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The significant interpretation of this model is to explore the influence of temperature-

dependent heat source/sink on laminar free-convective flow in an annular porous region 

such as petroleum engineering, thermal technique and groundwater hydrology. For a 

unified solution of the Brinkman-Darcy model, the regulatory equations solved analytically 

by applying the variation of parameter technique in terms of Bessel's functions for the heat 

source and sink. Moreover, we have investigated the Variations of Darcy number, Heat 

source/sink and viscosity ratio in the presence of isothermal and constant heat flux 

sequentially. As a result, we received the critical value of the velocity for the radii ratio (R 

= 2.05 and 2.92) in both the cases of source and sink (S = 1.0 and Si = 0.1) respectively 

which is exhibited through the graphs. Further, the numerical outcomes present of the skin 

friction including volume flow with annular gap by the graphs as well as tables.  
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1. INTRODUCTION

Studies of free convection between two vertical concentric 

cylinders filled with a saturated porous medium have been 

attracting the attention of Scientists and Engineers over the 

earlier decades. These domains have too much physical 

significance as it has many scientific and engineering 

applications such as petroleum engineering, groundwater 

hydrology, soil mechanics, engineering science, thermal 

technique, agriculture, and industries, etc. In free convection, 

fluid motion occurs by free means such as buoyancy. The 

natural convection happens due to the gravity of the earth on 

the heated fluid of density of the fluid and their respective 

buoyancy of the fluid. For more detailed concerning these 

applications the researchers can refer to the studies [1-7]. The 

increasing volume of the study in this zone has been 

extensively discussed by a number of books, like as, Ingham 

and Pop [8], Vafai [9], Pop and Ingham [10], Vadesz [11], and 

Nield and Bejan [12], Maurya et al. [13] and Oni [14]. In 

porous media, most of the work related to convective heat 

transfer is based on Darcy’s law. The precision of these 

outcomes is constrained to a particular region of Darcy number 

and Reynolds number. Vafai and Tien [15] have been 

investigated the significance of Brinkman and Forchheimer's 

term over a flat plate in the presence of forced convection. 

They gave the resulting inaccuracy in the heat transfer 

coefficient when inertial and viscous terms are overlooked. 

Ranganathan and Viskanta [16] have handled the related 

investigation, and they got the effects of the wall and its inertia 

in mixed convective flow over a flattened plate. 

Aung [17] has reported both plate and channel in fully 

evolved laminar convection flow while Nelson and wood [18] 

have solved the problem numerically for heat and mass 

transfer with free convection between vertical channels with 

symmetric boundary conditions of its temperature and 

concentration. Further, Joshi [19] has received the solution 

analytically for fully developed natural convection in an 

isothermal vertical tube and compares his result got by the 

finite-difference technique. Using Brinkman- extended Darcy 

model, Paul and Singh [20] have studied in detail the 

convection within coaxial vertical cylinders partly saturated 

with a porous material and found that the velocity is turned by 

the shear stress jump situation at the boundary. Tong and 

Subramanian [21], and Lauriat and Prasad [22] have shown 

that wall effect is not much dominant for Darcy number much 

lesser than 10-5 in free convection. They have also measured 

the no-slip boundary condition for flow in porous medium and 

the precision of the result obtained from a pure Darcy 

approach are verified. Parang and Keyhani [23] have studied 

boundary interest in the mixed convective flow through an 

annular porous medium. Their outcomes show that the 

circumstances under which the Brinkman term can be 

disregarded without ascertaining an unwanted error. Prasad et 

al. [24] have studied the free convection in a vertical porous 

annulus with uniform heat flux on the interior wall. The 

significance of this result reveals that the hypothetical design 

must be customized to cover the channeling impressions in the 

boundary zone. Havstad and Burns [25] have observed 

numerical solutions for the convective heat transferable in 

vertical cylindrical annuli packed with a porous medium. It has 

noticed that the Perturbation solutions are efficient in all 

cylindrical areas and low-temperature differentiation, while 

asymptotic solutions are proven for long cylinders and high-

temperature differentials. 

