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 In recent decades, the network of seismic subsurface fluid observatories is developing 

constantly, the observation data of subsurface fluids are enriched accordingly, which 

provides a favorable condition for the research on the formation, occurrence, and 

development of earthquakes. In the observation data of subsurface fluids, water level and 

water temperature changes are very important observation indicators, and their fluctuation 

sequences are quite complicated. Therefore, this paper employed a non-linear cross-

correlation method to study the relationship between the water level and water temperature 

of Huize Well from 2004 to 2006, and found that there’s a significant cross-correlation 

between the time series of water level and water temperature; then, this study adopted 

DCCA (detrended cross-correlation analysis) to calculate the cross-correlation coefficient 

under different scales and explore the continuous changes of water level and water 

temperature; at last, this paper used the MF-DCCA (Multifractal-DCCA) method to prove 

that there’s multifractal cross-correlation between the time series of water level and water 

temperature. Before the M5.1 earthquake in Huize area, there’s an abnormal increase in 

the width of the multifractal spectrum of the water level and water temperature drawn with 

a sliding window of 500-hour, and this is a possible earthquake precursor.  
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1. INTRODUCTION 

 

Subsurface fluids are closely related to the formation, 

occurrence, and development activities of earthquakes. Under 

the premise that the confined aquifers of groundwater are in an 

intact state, the subsurface fluids can flexibly and quickly 

respond to changes in stress and strain of the earth crust. After 

the Xingtai earthquake in 1966, China began to establish 

observation stations to monitor groundwater conditions, after 

decades of continuous upgrade and perfection, now a 

subsurface fluid observatory network that can monitor the well 

water level, temperature, and geochemistry has been 

constructed. The Earthquake Cases of China recorded that, at 

the time of the 2004 M8.7 Sumatra earthquake, the water level 

of 78 wells and the water temperature of 59 wells in China 

showed co-seismic changes [1]. After researching the co-

seismic response mechanism of water level and water 

temperature of the Tayuan Well in Beijing during multiple 

earthquakes, scholars Yang et al. [2] believe that in the co-

seismic response, the convection and mixing of the water body 

in the well are the causes of the water temperature drop. Shi et 

al. [3] studied the co-seismic water level and water 

temperature changes of the Tangshan Mine Well during 11 

earthquakes of magnitude 7.0 or above in 2004, and found that 

when the well water was vertically oscillated, the disturbed 

well water triggered a dispersion effect and resulted in changes 

in the water temperature. During multiple major earthquakes 

occurred from 2008 to 2013, the water level changes of 

Jiangsu Well were mostly fluctuations, and the water 

temperature changes were mostly step changes or trend 

changes, and the changes of water level and temperature all 

increased with the increase of the magnitude of the earthquake, 

and decreased with the increase of the distance from the well 

to the epicenter [4]. Zhang et al. studied the changes in water 

level and temperature of Huize Well from 2003 to 2006 and 

found that there’re obvious relevance, synchronization, and 

differences between the trend changes of water level and water 

temperature, and they think such differences are the anomalies 

before the earthquake [5]. Wang et al. [6] researched the 

abnormal changes in water level and water temperature and 

their mechanisms in medium-term, short-term, and short-term 

stages before the 2014 M4.3 Anhui Shuoshan earthquake. 

Studies on the fluctuations of water level and water 

temperature during and before earthquakes play an important 

role in exploring the formation, occurrence, and development 

of earthquakes, and such studies can provide important 

references for pre-earthquake prediction. 

Current studies concerning the correlation between water 

level and water temperature generally use the traditional 

statistical methods, such as the Pearson's correlation 

coefficient method, and the linear regression method, etc. 

However, since the changes in the water level and temperature 

of monitoring wells are complicated and the time series are 

unstable, some non-linear correlation methods might be more 

suitable. At present, the fractal method has been effectively 

applied to the searching of abnormal soil radon content or 

electromagnetic anomalies before earthquakes [7-16]. Kar et 

al. [17] proposed to apply MF-DCCA to study the relationship 

between soil radon content and temperature anomaly, and they 

found that temperature anomaly and soil radon content 
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exhibited varying degrees of complexity and multifractal 

cross-correlation. This paper attempts to use MF-DCCA to 

explore the non-linear correlation between the water level and 

water temperature of seismic monitoring wells, namely the 

multifractal cross-correlation. 

