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With the rapid development of urbanization, energy conservation has become an important 

measure for building a conservation-oriented harmonious society. The smart 

reconstruction of the heating system in old communities is now an inevitable choice for 

urban development. However, there is not yet any unified risk assessment system for these 

smart heating reconstruction projects. By virtue of the advantages of artificial neural 

network (ANN) in data processing, this paper tries to assess the risks of smart community 

heating reconstruction projects. Firstly, a risk assessment system was established for smart 

community heating reconstruction projects, and the sensitivity of the indices was analyzed. 

Next, the primary and secondary models for risk assessment were constructed, and the 

reliability of project investment risk assessment was examined. Finally, artificial fish 

swarm algorithm (AFSA) was adopted to optimize the initial connection weights and 

thresholds of backpropagation neural network (BPNN), and the AFSA-optimized network 

was adopted to build a risk assessment model for smart community heating reconstruction 

projects. The feasibility and effectiveness of the proposed model were verified through 

experiments. 
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1. INTRODUCTION

With the rapid development of urbanization, there is a 

growing requirement on the comprehensive utilization of 

resources and energy, as well as environmental protection. 

Energy conservation has become an important measure for 

building a conservation-oriented harmonious society [1-4]. 

Considering the low per-capita quantity of resources and 

energy in China, the source control of energy waste is of great 

significance to national progress and development [5-8]. 

Therefore, the smart reconstruction of the heating system in 

old communities is now an inevitable choice for urban 

development [9-11]. But there are risks in any reconstruction 

project. To measure the values of construction and investment, 

it is necessary to develop a perfect risk assessment system. 

Based on the definition of the concepts in the risk 

management of heating reconstruction, Wu et al. [12] detailed 

six risk identification methods, including Delphi and 

brainstorming, examined the features of the original heating 

system of communities, and designed a relatively complete 

risk evaluation system for heating reconstruction. Aiming to 

reduce the energy consumption of centralized heating to high-

pollution, high-energy industrial zones, Huang et al. [13] 

relied on the relevant theory to elaborate on the principles of 

techno-economic appraisal of the centralized heating 

reconstruction of industrial zones, analyzed the risks and 

sustainability of the project, and evaluated the macroeconomic 

impacts of the region. 

Heating reconstruction faces multiple risks in terms of 

environment, technology, and management. Any accident 

would bring grave losses [14-19]. Kim and Kwon [20] 

discussed the universal problems in the quality management 

of heating reconstruction, proposed a quality management 

model led by the quality control (QC) team, and recommended 

to improve the quality assurance (QA) system for the key 

processes before, during, and after construction. Starting from 

the features of old community heating system, Kawasaki et al. 

[21] summarized and analyzed the features, components, and

technical means, examined an example of heating

reconstruction in a hot summer cold winter region, and

predicted the development model and direction of centralized

heating in the region, using strength, weakness, opportunity,

and threat (SWOT) analysis and entropy weight method.

At present, it is an inevitable trend to promote the smart 

reconstruction of heating in old communities. But these 

projects have complex technologies and high risks [22, 23]. 

However, there is not yet any unified risk assessment system 

for these smart heating reconstruction projects. The lack of the 

system slows down project execution, and adds to the 

difficulty of risk control [24-27]. By virtue of the advantages 

of artificial neural network (ANN) in data processing, this 

paper tries to assess the risks of smart community heating 

reconstruction projects. The main contents of this work are as 

follows: (1) Building a risk assessment system for smart 

community heating reconstruction projects, and analyzing the 

sensitivity of the indices; (2) Setting up the primary and 

secondary models for risk assessment, and examining the 

reliability of project investment risk assessment; (3) Adopting 

artificial fish swarm algorithm (AFSA) to optimize the initial 

connection weights and thresholds of backpropagation neural 

network (BPNN), and establishing a risk assessment model for 

smart community heating reconstruction projects based on the 

AFSA-optimized BPNN. Experimental results demonstrate 

the feasibility and effectiveness of the proposed model. 
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2. RISK ASSESSMENT SYSTEM

Smart community heating reconstruction has just started in 

China. There are not many technologies or investment cases 

for reference. Besides, any community heating reconstruction 

project faces lots of uncertainties, which arise from the 

geographic location, layout, and building features of the 

communities. Similarly, uncertain factors abound throughout 

project construction. To a certain extent, the distribution law 

and change mechanism of these factors are stochastic and 

fuzzy. The stochasticity and fuzziness must be fully 

considered to assess the risks of smart community heating 

reconstruction projects. 