Muralidhar and Kulacki [26], and Kaviany [27] have 

discussed the non-Darcy effects of natural convection in 

porous media between horizontal cylinders. Later, Khanafer 

and Chamkha [28] have studied mixed convection within a 

porous heat generating horizontal annulus in detail by using 

the Galerkin method. They also show the effect of the annulus 

gap, the Darcy number and heat transfer analysis. Murty et al. 

[29] have shown that the impact of the radii ratio in natural
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convection in detail. Bejan and Tien [30] have attempted the 

natural convection in horizontal space, enclosed by two 

concentric cylinders with distinct end temperatures. Singh et 

al. [31] have explained the flow formation problem in the 

isothermal and constant heat flux on the velocity and 

temperature in a vertical annulus. The analytical exploration 

for laminar fully developed sticky incompressible and 

electrically conducting liquid in an annulus in which the wall 

of the interior cylinder is heated or cooled either isothermally 

or at a constant heat flux while the exterior cylinder is 

maintained at ambient temperature was considered [32]. 

Rapits and Takhar [33] have shown the structure of the flow 

pattern by generalized Forchheimer’s model for polar fluid in 

a porous medium enclosed by an infinitely long erect plate. 

Cheng [34, 35] showed the variations of temperature 

dependent viscosity on the natural convection heat transfer 

from a horizontal isothermal cylinder of the elliptical cross 

section. Another study on heat formation from an isothermal 

cylinder has performed by Molla et al. [36]. Yadav and Singh 

[37, 38] have deliberated in detail the analysis of entropy in 

the annular porous duct. Analyses of porous media flow in 

annular regions have also been reported by Jha [39].  

In addition, Ravi et al. [37, 40] have presented the free 

convection of a polar fluid between two vertical walls with the 

temperature dependent source/sink. Further, the amazing 

study of polar fluid with source/sink in a vertical annulus is 

done by Singh [41]. Also, the numerical implications of the 

skin-friction for isothermal and uniform heat flux cases are 

submitted in the tabular form. In the field of MHD, Kumar and 

Singh [42, 43] have deliberated the influences of heat 

source/sink as well as the induced magnetic field in vertical 

annuli by considering the natural convection. On the free 

convective boundary layer flow, Merkin [44] first saw the 

variation of Newtonian heating. The alternations of the skin-

friction and Nusselt number on the fluid velocity with the 

induced magnetic field and the induced current density have 

been carried out by Kumar and Singh [45]. Yadav and Singh 

[46, 47] have compared the Darcy and viscous dissipations 

everywhere of the channel in a fully developed horizontal 

porous channel. Dwivedi et al. [48] have observed that the 

velocity and temperature profiles increase as the value of 

constant point/line heat source parameter increases. 

In this study, inspired by Jha [37], we explain the impact of 

source/sink parameters in the case of isothermal and constant 

heat flux on natural convective flow through a vertical cylinder 

filled with a porous medium assuming viscous and Darcy 

terms. We have received the solutions, in the cases of source 

and sink, of momentum and energy equations with proper 

boundary limitations for the velocity and the temperature field. 

Ultimately, utilizing the graphs and tables, we have shown the 

impacts of Darcy number, viscosity ratio, and source/sink 

parameter on the velocity and the temperature field profiles in 

the case of isothermal and uniform/constant heat flux as well 

as on skin friction and the mass flux. 

 

 

2. MATHEMATICAL ANALYSIS 

 

We have admitted, in a vertical annulus region of infinite 

length saturated by the porous medium, the steady and fully 

evolved laminar natural convective flow. The r'-axis is along 

the radial direction while z'-axis is vertically upward, 

perpendicular to the radial direction as shown in Figure 1. The 

radius of inner cylinder is taken as ‘a’ while that of outer 

cylinder is ‘b’. In the existing physical situation, the outer 

surface of the internal cylinder is heated or cooled either 

isothermally or uniform heat flux whereas the inner surface of 

the outward cylinder is sustained at the fixed temperature 

inducing the happening of free convection in the annular zone. 

