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Pulsating heat pipe is one of the prominent technology for thermal management of 

electronic devices. It consists of three sections namely evaporator, adiabatic and condenser 

section. PHP is a two phase passive device having efficient and quick ability of transferring 

heat from evaporator section to condenser section. At first an 8 turn pulsating heat pipe of 

closed loop ends (CLPHP) with copper tube capillary dimensions is investigated 

experimentally for different fill ratios and for different inclinations by varying range of 

heat inputs. Different working fluids viz Water, Acetone, Ethanol and Methanol are 

considered for the experimentation. One of the recent analytical technology for modelling 

of CLPHPs is Artificial Neural Network (ANN) approach. The analytical models are 

having limited scope of applicability and they are simple in nature. The present paper 

describes Validation of experimental data by training prediction model ANN with available 

data. Three input nodes such as input heat, fill ratio and angle of inclination and one output 

node corresponding to PHP that is thermal resistance are considered. The feed forward 

neural network (FFNN) architecture is adopted for predictions. By using the physical 

phenomena of the system modelling are clearly known for obtaining feasible results which 

is main function of ANN. The predicted data validates experimental data in a satisfactory 

range and the results are found to be in good agreement with in the range of ± 10 percent. 
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1. INTRODUCTION

Pulsating heat pipes are mainly developed for control of 

electronic devices heat dissipation rates. It’s a novel wickless 

heat pipe with phase change phenomena and invented by 

Akachi and Polášek [1].. PHP consists of Evaporator where 

heat input is supplied to the device, adiabatic section and 

condenser sections at which the vapour condenses and 

becomes liquid i.e. rejection of heat take place. By pulsating 

motion heat transfer takes place from one end to other end. 

Surface tension and gravitational forces plays an important 

role in the working mechanism of heat transfer. In order to 

reduce the force due to surface tension over the force due to 

gravitation, the diameter of the tube is selected as capillary 

dimensions. Due to capillary dimensions the fluid distributes 

itself in the tube. This causes liquid slugs and vapour bubbles 

in the tube. As the physical phenomena occurs in PHP are 

complex, the application and scope of analytical models are 

limited in nature. The operating mechanism of PHP is mainly 

depending on physical, geometrical and operational 

parameters which influences its performance. Simulation 

studies on pulsating heat pipes were conducted by Jokar et al. 

[2]. And natural algorithms for simulation was applied. This 

simulator clearly explains complex behaviour of the PHP by 

using nonlinear structure. Numerical model to investigate the 

pressure losses in the tube with respect to number of turns was 

developed by Sakulchangsatjatai et al. [3], and Mameli et al. 

[4]. In this, the correlations of heat transfer are developed for 

predicting the PHP performance. Using ANN and regression 

analysis, Prediction models for pulsating heat pipe were 

conducted by Patel and Mehta [5]. All the literature data 

related to experiments and 9 variables are considered as input 

to develop prediction models are collected and developed 

Feed-forward back-propagation model to verify the data. On 

chaotic flow numerical investigations are carried out by 

Pouryoussefi and Zhang [6]. For analysis evaporative heating 

and condenser cooling constant wall temperatures are applied. 

Fully connected feed forward multilayer ANN is used to train 

with test data and then experimental data is validated by 

Khandekar et al. [7]. ANN consists of two input nodes and 

single output node. The results concluded that if sufficient data 

is available ANN approach seems to be a promising approach. 

Various nonlinear models based on fluctuations in the wall 

temperatures to understand the complex flow distribution in 

the PHP are implemented by Qu et al. [8], and Song and Xu 

[9]. A neural network of two layers to predict the PHP 

behaviour is studied by Shokouhmand et al. [10]. The results 

obtained are appropriate for predicting effective parameters 

trend on performance of PHP and they are in concurrent with 

available data. To predict the thermal performance of a PHP, 

Han et al. [11] carried out experiments. The thermal 

performance of PHP is influenced by operational parameters 

(heat flux applied, PHP orientation and fill ratio), inner 

diameter, number of turns as geometrical parameters and pure 

fluids, binary mixtures and nano fluids are as working fluids. 

