698%, respectively, with the Knn 

classifier. The most successful method was found in the "Si" 

group data set as 76.563% with RF. 

 

Table 6. Success performances of data set groups 

 
Data set Logistic Regression Knn Random Forest 

Ga 79.646 92.920 89.38 

Ju 77.519 90.698 88.372 

Si 59.375 60.938 76.563 

Walking signals were recorded from eight sensors 

connected to each foot. In order to indicate which foot signals 

were effective in diagnosing PD, the features extracted from 

said signals, which were recorded from the sensors on each 

foot, were subjected to the classification methods separately. 

The achieved success rates are given in Table 7. 

 

Table 7. Success rates by feet 

 

Filter 

Method 

Left foot Right Foot 

LR RF Knn LR RF Knn 

CAR 75.52 78.43 79.41 73.52 81.04 79.73 

MCAR 74.50 74.50 82.35 76.47 81.04 79.73 

WCAR 78.79 78.14 87.62 74.87 79.77 85.33 

Without 

Filter 
76.14 73.85 81.69 76.14 74.50 80.06 

 

When the success rates according to the feet are considered, 

the highest success rate was obtained with the features 

extracted as a result of the application of the WCAR filter 

method. Parkinson diagnosis was performed with a high 

success rate of 87.62% using Knn with the features extracted 

from the left foot sensors. It is gathered that more effective 

features were extracted from left foot sensors in general. When 

the features extracted after different filter methods and the 

extracted features without filter were examined, the features 

obtained from the left foot were found to be more successful 

than the right one. Knn was found to be more effective than 

other methods.  

There are eight channels under each foot. In addition, there 

is a channel that shows the total force recorded from all 

channels. Each sensor measures signals from different parts of 

the foot soles. The success rates observed by using the 

extracted features after filter methods were applied to the 

signals recorded from each sensor are presented in Table 8. 

The classification process was carried out by RF.  

 

Table 8. Success rates according to channels (For sensors on 

both feet) 

 
Sensor CAR MCAR WCAR Without Filter 

Sensor 1 77.12 82.35 78.14 81.04 

Sensor 2 78.43 79.08 77.49 74.18 

Sensor 3 76.79 77.12 76.83 73.52 

Sensor 4 75.16 74.50 78.79 75.16 

Sensor 5 74.50 76.47 84.02 80.39 

Sensor 6 75.16 72.22 75.85 77.45 

Sensor 7 73.20 79.08 81.08 74.83 

Sensor 8 76.79 72.22 80.75 77.45 

Total force 74.50 80.06 81.41 80.39 

 

When the success rates according to the channels are 

considered, the highest success rate was observed with the 

signals recorded from Sensor 5. When looking at the filter 

methods, they were observed with the features extracted as a 

result of applying the WCAR filter method to the signals. The 

success rate was achieved as 84.02%. Sensor 4 is located right 

in the middle of the soles. Therefore, the signals obtained from 

the centers of the soles were shown to provide more effective 

signals compared to those in other areas.  

After filter methods were applied to the signals recorded 

from the sensors, LBP transformation was applied, and then 

12 statistical features were extracted from each sensor. In 

order to demonstrate the effectiveness of the features, 

classification processes were carried out using Knn according 

to each filter. The achieved success rates are given in Table 9. 
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Table 9. Success rates according to statistical features 

 

Statistical Feature CAR MCAR WCAR 
Without 

Filter 

Mean 63.07 63.07 67.35 60.45 

Standard Deviation 77.12 77.45 63.43 79.73 

Energy 76.47 74.18 83.04 80.06 

Entropy 79.41 79.08 85.33 76.47 

Correlation 81.69 80.06 84.98 70.58 

Consecutive 

absolute differences 
72.87 71.89 79.12 79.41 

Kurtosis 71.89 72.54 81.41 59.47 

Skewness 80.06 82.02 85.62 75.81 

Median 80.39 82.02 85.94 76.14 

Minimum 81.37 69.93 71.60 59.15 

Maximum 77.45 79.08 84.35 81.37 

Variance coefficient 76.47 82.35 84.31 83.33 

 

In Table 9, it is seen that the most successful of the extracted 

features after applying the CAR filter method to the signals is 

the minimum feature. After applying MCAR to the signals, the 

variation coefficient was seen to be the most successful feature. 

The median feature was seen as the most effective feature with 

WCAR, and without any filters, the most effective feature was 

the variation coefficient. The most successful feature was 

achieved by applying the WCAR filter method using the 

median attribute. In the most successful feature, a 

classification rate of 85.94% was observed.  