The subject has been different physical situation extensively 

discussed [29, 30, 37].  
 

 
 

Figure 1. Schematic diagram of the problem 

 

As the flow has fully evolved and the expansion of the 

cylinder is endless, so the flow depends hardly on the 

coordinate r'. We have also taken the Boussinesq 

approximation and no slip condition in the existing problem. 

Following these simplifying assumptions for free 

convective flow, the controlling differential equations in the 

dimensional forms is presented as: 
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Under the above assumptions the boundary limitations for 

the velocity and temperature fields are: 

 

,0=u wTT = or ,
k

q

rd

Td
−=




at ,ar =  

,0=u = TT , at .br =  

(3) 

 

To simplify the problem, we have defined remarkable non-

dimensional quantities as: 
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where, T  is ( )− TTw or 
qa

k
 according as the inner cylinder 

is sustained at a constant temperature WT   or constant heat flux 

q. 

By employing the above parameters, the controlling 
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differential Eq. (1) and (2) communicating the model, in 

dimensionless form, are obtained as follows: 
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The relevant boundary limitations in non-dimensional form 

for corresponding to these equations are given as: 
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At the surface of the internal cylinder, the boundary 

limitations are a class of Dirichlet and Newmann. To achieve 

a novel result from together circumstances, the combined 

boundary conditions into a single form of the third kind are 

obtained as: 
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The relevant values of the constants a, b and c will supply 

the isothermal or iso-flux condition on the external surface of 

the internal cylinder. The Eq. (5) and (6) with boundary 

limitations (8) and (9) are solved for the velocity and 

temperature profiles in both cases of source and sink. 

 

2.1 When source is present 

 

Heat source, it can exert a very huge amount of thermal 

energy without any change in its temperature. In the case of 

source parameter S>0, for which the velocity and the 

temperature expressions are: 
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To see the influence of velocity gradient at the boundaries, 

we obtained the skin-friction in non-dimensional at both 

boundaries in the terms of source, are given as: 
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In this case, the mass flux through the annular zone is 

obtained as follows: 

 

=
R

drrUQ
1

2  

.

1

1

2

11
13

11
13

112

112















































































































































































































−+

−+

−−

−

=

SYSRRY
S

DE

SJSRRJ
S

CE

DaM
K

DaM

R
RKDaMD

DaM
I

DaM

R
RIDaMC

Q 
 

(14) 

 

2.2 When sink is present 

 

When there is a temperature dependent sink, parameter S<0 

and we take S=-Si, Si>0. In this case, the solutions for the 

velocity and the temperature field are in the terms of Si are 

obtained as: 

 

,01013

0202






















































+−

+=

SirKBSirIAP

DaM

r
KB

DaM

r
IAU

 (15) 

 

.0101 














 += SirKBSirIAT  (16) 

 

To see the influence of velocity gradient at the boundaries, 

we obtained the skin-friction in non-dimensional at both 

boundaries in the terms of sink, are given as: 
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In this case, the mass flux through the annular zone is 

obtained as follows: 
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3. RESULTS AND DISCUSSIONS  

 

In the field of Physics, the transport phenomenon is 

understood and defined as a phenomenon that comprises of 

movement of a number of physical quantities that include 

energy, mass or momentum through either fluid or solid 

medium in existence of non-uniform conditions present within 

the medium. The diagrams in the situations of isothermal and 

constant heat flux with the source/sink are sketched to examine 

the outcomes of various controlling parameters like as Darcy 

number (Da) and viscosity ratio M on the velocity U and the 

temperature field T. The skin-friction τ, as well as the mass 

flow rate Q in their numerical values, is displayed in the tables 

for distinct values of the above parameters regulating the flow. 