Figure 1 shows the risk assessment model for smart 

community heating reconstruction projects. To improve the 

accuracy of project decision-making, this paper firstly 

constructs a fuzzy set that is randomly projected by the law of 

large numbers, and then evaluates the smart community 

heating reconstruction risks based on fuzzy mathematics and 

set-valued statistics. 

Figure 1. Risk assessment system for smart community 

heating reconstruction projects 

This paper constructs a hierarchical risk assessment system 

for smart community heating reconstruction projects, which 

covers four aspects: market aspect, technical design, project 

investment, and heating reliability. 

Layer 1 (goal layer): 

HRR={risk assessment of smart community heating 

reconstruction};  

Layer 2 (criteria layer): 

HRR={HRR1, HRR2, HRR3, HRR4}={market aspect, 

technical design, project investment, heating reliability}; 

Layer 3 (alternative layer): 

HRR1={HRR11, HRR12, HRR13, HRR14, HRR15, 

HRR16}={real-time electricity price, real-time heating price, 

heat source heating cost, grid power supply cost, risk of public 

opinion, operating risk of reconstructed system};  

HRR2={HRR21, HRR22, HRR23, HRR24, HRR25, HRR26, 

HRR27, HRR28, HRR29}={rationality of technical solution, 

completeness of equipment, professionalism of personnel, 

reliability of installation and commissioning, controllability of 

project construction and coordination, operating stability of 

original and reconstructed system, reliability of power supply, 

safety of relay protection, protection of power quality}; 

HRR3={HRR31, HRR32, HRR33, HRR34, HRR35, HRR36, 

HRR37, HRR38}={investment fund, construction cycle, 

operating investment cost, additional investment cost, energy 

efficiency evaluation, profitability, development capacity, 

operating capacity};  

HRR4={HRR41, HRR42, HRR43, HRR44, HRR45, 

HRR46}={operating reliability, equipment aging, equipment 

damage, pipeline aging, climate and geographical factors, 

generator power}. 

Out of the 28 secondary indices, the indices that 

significantly affect the risk assessment of smart community 

heating reconstruction and change greatly over time were 

taken as risk factors. Let vi be the i-th risk factor. Then, the set 

of risk factors can be expressed as: 

 1 2, ,..., mV v v v= (1) 

This paper defines the degree of variation of a risk 

assessment index with influencing factors as the sensitivity of 

its risk factor. The sensitivity ξi of an index to a risk factor vi 

can be expressed as: 

( )1,2,...,i

i

i i

i

dHHR
vdHHRHHR i n

dv dv HHR

v

 = = = (2) 

Similarly, the sensitivity ξi
(l) of index HHR to the i-th risk 

factor vi in period l can be expressed as: 

( )

( )

( )

( )

( )

( )

( )

( )
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( )1,2,..., ; 1,2,...,i
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l
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The value of ξi can be calculated by: 

( ) ( )
1

1
 1,2,...,

i

m
l

i

l

i n
m

 
=

= = (4) 

The normalized value ξi
* of ξi can serve as the weight 

coefficient of risk factors: 

( )

1

1,2,...,i

i n

i

i

i n








=

= =


(5) 

Table 1 lists the sensitivities of the four primary indices. 

Table 1. Sensitives of primary indices 

Primary indices -15% -10% -5% 0% 5% 10% 15% 

Market aspect 16.35 23.62 26.79 28.64 31.79 35.65 42.03 

Technical design 16.35 23.62 26.79 28.64 31.79 35.65 42.03 

Project investment 18.55 24.34 27.18 28.64 32.08 33.64 34.51 

Heating reliability 31.62 30.71 30.51 28.64 28.86 29.14 28.54 
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3. PIMARY MODEL FOR RISK ASSESSMENT

Figure 2. Risk assessment flow 

Following the risk assessment flow in Figure 2, this paper 

constructs the membership function for the risk assessment 

through statistical method. Firstly, a fuzzy set and a fuzzy 

matrix were established for the risk assessment. Let U={u1, 

u2, …, u5} be the set of judged risk grades, i.e., the grades of 

risk factors, corresponding to the set of risk factors V={v1, 

v2, …, vm}. Then, the curve of the membership function for the 

fuzzy set of risk factors was plotted based on fuzzy statistics, 

and used to derive the membership function: 