In our study, water level and water temperature data of 

Huize Well from 2004 to 2006 were selected for analysis; at 

first, the cross-correlation test was carried out to verify that 

there’s a cross-correlation between water level and water 

temperature; then, DCCA was used to obtain the cross-

correlation coefficient of water level and water temperature 

under different scales; after that, the MF-DCCA method was 

adopted to verify the multifractal cross-correlation between 

the time series of water level and water temperature; at last, 

this paper used MF-DCCA to figure out the changes in 

multifractal cross-correlation between water level and water 

temperature in the sliding window.  

 

 

2. DATA SOURCE 

 

The data used in this study are the water level and water 

temperature data of Huize Well from January 1, 2004 to 

December 31, 2006, the well is located in Huize County, 

Qujing City, Yunnan Province, China; its geographical 

coordinates are 26.52°N, 103.15°E; the altitude of the well 

head is 2005 meters above sea level, and the well is located at 

the margin of the Nagu Lake Basin, 8 km east of the Xiaojiang 

Fault. The landforms of this area are mainly mountainous and 

basins. The groundwater is confined fissure water, and the 

lithology of the aquifer is weathered basalt, gravel, broken 

stone, and sand gravel. The well depth is 103.15m; the burial 

depth of the water level is about 30.00 m; the depth of the 

casing pipe is 87.80m, of which 34.06-87.80m is the filter pipe, 

and the observation section is 34.06-103.15m. The well water 

level data is from the China Earthquake Networks Center 

(CENC) and the website of seismic subsurface fluids. The 

instruments used for monitoring the water level and water 

temperature of the Huize Well are respectively the Model LN-

3 digital water level meter and the Model SZW-1A digital 

thermometer. Data of the sampling rate are all in minutes. In 

this paper, the minute data of water level and temperature of 

the Huize Well were converted into data in hours, and the 

missing data were filled in using a cubic polynomial fitting 

method. 

As shown in Figure 1, during the observation years, the 

water level and temperature of Huize Well showed a gradual 

decline, and was not affected by rainfall. The water level 

decline speed was 0.3 m per year, the effect of air pressure was 

not obvious, and there’s an earth tide effect with no annual 

change; the water temperature decline speed was 0.0045℃ 

each year, and there’s no annual change. Huize Well is well 

enclosed, its sensitivity is high, and its water level and 

temperature anomalies are significantly related to seismic 

activities. Table 1 lists the information of 4 earthquakes, 

during the first three earthquakes, the well water level and 

temperature showed obvious changes after the earthquakes, 

while the respond for the fourth earthquake was not obvious. 

When the seismic wave generated by the earthquake reached 

the monitoring well, it will cause deformation to the aquifer of 

the well, change the pressure in the pores and fissures, and 

result in changes in the water level and temperature. When the 

pressure in pores and fissures increases, the groundwater in the 

aquifer flows into the monitoring well, the well water moves 

upward under the pressure, so the water level rises; otherwise, 

the water level drops. At this time, if the water temperature has 

a positive gradient, then the water temperature will rise; if the 

water temperature has a negative gradient, the water level will 

drop [18]. 

 

 
 

Figure 1. Time series of water level and water temperature of Huize Well from 2004 to 2006 
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Table 1. Information of four major earthquakes in Yunnan from 2004 to 2006 

 

No. Date Place Magnitude Longitude Latitude Distance from the well to the epicenter (km) 

1 2004.08.10 Ludian, Yunan 5.6 103.6 27.2 87.81 

2 2005.08.05 Huize, Yunnan 5.3 103.1 26.6 10.19 

3 2006.07.22 Yanjin, Yunnan 5.1 104.2 28 194.56 

4 2006.08.25 Yanjin, Yunnan 5.1 104.2 28 194.56 

 

 

3. METHODOLOGY 

 

3.1 Cross-correlation test 

 

The cross-correlation statistic test can examine whether two 

groups of time series {𝑥𝑡 ,t=1,2, ⋯ ,N}  and 

{𝑦𝑡 ,t=1,2, ⋯ ,N} have long-range cross-correlation [19], 

wherein the cross-correlation function Ci and the cross-

correlation statistic 𝑄𝑐𝑐(𝑚) are defined as follows:  
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The statistic 𝑄𝑐𝑐(𝑚)  approximately obeys the 𝜒2(𝑚) 
distribution with m degrees of freedom. Within the value range 

of freedom degree m, if statistic 𝑄𝑐𝑐(𝑚) is consistent with the 

critical value 𝜒2(𝑚) at the significance level of 5%, then there 

is no cross-correlation between the two time series; if 

statistic𝑄𝑐𝑐(𝑚)  is greater than critical value 𝜒2(𝑚)  at the 

significance level of 5%, then there is a cross-correlation 

between the two time series.  