The temperature field sketches for the isothermal and 

uniform heat flux circumstances with source/sink have been 

depicted in Figure 2. We see from this figure that the 

temperature is more leading in the case of constant heat flux 

(Figure 2a) than the isothermal condition (Figure 2b) for the 

various values of the source (S=0.6, 0.9, 1.2) while the 

opposite appearance happens in the case of the sink (Si=0.6, 

0.9, 1.2). Also from Figure 2a reveals that enhancement in heat 

source enhances the temperature. This is because the heat 

source adds extra heat to the annuli, which enhances its 

temperature. Due to this fact, it raises the thickness of the 

thermal boundary layer. Further, when heat sink (Figure 2b) 

enhances more heat deflected from the annuli, which diminish 

the thickness of the thermal boundary layer. This decreases the 

temperature profiles. 

 

 
 

Figure 2. Variation of the temperature field profiles at R=2.5 

(a) for different values of Source parameter and (b) for 

different values of Sink parameter 

 

From Figures 3-7, the velocity profiles have been drawn in 

both isothermal and constant heat flux cases for different 

values of Darcy number, the ratio of viscosity parameter and 

source/sink parameters. In both isothermal and constant heat 

flux cases, it is interpreted from Figure 3 that the fluid velocity 

progresses when the gap between the cylinders rises for both 

isothermal and constant heat flux cases. 

 

 
 

Figure 3. Velocity sketches in the case of Source for (a) 

R<2.05 (b) R>2.05 (c) R=2.05 and (d) different value of M at 

R=2.05 

 

Viewing these conclusions, it is a subject of attention to 

reach the critical value of R at which the velocity field sketches 

are nearly the same in the case of isothermal and uniform heat 

flux. It is found that the characteristics of the velocity field 

profiles of the fluid are almost identical in the case of 

isothermal and uniform heat flux when the critical value is 

R=2.05 in the case of source (S=1.0) (Figure 3). In the case of 
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source, when the value of, the velocity is higher in isothermal 

case compared to the uniform heat flux case, while the reverse 

aspect occurs when four different values of Darcy number. For 

R=2.05, the velocity grows equally for rising values of Darcy 

number in the cases of isothermal and uniform heat flux while 

reverse phenomenon occurs in the Viscosity ratio parameter.  

 

 

 
 

Figure 4. Velocity sketches in the case of Sink for (a) 

R<2.92 (b) R>2.92 and (c) R=2.92 and (d) different value of 

M at R=2.92 

 

In the case of sink (Figure 4), for the value of R<2.92, the 

velocity is greater for isothermal case compared to the constant 

heat flux case, while opposite phenomenon occurs when 

R>2.92 for different values of Darcy number. For R=2.92, the 

velocity field profiles are almost same for together cases of 

isothermal and constant heat flux with separate values of 

Darcy number and Viscosity ratio parameter in presence of 

sink (Si=0.1). 

 

 

 
 

Figure 5. Velocity sketches with Darcy number at R=2.0. (a) 

for source and (b) for sink 

 

 

 
 

Figure 6. Variation of the velocity profiles at R=2.5. (a) with 

different values of source and (b) with different values of 

sink 
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Figure 7. Velocity sketches with various values of M at 

R=2.5. (a) for source and (b) for sink 

 

The effects of Darcy number in the case of isothermal and 

constant heat flux, are shown in the Figure 5 and we observed 

that velocity rises with Darcy number. It means that the 

velocity has a linear relation with the Darcy number. The 

physical reason behind this is that the fluid velocity is 

elaborated by raising the permeability of the porous media and 

it is nearly equal to the Darcy number for a small value of the 

radius of the cylinder. 