( )

0 1

2

1 1 2

2 1

2

1    

  1,2,...,

0   

i i

i

i i i

i i

i in

e a e

e a
e a e i n

e e

e a e



  


−
=   =

−
  

(6) 

0 , 2

, 2

, 2 , 1

, 1 , 2

, 1

, 1

, 1

, 1

, 1

0

   

1 1

       

0

i i j

i j

i j i j

i j i j

ij i j ij

i j

ij i j

i j ij

i j in

e a e

a e
e a e

e e

e a e i

e a
e a e

e e

e a e



−

−

− −

− −

−

+

+

+

+

  


−
  −




=   =


−  
 −


 

( ), 2,..., , 2,..., 1n j n= − (7) 

( )

0 , 2

, 2

, 2 , 1

, 1 , 2

, 1

0   

  1,2,...,

1   

i i m

i m

in i m i m

i m i m

i m in

e a e

a e
e a e i n

e e

e a e



−

−

− −

− −

−

  


−
=   =

−
  

(8) 

Let [alk
i, alh

i] be the value of the given risk factor vi estimated 

by each investor al in smart community heating reconstruction 

in period l. Then, we have: 

2

lk lh

l i

i

a a
a

+
= (9) 

By formula (9), a set of risk estimates bl=(a1, a2, …, al
n) 

could be obtained, where bl is the value of risk factor vi 

estimated by investor al. 

Let vij(bl) be the degree of al belonging to uj relative to vi. 

Then, the obtained al
i value can be substituted to the 

membership function to obtain the value of vij(bl). Then, the 

fuzzy evaluation matrix Ŝl between v and u of al can be 

established as:  

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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 
   

(10) 

Let sij=vij(bl) be the membership of vi relative to uj. To 

compare the memberships between risk factors, each row of Ŝl 

can be normalized by:  

1 2 ...

ij

ij

i i in

v
s

v v v

 =
+ + +

(11) 

Based on the fuzzy evaluation matrix and risk factor 

sensitivities, the following primary risk assessment model can 

be established: 

( )1 2
ˆˆ , ,...,l l

mF S f f f = = (12) 

where, fj can be calculated by: 

( )
1

1,2,...,
n

j i ij

i

f s j m  

=

= = (13) 

4. RELIABILITY ANALYSIS

Lacking investment experience, the decision-makers want 

to make objective decisions about whether or not to invest in 

smart community heating reconstruction through quantitative 

analysis of the reconstruction project. If expert method is 

adopted to evaluate the risk attributes of the project, the 

evaluation will be greatly affected by the expertise and 

preference of the experts. The set-valued statistics provides an 

effective way to ease the subjective interference. This 

approach views a fuzzy risk factor as a random variable that 

can be characterized with an interval. By set-valued statistics, 

the risk factors can be counted in a fuzzy manner, while 

making objective decisions and fuzzy judgements. The 

interval of the value of a risk factor estimated by the i-th expert 

can be defined as: 

( )'

, 1,2,...,i i ia a j k  = =  (14) 

According to the principle of set-valued statistics, the 

assessment index of the risk factor can be described by a 

convex membership function Ã: 

( ) ( )

1

1
i

k
a

i

A g a Φ
k


=

 
= =  

 
 (15) 

where, Φσi
(a) is a binary function reflecting whether a falls in 

the interval of estimated value: 
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Combining formulas (15) and (16): 
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Ã can be normalized as: 
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Then, the normalized convex membership function of Ã can 

be expressed as:  
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The normalized convex membership function is constrained 

by:  

1
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1
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e

Ar
+
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The expectation DV(A) of the assessment index of the risk 

factor can be given by:  
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The corresponding variance VC(A) can be described by: 
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The standard deviation BD(A) can be calculated by: 

( ) ( )BD A VC A= (23) 

Then, the interval of the maximum possible value of the 

assessment index for the risk factor can be defined as: 

( ) ( ) ( ) ( ),VC DV A BD A DV A BD A= − +   (24) 

Suppose the interval satisfies: 

( )', 1,2,...,
ii iVC r r i k   = =  (25) 

The expected estimation fuzziness wij of the i-th expert for 

the j-th risk factor can be calculated by: 

'

iij iw r r= − (26) 

The expected estimation fuzziness w'
j of all experts for the 

j-th risk factor can be calculated by:

'

1

k

j ij

i

w w
=

= (27) 