 

3.2 DCCA 

 

The DCCA (detrended cross-correlation analysis) method 

[20] has extended the traditional correlation analysis methods 

which can only process stationary time series, DCCA can 

process non-stationary time series, and its specific steps are: 

(1) Assume there’re two time series {𝑥𝑡 ,t=1,2, ⋯ ,N} and 

{𝑦𝑡 ,t=1,2, ⋯ ,N}, calculate their sums as: 
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(2) Divide the two cumulative time series into N-n 

overlapping time slots, and each time slot contains n+1 values. 

The time slot starts at i and ends at i+n. 

(3) In each time slot, the two cumulative time series are 

respectively fitted using the least squares method to obtain 

trends of local time slots 𝑅𝑘,𝑖̃  and 𝑅𝑘,𝑖
′̃ . 

(4) In each time slot, get the residuals of two original 

cumulative time series and their respective local fitted time 

series trends, and calculate the covariance of their residuals: 
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(5) Calculate the covariance of the entire time series on 

different time scales: 
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Calculate Formula (5) repeatedly on each time scale, then 

we can get: 
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𝜆 is the scale parameter, it can reflect the cross-correlation 

of two time series. When 0 < 𝜆 < 0.5, it means that the two 

time series have long-range negative correlation; when0.5 <
𝜆 < 1 , it means that the two time series have long-range 

positive correlation. When 𝑅𝑘 = 𝑅𝑘
′ , the detrended covariance 

𝐹𝐷𝐶𝐶𝐴
2 (𝑛) becomes the detrended variance 𝐹𝐷𝐹𝐴

2 (𝑛). Since the 

DCCA scale parameter 𝜆 cannot strictly quantify the 

correlation between the two time series, so the detrended 

variance DFA was added to obtain the detrended correlation 

coefficient 𝜌𝐷𝐶𝐶𝐴, which is: 
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where, 𝐹𝑋𝐷𝐹𝐴(𝑛) and 𝐹𝑌𝐷𝐹𝐴(𝑛) are the DFA scale parameters 

of the two time series {𝑥𝑡 ,t=1,2, ⋯ ,N} and {𝑦𝑡 ,t=1,2, ⋯ ,N}. 
The DCCA method is different from the traditional Pearson 

correlation coefficient method, Pearson correlation coefficient 

is applicable to stationary time series, while the DCCA has 

extended to non-stationary time series. The traditional Pearson 

correlation coefficient has a unique value, while DCCA 

obtains different correlation coefficient values for different 

time scales. 

 

3.3 MF-DCCA 

 

Zhou [21] combined multifractal method with DCCA and 

proposed the MF-DCCA method, namely multifractal 

detrended cross-correlation analysis, it is also a research 

method for non-stationary time series.  

The specific steps are as follows: 

(1) For two given time series {𝑥𝑡 ,t=1,2, ⋯ ,N}  and 

{𝑦𝑡 ,t=1,2, ⋯ ,N}, N is the length of the time series, calculate 

the cumulative deviation sums of their mean values, and 

generate new series 𝑋(𝑖) and 𝑌(𝑖): 
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where, �̄� and �̄� are the mean values of the two time series.  

(2) Divide the two time series 𝑋(𝑖) and 𝑌(𝑖) into 𝑁𝑆  sub-

intervals. The length of each interval is s, and there’s no 
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overlap between each interval, wherein 𝑁𝑠 = 𝑖𝑛𝑡(𝑁/𝑆) . 