The correlation for start-up heat flux and start-up mechanism 
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of PHP is theoretically described by Qu and Ma [12]. The 

results explains that the influence of working fluids makes the 

PHP’s internal heat and mass transfer phenomena more 

complex. 

From the literature it is observed that closed loop pulsating 

heat pipe prediction models are developed with limited fluids 

at a specified fill ratio and orientation only. The main objective 

of the present work is to carry out a comprehensive work on 

water, ethanol, methanol and acetone fluids with 50%, 60% 

and 75% fill ratios at 0-degree, 45-degree and 90-degree 

positions. The experimental values are compared with 

prediction values. The feed forward neural network is used 

over other methods because in this method only in one 

direction that is in the forward direction the information 

always moves. The connections between the nodes do not 

form a cycle that is it does not go backwards. The transfer of 

nodes is from input to output nodes through the hidden nodes. 

 

 

2. ARTIFICIAL NEURAL NETWORKS 

 

To understand the pulsating motion of liquid slugs and 

vapour bubbles of fluid in tube and also effect of parameters 

influence on CLPHP many prediction models are developed. 

But the number of parameters prediction is very much limited. 

To predict the thermal performance of PHP the correlations of 

heat transfer mechanism including all the parameters are so far 

not available. Keeping this in view to develop prediction 

model for thermal performance of PHP the present research 

work is carried out by using ANN approach. ANN approach is 

one of the modelling techniques used to predict the data where 

the understanding of mechanism in a device is difficult. 

The design and functioning of human brain and nervous 

system is the main motivation for the design of ANN device. 

It’s a data-driven machine learning tool. It’s neither an 

algorithm nor actual hardware. All the processing elements are 

interconnected and makes different layers. These layers are 

useful to obtain a relationship between inputs and outputs, 

learning and memorizing the data. Usually, the structure of 

ANN consists of three layers shown in Figure 1. For receiving 

data input layer, for processing hidden layer and to send 

computed information an output layer. The artificial neurons 

are represented by nodes of each layer. Through weights the 

interconnection between the nodes and its preceding layer is 

possible. To match with the required output through the 

learning process by adjusting of associated weights the desired 

output is obtained. To model complex functions all, the 

individual neurons are connected with each other. The output 

vector is obtained when input vector is accepted by network. 

 

 
 

Figure 1. Architecture of artificial neural network [7] 

By ANN always it is not possible to get prediction of new 

data. This is due to overtraining the data. To avoid this data is 

set into different parts. For training process almost 70% of data 

is assigned. In the remaining 30%, 15% of data us used for 

testing and the remaining 15% is for validation. For 

developing accurate model more data is required. Therefore, 

training data is used for this purpose. To train the network the 

learning algorithm is used. The algorithm measures actual and 

desired output vector difference. The error resulted uses an 

iterative method for calculating weights and to improve 

network such a way to reduce error. Several times this process 

is repeated till the error is in the required level so that it 

becomes valid model for prediction. To reduce the error to 

check generalization and accuracy the validation data is used. 

The final behaviour of network is examined by validating data. 

 

 

3. THE PARAMETERS INFLUENCING CLPHP 

PERFORMANCE 

 

The experimental work is carried out on an 8 turn closed 

loop pulsating heat pipe made up of copper. Copper tube with 

2 mm and 3.1 mm capillary dimensions and of length 264 mm 

was bent into 8 U-turns into major section of CLPHP such as 

evaporator, adiabatic and condenser section. The evaporator 

box of size 330X90X55 mm are placed at the bottom and the 

condenser of size 320X95X55 mm are placed at the top to 

insert the parallel tubes. The CLPHP performance is mainly 

depending upon the parameters like working fluid, volume fill 

ratio, inclination angle, number of turns, inner diameter of the 

tube, heat input supplied etc. Fill ratio is defined as the ratio of 

liquid volume to the total volume of PHP. It varies from 0% to 

100% i.e. CLPHP tubes without any fluid (bare tubes) or 

empty device means no fluid in the tube is referred as 0% 

filling. In this case the heat transfer in CLPHP is only by pure 

conduction mode. A fully filled tube refers to 100% filling 

ratio. In this case there is no pulsating effect in the tube. Due 

to buoyancy the liquid circulates in the tube and buoyancy 

helps for heat transfer. Therefore, between 10% and 90% fill 

ratios only CLPHP can function in a pulsating mode. The exact 

value of fill ratio is mainly depending upon working fluids, 

construction of PHP and other parameters that effect PHP. 