If the experts are uncertain about the estimated interval, 

wij=0. The assessment reliability ηij of the i-th expert for the j-

th risk factor can be calculated by: 

( )
( )1,2,...,

2

ij

ij

w
i k

BD A
 = = (28) 

The comprehensive assessment reliability S of all experts 

for the j-th risk factor can be calculated by: 

( )

'

2

jw
S

BD A
= (29) 

The normalized result θij of ηij can be expressed as: 

1

ij

ij k

ij

i

s

s



=

=


(30) 

θij satisfies Σk
i=1θij=1. Formula (30) shows that the θij value 

increases with the level of the i-th expert. Smart community 

heating reconstruction involves many risk factors. Therefore, 

the assessment of the reconstruction risks is a multi-factor 

comprehensive assessment. If multiple experts are invited to 

assess the risks of the heating reconstruction in the same smart 

community, then the assessment reliability Wi of the i-th expert 

for all risk factors can be quantified by: 

( )
1

1
1,2,...,

n

i ij

j

W i k
n


=

= = (31) 

Wi characterizes the reliability of the subjective, empirical 

judgement of each expert. It can be taken as the weight 

coefficients of secondary indices. Since W={W1, W2, …, Wk} 

satisfies Σk
i=1Wi=1, the risk assessment model for smart 

community heating reconstruction can be given by: 

( )1 2, ,..., mS W F f f f=  = (32) 

where, fj can be calculated by: 

( )
1

1,2,...,
k

j i ij

i

f W f j m
=

= = (33) 
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By the principle of maximum membership, fj= max{f1, f2, …, 

fm}. The risk grade of the target smart community heating 

reconstruction project is denoted as grade uj. 

5. RISK ASSESSMENT MODEL BASED ON 

IMPROVED BPNN

Traditional BPNN has several limitations: too many 

parameters are involved in training; the network is prone to 

falling in the local optimum trap; the samples must be selected 

very carefully. To overcome these limitations, this paper 

optimizes the initial connection weights and thresholds of the 

network by AFSA. Based on the AFSA-optimized BPNN, a 

risk assessment model was constructed for smart community 

heating reconstruction. The optimization process is explained 

in Figure 3. 

Figure 3. Flow of AFSA optimization of BPNN 

Artificial fishes have three basic behaviors: foraging, 

clustering, and rear ending. Besides, each artificial fish can 

perceive the environmental changes (e.g., food concentration 

in the surroundings, and the positions of other fishes) in real 

time, and determine the moving direction in the next step 

based on the perceived changes. 

The foraging behavior is defined as the spontaneous 

swimming in the direction of high food concentration. Let Lτi 

be the current location of an artificial fish at time τ; Lj be a new 

location randomly selected in the view SY of the fish. Then, 

we have: 

( )*j i

ij i j

L L SY Rand

DIS L L SY





 = +


= − 

(34) 

Let Lτ+1
i be the target location of the artificial fish at Lτi in 

the next step. During the optimization process, if the food 

concentration ci at the current location Lτi is lower than that cj 

at the new location, then the artificial fish will swim in the 

direction of high food concentration cj: 

1 j i

i i

j i

L L
L L

L L



 



+
−

= +
−

(35) 

If the food concentration ci at the current location Lτi is 

higher than that cj at the new location, then the artificial fish 

will select a new location in its view, and judge whether the 

food concentration cj at the new location is lower than ci, in 

order to determine the moving direction in the next step. If the 

target location is not found within the preset number of 

attempts, the artificial fish at Lτi will swim in a random 

direction in its view SY: 

( )1 *i iL L BC Rand + = + (36) 

The clustering behavior is defined as the spontaneous 

swimming of artificial fishes in the same direction. Before 

simulating this behavior, the clustering rules should be 

configured to prevent the fishes from overcrowding. Suppose 

there are mF artificial fishes in the view of the artificial fish at 

location Lτi. Let γ be the current crowding degree of the fish 

swarm; cCL be the food concentration at the center CL of mF 

adjacent fishes. If CL has sufficient food and a low crowding 

degree, then cCL/mF>γ*ci. In this case, the artificial fishes at Lτi 

will swim in the direction of CL: 

( )1 * *Z i

i i

Z i

L L
L L BC Rand

L L


 



+ −
= +

−
(37) 

If formula (37) is not satisfied, then the artificial fishes at Lτi 

will swim by the foraging rules in formulas (35) and (36). 