The effect of source/sink in the case of isothermal and 

constant heat flux are shown in the Figure 6. It is clear from 

the Figure 6 that velocity of the fluid increases in the case of 

source while it reduces in the sink. Thus, we can conclude that 

fluid velocity rises with increment in heat source parameter 

because the internal heat energy increases the thickness of the 

thermal boundary layer and the reverse phenomenon occur for 

the parameter of heat sink because the existence of sink 

absorbs the thermal energy which diminishes the velocity. 

Further, the effect of viscosity ratio parameters is to decrease 

the velocity field profiles in the case of isothermal and 

constant heat flux are shown in Figure 7. This sketch also 

shows the formation of boundary layers and the thickness of 

the boundary layer reduces as the value of 'M' rises due to the 

decrement in the viscous term. 

Since we have taken no slip conditions at the boundaries, 

and the outer surface area is higher compare to inner surface 

area, therefore from Figures 3-7, we observed that the shearing 

stress is high near the outer surface compare to inner surface. 

So, velocity near the inner surface is high compare to the outer 

surface. 

The effects of source/sink on skin-friction are presented in 

the Figures 8 and 9. Moreover, the effect of source/sink on the 

volume flow rate in the case of isothermal and constant heat 

flux is shown in the Figure 10. From these Figures we 

conclude that the skin friction and as well as dimensionless 

volume flow rate has shown the expanding look for the source 

while for sink the reversed action happens. In the attendance 

of source and sink, the skin friction and the volume flow rate 

is slightly change in the isothermal compared to the constant 

heat flux. 

 

 
 

Figure 8. Skin-friction of the internal cylinder at R=2.0. (a) 

with different values of source and (b) with different values 

of sink 

 

 
 

Figure 9. Skin-friction of the external cylinder at R=2.0. (a) 

with different values of Source and (b) with different values 

of Sink 
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Table 1. Skin friction and volume flow rate for Da=0.01, M=1.2 

 

S R 
τ1 τR τ1 τR Q 

Isothermal Constant heat flux Isothermal Constant heat flux 

0.5 

1.50 

1.80 

2.05 

2.20 

2.50 

2.92 

3.00 

3.50 

0.07193 

0.08005 

0.08359 

0.08513 

0.08754 

0.09018 

0.09064 

0.09353 

0.01514 

0.00983 

0.00742 

0.00649 

0.00529 

0.00444 

0.00435 

0.00416 

0.03020 

0.05121 

0.06923 

0.08089 

0.10807 

0.16567 

0.18200 

0.45116 

0.00636 

0.00629 

0.00614 

0.00616 

0.00653 

0.00816 

0.00874 

0.02008 

0.01006 

0.02190 

0.03322 

0.04073 

0.05777 

0.08784 

0.09468 

0.15001 

0.00422 

0.01401 

0.02752 

0.03871 

0.07133 

0.16137 

0.19011 

0.72361 

-0.5 

1.50 

1.80 

2.05 

2.20 

2.50 

2.92 

3.00 

3.50 

0.07112 

0.07830 

0.08099 

0.08202 

0.08334 

0.08434 

0.08447 

0.08498 

0.01463 

0.00892 

0.00623 

0.00515 

0.00366 

0.00239 

0.00222 

0.00141 

0.02789 

0.04270 

0.05174 

0.05603 

0.06257 

0.06843 

0.06923 

0.07270 

0.00574 

0.00487 

0.00398 

0.00352 

0.00274 

0.00194 

0.00182 

0.00121 

0.00981 

0.02056 

0.02980 

0.03533 

0.04624 

0.06070 

0.06331 

0.07836 

0.00385 

0.01121 

0.01904 

0.02414 

0.03471 

0.04925 

0.05189 

0.06705 

 

 

 
 

Figure 10. Volume flow rate at R=2.0. (a) with different 

values of Source and (b) with different values of Sink 

 