Different mass flow rates are maintained for different heat 

inputs. The mass flow rate depends upon the properties such 

as its specific heat, density etc. of working fluid considered. 

Heat is supplied at evaporator section of CLPHP. The liquid 

converts into vapour at evaporator and gets condensed in the 

condenser section. Amount of heat supplied is mainly 

depending upon the type of fluid used and its boiling point. 

The orientation of CLPHP also another important parameter 

which effects the performance. Different inclinations varying 

from 0 degree to 180 degrees is possible. In all these cases the 

physics that is underlined for understanding of heat transfer 

mechanism is not so clear and is differs with respect to its 

operation. 

The schematic diagram of an 8 turn CLPHP experimental 

setup is as shown in Figure 2. The experiment is conducted for 

working fluids namely Water, Ethanol, Methanol and Acetone. 

By incorporating thermocouples at evaporator and condenser 

sections, the temperatures were recorded and heat input is 

supplied at bottom end of evaporator section by using variac. 

The ratio of difference in temperature with its heat input gives 

the performance parameter thermal resistance, the required 

output. 
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Figure 2. Schematic of experimental setup 

 

The experimental results are noted for all the working fluids 

considered at different fill ratios (50%, 60% and 75%) and also 

at different orientations (0-degree, 45-degrees and 90-degree). 

These results are validated by using ANN. 

To develop the Artificial Neural Network (ANN) model a 

neural network toolbox in MATLAB was used This model was 

developed by considering Heat input (20-100 W) depending 

upon the working fluid, Fill ratio (50%, 60% and 75%) and 

inclination angle (0-degree, 45-degrees and 90-degree) as 

input parameters and thermal resistance as output parameter. 

The following Tables 1-4 gives different process parameters 

considered for different working fluids namely Water, 

Acetone, Ethanol and Methanol (Considered for the present 

study). 

 

Table 1. Process parameters and their levels for water 

CLPHP 

 

Process parameters 
Levels 

1 2 3 

Heat Input 20 60 100 

Fill Ratio (%) 50 60 75 

Inclination angle 0 45 90 

 

Table 2. Process parameters and their levels for acetone 

CLPHP 

 

Process parameters 
Levels 

1 2 3 

Heat Input 20 40 60 

Fill Ratio (%) 50 60 75 

Inclination angle 0 45 90 

 

Table 3. Process parameters and their levels for ethanol 

CLPHP 
 

Process parameters 
Levels 

1 2 3 

Heat Input 20 40 60 

Fill Ratio (%) 50 60 75 

Inclination angle 0 45 90 

Table 4. Process parameters and their levels for methanol 

CLPHP 
 

Process parameters 
Levels 

1 2 3 

Heat Input 20 40 60 

Fill Ratio (%) 50 60 75 

Inclination angle 0 45 90 
 

Initially, into the neural network the input data were fed and 

then to achieve the output it was preceded for simulation in 

Figure 3. By using 33 factorial designs simulations are carried 

out taking into account of maximum and minimum limits of 

the fluid considered. A total of 27 experiments investigations 

were considered to predict the data using ANN architecture 

namely Feed Forward Neural Network (FFNN). 
 

 
 

Figure 3. Feed forward back propagation ANN 

 

The Tables 5a and 5b describes the experimental plan for 

CLPHP modeling. Different operating parameters that affect 

the CLPHP performance are considered in different 

combinations. The combination includes heat input, fill ratio 

and angle of inclination for different fluids Water, Acetone, 

Ethanol and Methanol. 
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Table 5a. Experimental plan for modeling water and acetone 