The rear ending behavior is defined as an artificial fish 

swimming to another artificial fish at the location with the 

maximum food concentration in its view. Suppose the artificial 

fish at Lτi looks for the adjacent fish in the location Lmax with 

the highest food concentration cFC-max in its view SY. If Lmax has 

sufficient food and a low crowding degree, then cFC-max/mF>γ* 

ci. Thus, we have:

( )1 * *max i

i i

max i

L L
L L BC Rand

L L


 



+ −
= +

−
(38) 

If formula (38) is not satisfied, then the artificial fishes at Lτi 

will swim by the foraging rules in formulas (35) and (36). 

6. EXPERIMENTS AND RESULTS ANALYSIS

This section firstly analyzes the internal correlations 

between the estimated intervals of the risk assessment indices 

for smart community heating reconstruction. Table 2 sorts the 

secondary indices by the cumulative variance explained 

(CVE). 

Table 2 shows that the CVE of secondary indices contained 

eight eigenvalues that are greater than 1: 4.427, 4.128, 2.315, 

2.159, 1.721, 1.434, 1.190, and 1.021. The CVE of the eight 

secondary indices reached 82.489%, suggesting that these 

indices can reflect most risk features of Chinese old 

community heating reconstruction projects. Similarly, eight 

key risk factors could be extracted from the scree plot of the 

risk assessment system (Figure 4). 

871



Table 2. CVE of each risk assessment index 

Index 
Eigenvalue 

Index 
Eigenvalue 

Total Variance % Cumulative variance % Total Variance % Cumulative variance % 

HRR1 4.427 22.625 21.376 HRR15 0.430 1.322 95.217 

HRR2 4.128 21.018 43.251 HRR16 0.398 1.457 95.001 

HRR3 2.315 15.372 59.626 HRR17 0.317 1.503 96.023 

HRR4 2.159 12.687 64.484 HRR18 0.293 0.951 96.523 

HRR5 1.721 9.798 71.159 HRR19 0.284 0.932 96.641 

HRR6 1.434 7.433 76.325 HRR20 0.265 0.910 97.262 

HRR7 1.190 5.825 80.051 HRR21 0.220 0.869 97.894 

HRR8 1.021 5.186 82.489 HRR22 0.185 0.534 98.821 

HRR9 0.845 5.014 83.246 HRR23 0.174 0.421 98.972 

HRR10 0.812 4.942 86.456 HRR24 0.162 0.354 99.214 

HRR11 0.742 4.423 89.423 HRR25 0.146 0.256 99.427 

HRR12 0.685 4.254 91.210 HRR26 0.093 0.108 99.942 

HRR13 0.568 3.278 94.395 HRR27 0.048 0.095 99.985 

HRR14 0.521 2.547 94.876 HRR28 0.009 0.027 100.000 

Figure 4. Scree plot of the risk assessment system 

Figure 5. Iterative effect of the ASFA 

Figure 6. Curve of training error 

In addition, an experiment was designed to verify the 

effectiveness of the risk assessment model based on AFSA-

optimized BPNN for smart community heating reconstruction 

projects. Firstly, the various parameters of the model were 

initialized, including learning rate, target training error, 

maximum number of iterations, incentive functions, learning 

function, training function, etc. The AFSA can update the 

initial connection weights and thresholds of the neural network. 

The termination condition of the AFSA is that the error falls 

below the target error, or the number of iterations reaches the 

maximum. Figure 5 shows the iterative effect of the ASFA. 

As shown in Figure 5, BPNN was optimized ideally by the 

AFSA, which has a certain global convergence ability. Based 

on the AFSA-optimized BPNN, the proposed risk assessment 

model is highly feasible and researchable for smart community 

heating reconstruction. Next, 50 training samples were 

imported to the model for training. During the training, the 

model loss error was recorded as a curve, that is, the mean 

squared error (MSE) curve in Figure 6. 

As shown in Figure 6, the AFSA-optimized BPNN basically 

tended to be stable after six iterations. The error fluctuated 

around 0.01. Hence, the optimization effectively overcomes 

the proneness of traditional BPNN to local optimum trap. 

After that, the risk grading effect of the improved BPNN was 

evaluated with 10 test samples. Table 3 provides the input 

layer data of the 10 test samples. 

After that, the input layer data of the 10 test samples were 

imported to the AFSA-optimized BPNN for verification. The 

risk grading results of community heating reconstruction of 

the ten test samples are presented in Table 4. 