Signals were recorded from 8 sensors beneath each person's 

foot and a channel displaying the total force of the signals 

recorded from these sensors. Features were extracted from 18 

channels in total. Twelve statistical features were extracted 

from each channel. There are 18x12 = 216 features in total. It 

is known that not all features are effective in the diagnosis of 

PD. Features are reduced by the feature reduction method. The 

reduction was performed from the feature groups that were 

obtained according to different filter methods. Then the 

classification was done with Knn using the remaining features. 

The achieved success rates are given in Table 10.  

 

Table 10. Success rates after feature reduction 

 
Filter Method #Features LR Knn RF 

CAR 18 82.12 86.79 88.75 

MCAR 29 84.41 88.66 87.37 

WCAR 30 86.43 92.96 89.96 

Without Filter 27 80.77 85.46 85.35 

 

When Table 10 is considered, 18 features remained after 

applying the CAR filter method and reducing the removed 

features. After the classification, the highest success rate was 

observed with RF as 88.75%. After MCAR was applied, the 

highest success rate with 29 features was 88.66% with Knn; 

and after WCAR was applied, 30.9 attributes were used, and 

92.96% success rate was observed with KNN. Without the 

filter, a success rate of 85.46% was achieved by using Knn 

with 27 features.  

The approach proposed in this study was compared to other 

studies in the literature. Performance results of the studies 

performed on the same data set are given in Table 11. When 

Table 11 is considered, it was seen that the acceptable high 

success rates were obtained with the proposed approach.  

 

Table 11. Comparison with the literature (%) 

 

Author (s)/Year Features / Model 
Success Results 

All 
Ga Ju Si 

Wu & Krishnan, 2009 [24] 
STC + LS-SVM / LOO 

Note: Part of the data set labeled as “Ju” was used 
- 90.32 - - 

Lee and Lim, 2012 [20] WT+NEWFM - - - 77.33 

Zhang et al., 2013 [7] FT Coefficients + LC-KSVD    83.44 

Zhang et al., 2013 [7] FT Coefficients + SVM    81.53 

Daliri, 2013 [21] STFT + RBF kernel + SVM    85.20 

Daliri, 2013 [21] STFT+ Chi-square distance kernel+ SVM    91.20 

Khorasani and Daliri, 2014 [23] 
Stride time, swing time, stance time, double support time + HMM 

Note: Part of the data set labeled as “Ju” was used 
- 90.3 - - 

Alkhatib et al. 2015 [18] Statistical + Knn 83 - - - 

Perumal and Sankar, 2016 [1] 

Statistical (Step length, stride time, stance time, swing time, heel, 

below toe and toe forces and normalized heel, below toe and toe 

forces) + LDA 

92.25 92.5 90.0 - 

Alam et al., 2017 [5] VGRF statistics + SVM 91.6    

Alam et al., 2017 [5] SVM (Cubic) 95.70    

Ghaderyan & Fathi, 2021 [37] Inter-Limb Time-Varying Singular Value - - - 95.59 

El Maachi et al., 2020 [38] Deep 1d-Convnet - - - 98.7 

Yurdakul et al., 2020 [39] LBP+ ANN - - - 98.3 

This study [CAR, MCAR, WCAR]+LBP + Knn and LBP + RF 92.92 90.698 76.563 92.96 

 

 

6. DISCUSSION 

 

In this study, a new approach was proposed to differentiate 

individuals with PD from healthy individuals through gait 

signals. Gait and tremor signals are widely used in the 

diagnosis of PD. Gait signals are generally measured in a 

multichannel way. While the signals are measured in one 

channel, other channels may encounter a noise effect. 

Therefore, CAR, MCAR, and WCAR methods were applied 

to the gait signals to remove possible noises in the signals. 

After applying the LBP conversion, statistical features were 

extracted from the formed clean signals. These feature groups 

were classified by classification algorithms such as Knn, LR, 

and RF. When the results are considered, it was determined 

that the WCAR method, which is an adaptive method, clears 

noise best. As the classification method, the best classifier was 

observed as the Knn method. The best success rate was found 

as 92.96%.  
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The study also examined signals on which foot was 

effective in diagnosing PD. According to the data set used, it 

was observed that the signals on the left foot provide better 

distinctive features in the diagnosis of PD. In addition, it was 

determined which sensors under the feet are effective in 

diagnosing PD.  

In order to demonstrate the effectiveness of the proposed 

method, the classification process was performed by applying 

LBP transformation without applying noise-cleaning 

algorithms to the gait signals and by extracting statistical 

features. When the results were analyzed, it was determined 

that noise-cleaning methods increased overall success. 
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