CLPHP 

 
Water Acetone 

Q FR Angle Q FR Angle 

20 50 0 60 50 0 

60 50 0 60 50 45 

100 50 0 60 50 90 

20 50 45 60 60 0 

60 50 45 60 75 0 

100 50 45 60 60 45 

20 50 90 60 60 90 

60 50 90 60 75 45 

100 50 90 60 75 90 

20 60 0 40 50 0 

60 60 0 40 50 45 

100 60 0 40 60 0 

20 60 45 40 50 90 

60 60 45 40 60 45 

100 60 45 40 75 0 

20 60 90 40 60 90 

60 60 90 40 75 45 

100 60 90 40 75 90 

20 75 0 20 50 0 

60 75 0 20 60 0 

100 75 0 20 50 45 

20 75 45 20 75 0 

60 75 45 20 60 45 

100 75 45 20 50 90 

20 75 90 20 60 90 

60 75 90 20 75 45 

100 75 90 20 75 90 

 

Table 5b. Experimental plan for modeling ethanol and 

methanol CLPHP 

 
Ethanol Methanol 

Q FR Angle Q FR Angle 

60 50 0 60 75 45 

60 50 45 60 50 0 

60 50 90 60 50 45 

60 60 0 60 50 90 

60 60 45 60 60 0 

60 75 0 60 75 0 

60 75 45 60 60 45 

60 75 90 60 60 90 

60 60 90 60 75 90 

40 50 0 40 50 0 

40 50 45 40 50 45 

40 50 90 40 60 0 

40 75 0 40 50 90 

40 60 0 40 60 45 

40 75 90 40 60 90 

40 75 45 40 75 0 

40 60 45 40 75 45 

40 60 90 40 75 90 

20 50 0 20 50 0 

20 50 45 20 60 0 

20 60 0 20 75 0 

20 60 45 20 50 45 

20 75 0 20 60 45 

20 60 90 20 50 90 

20 50 90 20 60 90 

20 75 45 20 75 45 

20 75 90 20 75 90 

 

 

4. PROCEDURE FOR EXECUTING ANN MODEL 

 

By using TRAINLM and LEARNGDM the training and 

Adaption learning functions are considered as shown in Figure 

4. 

 

 
 

Figure 4. Creating network using ANN 

 

 
 

Figure 5. Neural network training 

 

For every neural network model the following model is 

adopted. 

• For input and output data excel data sheet has to be 

prepared as shown in table. 

• In the workspace of MATLAB the data has to be 

imported. While importing the heading should not be imported, 

only data to be imported. 

• With a suitable number of neurons and layers proper 

network, input target data and training performance are 

selected. 

• As per chosen parameters hit create button for 

development of new network. 

• By selecting the Train network button for the given 

input and output Train the network. The following Figure 5 

explains the training of neural network. 

• W refers to weights and b refers to biases in hidden 

layer of network. The input layer passes these data to the first 

hidden layer. The weighted input parameters (weight 9 input 

parameter) and bias are processed through a transfer function 

in this layer. 

• Predicted result and error are generated by selecting 

simulating button. 

• Export the data obtained in to workspace. 

• Post processing can be done by pasting the exported 

data in to excel. 

 

 

5. RESULTS AND DISCUSSIONS 

 

The output thermal resistance is determined by using 

experimental values for all considerations adopted for 
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experimentation. These resistance values are validated by 

using ANN. The error can be calculated as percentage error by 

using the following formula. 

 

Error (%) = 
(𝑅𝑡ℎ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)−𝑅𝑡ℎ(𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙))

𝑅𝑡ℎ(𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙)
 

 

5.1 For working fluid water 

 

The following Figures 6-8 show the comparison of water at 

different fill ratio and at different inclinations by considering 

both ANN and Experimental result. 

 

5.1.1 At 50% fill ratio 

The percentage error observed for all the readings regarding 

CLPHP operating with working fluid water when operating at 

50%FR at different inclination angles was below ±5% range. 

 

 

 

 
 

Figure 6. Comparison of experimental Rth with predicted 

ANN at 50% FR and 0,45,90-degree inclinations water 

CLPHP 

 

5.1.2 At 60% fill ratio 

The percentage error observed for all the readings regarding 

PHP operating with working fluid water when operating at 

60%FR at different inclination angles was below ±10% range. 