Since for most time series, the length N might not be divided 

exactly by s, that is, there might be residual data that is less 

than length s. In order to make full use of the data, the first and 

last data of the two series 𝑋(𝑖) and 𝑌(𝑖) are reversed, and the 

series are re-divided for more than once, then 2𝑁𝑠 subintervals 

are obtained: 

(3) In each sub-interval, the time series are fitted by the least 

squares method to generate two fitted series 𝑥𝜆 and 𝑦𝜆, which 

are then detrended to obtain the covariance function as follows: 

when 𝜆 = 1,2,⋯ ,𝑁𝑠,  
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when 𝜆 = 𝑁𝑠 + 1,⋯ , 2𝑁𝑠, 
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(4) Take the mean value of the covariance in each sub-

interval, and calculate the q-order fluctuation function: 

when 𝑞 ≠ 0, 
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when 𝑞 = 0, 
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(5) The power-law relationship between the fluctuation 

function 𝐹𝑞(𝑠) and time interval s under different scales s is: 

𝐹𝑞(𝑠) ∼ 𝑠𝐻(𝑞), namely: 𝑙𝑜𝑔 𝐹𝑞 (𝑠) = 𝐻(𝑞) 𝑙𝑜𝑔( 𝑠) + 𝑙𝑜𝑔 𝐶 

where, 𝐻(𝑞) is the generalized Hurst exponent. 

(6) The multifractal scale index is 𝜏(𝑞), and its relationship 

with the generalized Hurst exponent is: 

 

( ) ( ) 1q qH q
 

 

If 𝜏(𝑞) and q have a non-linear relationship, then the two 

time series have multifractal characteristics, otherwise they are 

single fractal. 

(7) Through Legendre transformation, the multifractal 

spectrum is obtained as: 
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where, 𝛼 is the singularity index of the time series, 𝑓(𝛼) is the 

multifractal spectrum, wherein the width of the multifractal 

spectrum is 𝛥𝛼 = 𝛼𝑚𝑖𝑛𝑚𝑎𝑥 . The greater the width of the 

multifractal spectrum, the stronger the multifractals of the 

cross-correlation of the two time series, and the more obvious 

the long-range cross-correlation; otherwise, the weaker the 

multifractals and the long-range cross-correlation. 𝛥𝑓 =

𝑓(𝛼𝑚𝑖𝑛) − 𝑓(𝛼𝑚𝑎𝑥)  is the difference of the multifractal 

spectra. When 𝛥𝑓 > 0, the multifractal spectrum shows left 

skew, it means that it is of higher probability that the two time 

series are of greater values, and they have a rising trend; when 

𝛥𝑓 < 0, the multifractal spectrum shows right skew, it means 

that that it is of higher probability that the two time series are 

of smaller values, and they have a decline trend.  

 

 

4. RESULT ANALYSIS AND DISCUSSION 

 

4.1 Cross-correlation test 

 

First, the water level and water temperature data (in hour) 

of the Huize Well from January 1, 2004 to December 31, 2006 

were supposed to be two sequences {𝑥𝑖 ,i=1,2, ⋯ ,N}  and 

{𝑦𝑖 ,i=1,2, ⋯ ,N} , respectively, and 𝑁 = 26303 . Then, the 

cross-correlation test was performed on the time series 

fluctuations of the water level and temperature of Huize Well, 

as shown in Figure 2, the black dots are the cross statistic 

𝑄𝑐𝑐(𝑚), wherein the value of m (degree of freedom) was 1 ∼
1000; the blue dots are the critical values of 𝜒2(𝑚) under a 

significance level of 5%; Within the value range of the degree 

of freedom, the cross-correlation statistics were larger than the 

critical values of the corresponding chi-square distribution, 

that is, the time series of the water level and the water 

temperature of the Huize Well have a significant cross-

correlation. 

 

 
 

Figure 2. Cross-correlation test on the time series of water 

level and water temperature of Huize Well from 2004 to 

2006 

 

4.2 Detrended cross-correlation coefficient 𝝆𝑫𝑪𝑪𝑨 

 

The value range of the detrended cross-correlation 

coefficient 𝜌𝐷𝐶𝐶𝐴 is between [−1,1]. If 𝜌𝐷𝐶𝐶𝐴 = 0, there is 

no cross-correlation between the two; if 𝜌𝐷𝐶𝐶𝐴 = −1, then the 

two time series have a complete negative persistent correlation; 

if 𝜌𝐷𝐶𝐶𝐴 = 1, then the two time series have a complete positive 

persistent correlation. Based on different scales, the 

polynomial adopted in the least square fitting took an order of 

2, and the different cross-correlation coefficients were 

calculated. As can be seen from Table 2 that the time series of 

the water level and water temperature of Huize Well showed a 

cross-correlation under all scales, but the positive and negative 

persistence under different scales were different, indicating 

that the correlation of water level and water temperature of 

Huize Well was unstable and the changes were complicated, 

therefore, the MF-DCCA was adopted to further study the 

fluctuation relationship between the water level and water 

temperature of Huize Well. 
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Table 2. Values of the cross-correlation coefficient under different scales 