As shown in Table 4, the accuracy of the risk grading on the 

ten test samples was as high as 90%. Only 1 item was 

misjudged, whose actual risk grade is good. The risk gradings 

of all the other items (whose actual risk grade is healthy, 

general, light risk, and heavy risk) were 100% correct. 

Therefore, the poorer the actual risk grade, the better the 

judgement by the proposed model. The results confirm that our 

model accurately judge the risk grades of community heating 

reconstruction in the 10 test samples, and could be applied to 

assess the risks of community heating reconstruction projects. 

To verify the effectiveness of AFSA optimization for 

traditional BPNN, the original and improved models were 

tested on 15 samples. The risk assessment results of the 

original and improved models were summarized and 

compared in details. The judgement results (Figures 7 and 8) 

show that the improved model outputs more realistic risk 

grades than the original model. Table 5 compares the risk 
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grades predicted by original and improved models. 

As shown in Table 5, the improved model correctly 

identified 56.6% of the risk grades on the test samples. The 

only mistakes are about a sample of good risk and a sample of 

general risk. In this way, the judgement accuracy becomes 

much higher than that (1/2) of traditional BPNN. In practice, 

this paper provides a reference for the risk grading of smart 

community heating reconstruction in China through FCE and 

AFSA optimization. With the help of the model, investors and 

experts can evaluate the risk state of the specific community 

heating reconstruction project, and reasonably allocate their 

focus and funds to the project. 

Table 3. Input layer data of the 10 test samples 

Sample number Input node 1 Input node 2 Input node 3 Input node 4 Input node 5 Input node 6 Input node 7 

1 0.03898 -0.18664 0.58914 -0.25736 -0.68431 -0.37539 -4.64214

2 -0.76125 -0.5198 -1.69432 1.02410 0.77862 -2.13605 -0.57325

3 -0.06291 -0.29814 0.21982 5.78624 -0.57983 0.175311 0.27863

4 -1.5364 0.96575 4.67537 -0.26411 0.65851 -0.93542 0.5786

5 0.03668 -1.10223 0.2438 -0.27864 -0.58312 0.78365 -0.53462

6 -0.12389 -1.30215 0.18251 -0.47645 -0.53709 -0.53438 -0.67354

7 -1.23965 -0.45984 -1.53263 -0.37982 0.37946 3.46416 -0.68612

8 1.03521 -0.63846 0.17156 -0.56843 -0.44135 -0.23485 0.37205

9 1.53213 0.35317 0.54229 0.05971 0.27641 -0.47342 -0.34786

10 1.64824 1.68153 0.09234 0.03789 -0.15973 1.49651 0.67513

Table 4. Risk grading results of community heating reconstruction 

Sample number Actual risk type Output risk type Actual risk grade Judgement accuracy 

1 1 1 Heavy risk 100% 

95% 

2 2 2 Heavy risk 100% 

3 5 5 Light risk 100% 

4 6 6 General 100% 

5 4 4 

Good 75% 6 3 5 

7 2 4 

8 4 3 

Healthy 100% 9 2 2 

10 3 3 

Table 5. Risk grades predicted by original and improved models 

Risk state 
Actual 

number 

Wrong judgement number Accuracy 

Traditional BPNN Improved BPNN Traditional BPNN Improved BPNN 

Healthy 4 0 0 70% 100% 

Good 5 2 1 0% 100% 

General 2 1 1 100% 66% 

Light risk 1 1 0 0% 100% 

Heavy risk 3 3 0 0% 100% 

Total 15 7 2 60% 90% 

Figure 7. Risk grades estimated by traditional BPNN and the 

actual situation 
Figure 8. Risk grading of the improved model vs. the actual 

risks 
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7. CONCLUSIONS

Based on ANN, this paper mainly assesses the risks of smart 

community heating systems. Specifically, a primary model 

and a secondary model were constructed for the risk 

assessment system of smart community heating reconstruction, 

the evaluation reliability was analyzed for project investment 

risks. Based on AFSA-optimized BPNN, the authors 

established a risk assessment model for smart community 

heating construction projects. Through experiments, the 

authors clarified the internal correlations between the 

estimated intervals of the risk assessment indices for smart 

community heating reconstruction, and plotted the iterative 

effect of the AFSA and the training error variation of the 

model. The training and test results on AFSA-optimized 

BPNN confirmed the feasibility and effectiveness of our 

model. 
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