 

 

 

 
 

Figure 7. Comparison of experimental Rth with predicted 

ANN at 60% FR and 0,45,90-degree inclinations for water 

CLPHP 
 

5.1.3 At 75% fill ratio 

The percentage error observed for all the readings regarding 

PHP operating with working fluid water when operating at 

75%FR at different inclination angles was below ±13% range. 

The following graph Figure 8 shows these variation. 

Among all the working conditions of CLPHP with water, 

when it is operating at 50% fill ratio is having an error of less 

value i.e ±5% compared with 60% and 75% fill ratios.Thermal 

resistance value are high for higher filling ratio compared to 

lower filling ratio. At low heat transfer limit, higher thermal 

resistance is observed and performance of CLPHP is very poor. 

For high filling ratios, sufficient bubbles are not developed to 

provide pumping action in the fluid. So at this FR drastic 

deterioration of performance occurs.The formation of bubbles 

will results in better heat transfer rates and hence performnce 

improvement. 
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Figure 8. Comparison of experimental Rth with predicted 

ANN at 75% FR and 0,45,90-degree inclinations for water 

CLPHP 

 

5.2 For working fluid acetone 

 

Acetone has low value of latent heat.At a given temperature 

and presure quck evaporation of liquid takes place has it has 

low latent heat value i.e 520.56 kJ/kg.The velocities of liquid 

slugs wil be increased and results in improvement of heat 

ransfer.The physical and chemical properties of fluid are: 

boilin point is 56.2℃, density 748.5 kg/m3 in liqud form, 

specific heat 2.28 kJ/kg-K in liquid form, 1.385 kJ/kg-K for 

vapor acetone and its density is 19.09X10-3 N/m. The 

following Figure 9 shows comparison of Acetone fluid at 

different fill ratios and at different inclination angles by 

considering experimental results and ANN predictions. 

When the CLPHP with acetone as working fluid was 

operating at 50% fill ratio and at 0-degree inclination the error 

obtained was ±6% and for 45-degree and 90-degree the 

percentage of errors are ±1% and ±1% respectively. 

When the CLPHP with working fluid acetone was operating 

at 60% fill ratio and at 0-degree inclination the error obtained 

was ±2% and for 45-degree and 90 degree the percentage of 

errors are ±3% and ±5% respectively as shown in Figure 10. 

 

 
 

Figure 9. Comparison of experimental Rth with predicted 

ANN at 50% FR and 0,45,90-degree inclinations for acetone 

CLPHP 

 
 

Figure 10. Comparison of experimental Rth with predicted 

ANN at 60% FR and 0,45,90-degree inclinations for acetone 

CLPHP 
 

 
 

Figure 11. Comparison of experimental Rth with predicted 

ANN value at 75% FR and 0,45,90-degree inclinations for 

acetone CLPHP 
 

When CLPHP with working fluid acetone was operating at 

75% fill ratio and at 0-degree inclination the error obtained 

was ±9%. where as for 45-degree and 90 degree the percentage 

of errors are ±1% and ±6% respectively shown in Figure 11. 

And observed that 5% error is observed for acetone flud at 

60% fill ratio and 90-degree inclination position. 

 

5.3 For working fluid ethanol 
 

The following set of graphs (Figures 12, 13 and 14) shows 

the comparative analysis of experimentally obtained thermal 

resistance values with ANN predictions values obtained by 

training in nntool for PHP working with ethanol as working 

fluid. The heat input is considered in the range 20-80 watts and 

fill ratios considered are 50%, 60% and 75% at inclinations of 

0-degree, 45-degree and 90-degree positions. 
 

 
 

Figure 12. Comparison of experimental Rth with predicted 

ANN at 50% FR and 0,45,90-degree inclinations for ethanol 

CLPHP 
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When CLPHP is operating with Ethanol working fluid at 

50% filling ratio, (i) at 0-degree position the error in thermal 

resistance obtained is ±10% (ii) at 45-degree position 

inclination the error is ±11% (iii) and at an inclination angle 

90-degree it was observed as ±3%. 

 

 
 

Figure 13. Comparison of experimental Rth with predicted 

ANN at 60% FR and 0,45,90-degree inclinations for ethanol 

CLPHP 

 

When CLPHP is operating with Ethanol working fluid at 

60% filling ratio, (i) at 0-degree position the error in thermal 

resistance obtained is ±3% (ii) at 45-degree position 

inclination the error is ±8% (iii) and at an inclination angle 90-

degree it was observed as ±9%. 