 

Scale 2 4 16 32 64 128 256 512 

Cross-correlation coefficient 0.0691 0.0027 -0.5811 -0.1429 -0.0671 0.0840 0.0265 -0.0119 

 

 
 

Figure 3. Multifractal results of the overall data of Huize Well from 2004 to 2006 

 

4.3 MF-DCCA 

 

4.3.1 Overall data analysis 

The water level and water temperature time series of Huize 

Well from January 1, 2004 to December 31, 2006 were subject 

to MF-DCCA to estimate their non-linear cross-correlation 

and multifractal features, as shown in Figure 3, the Original 

represents the results of the multifractal features of the original 

sequence, and the Shuffled represents the results of the random 

rearrangement of the sequence. It can be seen from Figure 3(a) 

that, the generalized Hurst decreases with the increase of q, 

when 𝑞 = 2 , there is 𝐻(2) > 0.5 , and the randomly re-

arranged sequence 𝐻(2) ≈ 0.5 , indicating that the original 

water level and water temperature time series had a long-range 

correlation; as can be seen from Figure 3(b), the relationship 

between the scale of the multifractal spectrum 𝜏(𝑞) and q was 

not linear, indicating that the correlation between water level 

and water temperature had multifractal features; while the 

scale of the multifractal spectrum of the randomly re-arranged 

sequence 𝜏(𝑞) and q had a linear correlation, that is, it was a 

single fractal. Moreover, as can be seen from Figure 3(c), the 

width of the multifractal spectrum of the original 

sequence 𝛥𝛼 = 2.5712  was greater than the width of the 

multifractal spectrum of the randomly re-arranged sequence 

𝛥𝛼 = 0.0788, and the wider the multifractal spectrum, the 

stronger the multifractal features, thus, it can be concluded that 

the long-range cross-correlation of the original water level and 

water temperature time series was stronger than that of the re-

arranged series, and the complexity of the original water level 

and water temperature fluctuations was higher.  

 

4.3.2 Sliding window analysis 

The multifractal cross-correlation of the water level and 

water temperature time series of Huize Well was also subject 

to sliding window analysis to figure out its variation features 

over time, then the multifractal cross-correlation of the 

detrended high-frequency data of the water level and water 

temperature of Huize Well could be extracted, and the Hurst

exponent, the width of the multifractal spectrum, and the 

difference of the multifractal spectra could be calculated. In 

many studies, the width of the multifractal spectrum can 

reflect the fluctuation characteristics of the time series. The 

length of the sliding window is very important for studying the 

correlation; if the sliding window is too long, a lot of local 

information will be lost; if the sliding window is too short, 

local fluctuations may be too violent and they may affect the 

observation of the dynamic trends. In this study, 500h was 

chosen as the length of the sliding window, starting from the 

first observation data, the MF-DCCA method was adopted to 

calculate the Hurst exponent and the width of the multifractal 

spectrum, then, with 500h as the length, the window slid 

backward until the remaining time was less than 500h. Figure 

4 shows that, with 500h as the sliding window, the water level 

and water temperature time series of the Huize Well showed 

long-range correlation.  

 

 
 

Figure 4. Hurst exponent between water level and water 

temperature calculated by MF-DCCA in 500h sliding 

window 

 

The width of the multifractal spectrum is shown in Figure 5. 

There’s an interesting discovery with the figure, before the 

occurrence of the M5.3 Huize earthquake, the width of the 

multifractal spectrum of the well water level and water 

temperature increased abnormally, and remained at a high 

value level for quite a while after the earthquake, and this 

indicated that the multifractal feature of the cross-correlation 

between the water level and water temperature fluctuations 

before the earthquake had been enhanced; as can be seen from 

Figure 5, within a long period of time before the earthquake, 
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Δf>0, indicating that under the interaction of water level and 

water temperature, the probability of fluctuation increment 

was higher, and it showed an increasing trend afterwards. It is 

believed that this phenomenon of the enlarged multifractal 

spectrum of the water level and water temperature time series 

before the earthquake may be the precursor anomalies of the 

earthquake, which might be caused by factors such as air 

pressure or earth tide.  