The computational values of the skin-friction τ1 in the flow 

region of the internal cylinder, τR in the flow region of the 

external cylinder and the rate of mass flow are displayed in 

Table 1 in isothermal and uniform heat flux cases with 

source/sink parameter. From this table, we can notice that as 

the width of the duct increases, the skin friction at the internal 

surface increases while the skin friction at the external surface 

decreases in the case of isothermal boundary limitation. But in 

the case of uniform heat flux, the skin friction at the internal 

boundary represents the same nature while skin friction at the 

external boundary initially decreases for R≤2.05 and for larger 

values of R>2.05 the skin friction increases. In the case of the 

sink, the skin friction at the inner boundary presents similar 

behavior for isothermal and uniform heat flux while the skin 

friction at the outside cylinder reduces and there is no variation 

in the trend. Also, the dimensionless volume flow rate is 

directly proportional to the radii ratio in both cases. 

 

 

4. CONCLUSIONS 

 

The analytical solution of the supposed problem in phases 

of source/sink parameters, viscosity ratio, and Darcy number 

has been achieved. The influences of certain parameters such 

as the Darcy number on the fluid velocity, the temperature 

field, the skin-friction, and the dimensionless volume flow rate 

has been received. As a result of the relative comparison, we 

attained the following determinations:  

(1) The temperature sketches are higher in the case of 

uniform heat flux than the isothermal circumstance for the 

source while the reversed aspect happens in the case of the sink. 

(2) In the case of source, when the value of R<2.05, the 

velocity is greater for the isothermal case than the constant 

heat flux case, while the converse happening is noticed when 

R>2.05 for different values of Darcy number. The character of 

the velocity field sketches is almost the same in the situations 

of isothermal and uniform heat flux when the critical value of 

R=2.05 for the case of source (S=1.0). 

(3) In the case of sink, for the value of R<2.92, the velocity 

is greater for isothermal case related to the uniform heat flux 

case, while the converse appearance has seen for distinguished 

values of Da when R>2.92. For R=2.92, the velocity fields are 

almost the same for both circumstances of isothermal and 

uniform heat flux with varying values of Da and M in the case 

of sink (Si=0.1). 

(4) The velocity of the fluid enhances in the case of the 

source while it reduced in the case of sink though the impact 

of the viscosity ratio parameter is to minimize the velocity 

field sketches not only in the case of isothermal but also in the 

constant heat flux case. 

(5) The skin-frictions at the cylinders and the dimensionless 

volume flow rate of a fluid between the cylinders are enhanced 

by raising the gap among the cylinders. 
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NOMENCLATURE 

a&b Inner and Outer Radii 

S Heat Source in non-dimensional form 

Si Heat Sink in non-dimensional form 
g Acceleration due to gravity 

K  Permeability of the porous medium 

k Thermal conductivity 
u  Velocity 

U Dimensionless velocity 

r  Radial coordinate 

r Dimensionless Radial coordinate 
q Constant heat flux 

T  Temperature of the fluid 

T Non-dimensional temperature 

wT 
Temperature of exterior surface of the 

interior cylinder in the case of isothermal 

heating 

T Free stream temperature 

pC Specific heat at a fixed pressure 

)(rIn
Modified Bessel function of first kind of 

order n 

)(rKn
Modified Bessel function of second kind of 

order n 

)(rJn Bessel function of first kind of order n 

)(rYn Bessel function of second kind of order n 

Da Darcy number 

Q Volumetric rate of heat 

generation/absorption 

Greek symbols 

 Density of fluid 

 Volumetric coefficient of the thermal 

expansion 
 Source/Sink 

R Ratio of radii, ab /  
 Dynamic viscosity 
 Kinematic viscosity 

M Ratio of viscosities 
 Skin friction 

1
Skin-friction on the outer surface of the 

inner cylinder 

R
Skin-friction on the inner surface of the 

outer cylinder 
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APPENDIX 

Case 1: When source is present 
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Case 2: When sink is present 
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