 

 
 

Figure 14. Comparison of experimental Rth with predicted 

ANN at 75% FR and 0,45,90-degree inclinations for ethanol 

CLPHP 

 

When CLPHP is operating with Ethanol working fluid at 

75% filling ratio, (i) at 0-degree position the error in thermal 

resistance obtained is ±2% (ii) at 45-degree position 

inclination the error is ±1% (iii) and at an inclination angle 90-

degree it was observed as ±3%. 

 

5.4 For working fluid methanol 

 

The experiments are carried out for CLPHP by considering 

methanol as working fluid. The temperatures of evaporator 

and condenser at different locations are recorded by using data 

logger and hence thermal resistance was found by varying heat 

input. Fill ratios of 50%, 60% and 75% are considered. All the 

experiments are carried at 0 –degree, 45-degree and 90-degree 

inclinations of PHP. The results obtained are validated with 

ANN tool. The following group of curves (Figures 15, 16 and 

17) represents the variations of Rth in both experimental 

values and also predicted ANN values. 

 

 
 

Figure 15. Comparison of experimental Rth with predicted 

ANN at 50% FR and 0,45,90-degree inclinations for 

methanol CLPHP 

 

When methanol CLPHP is considered at 50% fill ratio the 

error percentage obtained experimentally in comparison with 

predicted ANN thermal resistance was different from one 

position to other position. At 0-degree inclination position the 

error is in the range of ±8% whereas for 45 and 90-degree 

positions it is in the range of ±4% only. This is due to the 

gravity that acts in 0-degree position. 

 

 
 

Figure 16. Comparison of experimental Rth with predicted 

ANN Rth at 60% FR and 0,45,90-degree inclinations for 

methanol CLPHP 

 

For CLPHP operating at 60% fill ratio the error percentage 

of thermal resistance in comparison with experimental and 

predicted ANN values is at 0-degree and 90–degree inclination 

positions ±3% and at 45-degree position observed as ±9%. 

 

 
 

Figure 17. Comparison of experimental Rth with predicted 

ANN at 75% FR and 0,45,90-degree inclinations for 

methanol CLPHP 
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For CLPHP operating at 75% fill ratio the error percentage 

of thermal resistance obtained in comparison with 

experimental and predicted ANN values is at 0-degree±2%, at 

45-degree ±9%. And at 90 -degrees it is 0.2 percent. 

 

 

6. CONCLUSIONS 

 

• For an 8 turn closed loop pulsating heat pipe with four 

different working fluids viz, water, acetone, ethanol and 

methanol at different heat inputs a feed forward back 

propagation algorithm is trained, validated and also used 

for predicting the data. 

• The influencing parameters of CLPHP such as heat input, 

filling ratio, angle of inclinations is used as input data and 

thermal resistance as output data is used for ANN 

modelling (The feed forward neural network (FFNN) 

architecture is adopted for predictions). 

• In case of thermal resistance value based on predicting the 

output data using ANN, the experimental deviations for 

Water is maximum of ±13% at different heat inputs, 

different fill ration and also different orientations. For 

acetone it is ±9%, whereas for ethanol and methanol is 

±10%. 

• Among all the working fluids acetone shows least thermal 

resistance value and also least error value. 

• Water shows higher value of thermal resistance compared 

to other fluids. 

• Among all the working fluids considered such as water, 

acetone, ethanol and methanol at 50%, 60 % and 75% fill 

ratios operating at 0-degree, 45-degree and 90-degree 

inclination positions the maximum resistance is observed 

for water fluid operating at 75% fill ratio and 90-degree 

inclination position, whereas minimum resistance is 

observed for acetone at 50% fill ratio and 0-degree 

inclination position. 

• Optimization of parameters that effects performance of 

CLPHP and the design of it can be made easier with the 

help of ANN model. 

• ANN modelling of CLPHP can be used in practical 

applications like radiators of automobiles, refrigeration 

systems and cooling of fuel cells. 
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