For the M5.3 Ludian earthquake and the twice M5.1 Yanjin 

earthquakes, the interactive relationship between the 

groundwater level and temperature was quite different from 

that of the Huize earthquake, before and after the three 

earthquakes, their multifractal spectra showed no high value, 

and the width of the multifractal spectra of the three 

earthquakes was 0.3212, 1.0237, and 0.3719, respectively, that 

is, the width value of the multifractal spectrum of the 

temporary water level fluctuations caused by seismic waves 

was relatively small. From the perspective of the difference of 

the multifractal spectra, the three earthquakes were studied 

together and it’s found that among the three, only in the M5.1 

Yanjin earthquake occurred on July 2006, there’s Δf>0; while 

in the other two earthquakes, Δf>0; moreover, the width of the 

multifractal spectrum of the Yanjin earthquake was wider than 

that of the other two earthquakes, indicating that the water 

level and temperature fluctuations in the Yanjin earthquake 

were more complicated than those of the other two. The causes 

might be that, there’s no abnormal fluctuation in the well water 

level and temperature before the earthquakes, and the 

fluctuations of water level and temperature had only occurred 

under the action of the seismic waves during the earthquakes.   

 

 

 
 

Figure 5. Width and difference of water level and 

temperature multifractal spectra in the 500-hour sliding 

window 

 

 

5. FURTHER DISCUSSION 

 

Since the high-frequency information of well water level 

and temperature may contain abnormal information of the 

earthquakes, and the water level anomalies might be caused by 

non-tectonic factors, therefore, whether other factors would 

cause the width of the well water level and temperature 

multifractal spectrum before the Huize earthquake to increase 

should be considered. At first, by looking up the changes of 

the air pressure coefficient, whether the anomaly of the 

multifractal spectrum width before the Huize earthquake was 

caused by air pressure could be determined. Based on the air 

pressure data (in days) from 2004 to 2006, a one-variable 

linear regression model with a time window of 2 months 

describing the relationship between air pressure and the water 

level of Huize well was established to calculate the air pressure 

coefficient in the response time window.  

 

Table 3. Air pressure coefficient of Huize well 

 
Start and end 

date 

Air pressure 

coefficient 

Correlation 

coefficient R 

2004/01/01-

2004/02/29 
1.9951 0.2624 

2004/03/01-

2004/04/30 
2.1883 0.5911 

2004/05/01-

2004/06/30 
3.5701 0.4415 

2004/07/01-

2004/08/31 
3.7171 0.4319 

2004/09/01-

2004/10/31 
2.6353 0.4763 

2004/11/01-

2004/12/31 
3.3889 0.7404 

2005/01/01-

2005/02/28 
2.3179 0.5250 

2005/03/01-

2005/04/30 
3.0521 0.5308 

2005/05/01-

2005/06/30 
2.8560 0.4394 

2006/03/01-

2006/04/30 
1.5594 0.3027 

2006/05/01-

2005/06/30 
3.9543 0.7721 

 

The linear regression models that past the significance test 

in different time windows, namely in those there’s a regression 

relationship between the air pressure change and the water 

level change, are shown in the Table 3. In terms of the air 

pressure coefficient, before the Huize earthquake, there’s no 

obvious anomaly in the air pressure coefficient, and its value 

was between 2.3179 and 3.0521, indicating that the high-value 

anomaly of the multifractal spectrum width before the Huize 

earthquake had nothing to do with air pressure; in addition, the 

correlation between the general atmospheric pressure change 

and the water level change was poor, only the correlation 

coefficients of 2004/11/01-2004/12/31 and 2006/05/01-

2005/06/30 time intervals were above 0.7, therefore, the 

impact of air pressure on the water level was average.  

 

 
 

Figure 6. Data of theoretical of earth tide (in hours) of Huize 

well from 2004/01/01 to 2006/12/31 

 

In order to determine the relationship between the change 

of earth tide and the change of water level, the data of the 

theoretical value of earth tide (in hours) from 2004/01/01 to 
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2006/12/31 were generated as shown in the following figure 6, 

again, 2 months were taken as a time window, within which, a 

one-variable linear regression model with earth tide change as 

the independent variable and the water level change as the 

dependent variable was established. However, within 18 time 

windows, the linear model failed to pass the significance test, 

indicating that the impact of earth tide on water level was not 

significant.  

The rainy season in Huize area is from May to August 

(Figure 7). Observation of the water temperature of Huize well 

shows that the well water temperature has a long-term 

downward trend, which is a normal dynamic change of the 

water temperature, and it isn’t affected by the rainfall. The 

pressure well is considered to be well sealed, that is, the 

situation that the rainfall would cause high-value anomaly to 

the width of the multifractal spectrum before Huize earthquake 

has been excluded.   

 

 
 

Figure 7. Data of rainfall (in days) from 2004/01/01 to 

2006/12/31 

 

As a result, possible causes of the anomaly in the width of 

the multifractal spectrum, such as air pressure, earth tide, and 

rainfall had all be excluded, therefore, this paper believes that 

the possible reason for such situation might be that, when the 

mechanical processes generated by the earthquake spread to 

the aquifer rock mass in the shallow crust, due to the existence 

of voids (such as pores, cracks, and caves) developed in the 

rock mass, even a weak mechanical force can cause certain 

deformation to the voids, or cause some weak parts to generate 

local cracks, and such deformation and cracks will certainly 

lead to changes in the pore pressure of the aquifer, thereby 

affecting the changes in the water flow inside the aquifer 

system [22-25]. Since the airtight monitoring wells can 

sensitively respond to small changes in water level and water 

temperature, and the changes in the interactive relationship of 

the fluctuations of well water level and temperature are the 

critical phenomenon of the groundwater level and temperature 

before earthquakes, the MF-DCCA method can well capture 

such fluctuation changes. Before and after the M5.3 Huize 

earthquake, obvious changes in the width of the multifractal 

spectrum could be observed, and we believe that this might be 

the precursor of the Huize earthquake. However, this method 

needs to be further verified by the changes of water level and 

temperature of more monitoring wells before the earthquakes. 

 

 

6. CONCLUSIONS 

 

This paper researched the non-linear correlation between 

the water level and water temperature time series of Huize well 

during the three years from the beginning of 2004 to the end 

of 2006, and obtained following conclusions: 

(1) The analysis of the cross-correlation test results showed 

that, the test value of the cross-correlation statistic Qcc(m) of 

the well water level and water temperature time series was 

greater than the critical value of 𝜒2(𝑚), indicating that the 

water level and water temperature of Huize Well had 

significant cross-correlation. 

(2) Using the DCCA method, it’s calculated that under 

different scales, the positive and negative features of the 

detrended correlation coefficient were not stable, indicating 

that the fluctuation of water level and water temperature was 

complicated, and this was related to the effect of earthquakes 

on the well water level and temperature. 

(3) The MF-DCCA method was used to analyze the time 

series of water level and temperature of Huize well from 2004 

to 2006, and it’s found that there’s a multi-fractal cross-

correlation between the two, and such correlation was long-

range and continuous; the width of the multi-fractal spectrum 

was large, and the re-arranged sequences had single fractal 

feature. Then, with 500-hour as the sliding window, the 

window slid backward from January 1, 2004, the MF-DCCA 

method was applied again, and it’s obtained that within each 

sliding window, the water level and water temperature had 

long-range multi-fractal cross-correlation. 

(4) This paper studied four earthquakes that occurred in 

Yunnan Province from 2004 to 2006, and found that before the 

M5.3 Huize earthquake, the width of the multifractal spectrum 

increased abnormally, indicating that the multifractal cross-

correlation of water level and water temperature had been 

enhanced; after excluding factors such as air pressure, earth 

tide, and rainfall, we believe that such anomaly might be the 

precursor of the Huize earthquake, and the abnormal increase 

in the width of the multifractal spectrum is a self-organized 

critical phenomenon before the earthquakes. 

(5) The width of the multifractal spectra of the M5.6 Ludian 

earthquake and the twice M5.1 Yanjin earthquakes was 

relatively small, indicating that the co-seismic seismic waves 

had a low impact on the multifractal cross-correlation of water 

level and water temperature. 
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