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 Transient heat transfer processes that are abundant in industry, can be highly non-linear, 

and complex. Although numerical models can be developed for the processes, the models 

can be slow, and computationally expensive. Most often, such models are developed in 

commercial software, rendering the final assembled equations inaccessible to the user. 

These models may need to be simplified and reduced in order to be utilized in real time 

applications such as model based controls. Here, a non-solver intrusive data-driven system 

identification and model order reduction method for practical radiative heat transfer 

problems is presented for real-time predictions. The method uses a novel modification to 

the technique of dynamic mode decomposition with controls. The underlying data for 

system identification could be from either experiments or numerical simulations. In this 

demonstrative study, the data was generated from a numerical simulation, which 

represented heat transfer in a lumped thermal mass network. The typical dynamic mode 

decomposition formulation was augmented with polynomial terms to better identify the 

non-linear form of the equations governing radiative heat transfer. The extracted system 

was then used to predict results with different initial and boundary conditions. The 

predicted results were compared with data generated from the numerical simulation. 
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1. INTRODUCTION 

 

Many industrial heat transfer applications such as ovens, 

furnaces, and thermo-chemical plants operating at high 

temperatures can be represented as dynamical systems of 

governing equations describing the underlying physics. These 

systems can be highly non-linear, and complex due to large 

differences in component temperatures, several interacting 

sub-systems, varying material properties, and large number of 

external factors and control inputs. Computational models for 

such systems can be typically built and simulated using 

numerical solvers iteratively. These models are necessary to 

design, understand, and optimize the operating conditions and 

components. Further, these models can also be used for model 

based or model predictive control system design. However, 

usually such complex models are computationally expensive, 

and may also require frequent modification due to different 

sources of parameter variations, manufacturing and assembly 

differences and operational uncertainties and errors. Also, in 

many engineering applications such as model assisted design 

or model based controls, although there is a real need for 

reliable, physically meaningful and good predictive identified 

models, it is not absolutely critical that the identified models 

are extremely accurate up to the 3rd or 4th order, as typically 

required by design for the original, elaborate, computational 

models. As a result, Reduced Order Models (ROMs) are used 

to achieve major speedup, allowing for quick evaluation with 

different conditions, parameters, and for coupling of the model 

with control system design.  

The derivation of ROMs from within the solver is a solver-

intrusive method of generation of ROM. There are multiple 

techniques used in the generation of these ROMs, such as 

Krylov subspace based projection and Block Arnoldi 

algorithm [1, 2]. This derivation requires significant re-writing 

of the numerical schemes, apart from the handling of non-

linearity and stability issues [3]. Additionally, developing 

ROMs within a solver is impossible when the solver is not 

available. This is mostly the case in industrial applications, 

when commercial solvers are widely and routinely used to 

model flow, heat transfer, structural dynamics or other 

governing physics of interest. In such situations, a non-solver 

intrusive, data driven derivation is the only possible approach 

to generate ROMs.  

Several non-intrusive ROM generation methods have been 

proposed and used recently. These include methods such as 

Proper Orthogonal Decomposition [4], Discrete Empirical 

Interpolation Method [5], Smolyak Sparse Grid Interpolation 

[6], and Neural network based methods [7, 8] among many 

others. A more recent development for system identification 

using data is Sparse Identification of Non-linear Dynamics 

(SINDY) [9] and SINDY with control (SINDYc) [10]. In this 

method, the underlying non-linear equations are fully 

recovered using a dictionary of non-linear functions, with an 

assumption of sparsity of terms in the original equation set. It 

is certainly suitable for systems where one knows 

approximately the form of the underlying equations. However, 

many times, the equations are hard to be expressed in simple 

and identifiable terms, due to large non-linearities and 

discontinuities in material properties and boundary conditions. 

In the heat transfer applications considered here, the material 

properties such as specific heat, thermal conductivity, and 

emissivity could be strongly nonlinear, and even 
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discontinuous functions of temperature as well as wavelength 

in radiation. Boundary conditions and operating conditions in 

practical systems can also change vastly, for example, due to 

movement of objects in the domain. In such cases, other 

simpler data driven methods could be used for reliable model 

identification, provided the training data is large and diverse, 

spanning different regimes of operating conditions.  

Another closely related precursor to the SINDY method is 

the Dynamic Mode Decomposition (DMD) method. The 

DMD method is a non-intrusive, data driven method for a 

simpler model identification and order reduction. Using the 

DMD method, a linear relation is extracted for the states of the 

system at a given time step and those at the previous time step. 

The method uses Singular Value Decomposition (SVD) and 

disambiguates the spatial and temporal modes that define the 

evolution of a system. Introduced by Schmid et al. [11] for 

identifying dominant modes in experimental fluid dynamics, 

the original formulation of DMD has been studied for accuracy 

[12, 13], and modified and extended by many researchers over 

the last decade. These modifications include, among others, 

compressive DMD [14], Dynamic Mode Decomposition with 

Control (DMDc) [15], extended DMD [16], reduced input-

output DMD [17], DMD with exogenous inputs [18], Higher 

order DMD [19], Sparsity promoting DMD [20], Multi 

resolution DMD [21]. The DMDc method is very closely 

related to the Koopman operator method [22]. The DMDc 

method has been utilized for model identification and order 

reduction for different applications [15, 18, 21] and also in 

compressive system identification [23] which could be of 

relevance in practical industrial applications. 

In this study, the DMDc method is chosen to implement 

model identification and order reduction. The DMDc method, 

which is described in more detail further in the next section, 

was originally developed specifically for systems with 

external actuation, or control inputs. The method successfully 

disambiguates between the inherent dominant modes of the 

system and those due to external actuation. Several model 

order reduction studies have been reported for nonlinear heat 

transfer related problems earlier [24-27]. Most of such 

previous studies were using the solver intrusive methods 

described earlier. Also, there are not many examples of the 

development of ROMs for non-linear heat transfer 

applications with thermal radiation [27]. The novelty of the 

present work is the use of the data driven DMDc method for 

system identification and prediction for nonlinear heat transfer 

systems. This is most useful for developing ROMs in many 

industrial applications where commercial solvers are used to 

construct transient models with high degree of complexity and 

nonlinearity due to radiative and convective heat transfer with 

highly varying material properties. Additionally, an alternative 

formulation to better adapt the DMDc method for radiation 

dominated problems is also presented here. Two modifications 

proposed to the DMDc method for application to numerical 

simulations are in the handling of boundary and volumetric 

source conditions, and the addition of a non-linear term to 

match the known physics, which result in a better prediction 

and control over the stability of the identified model.  

In the remainder of this article, a summary of the DMDc is 

provided, followed by the description of the modification of 

the original DMDc method to include the non-linearity and the 

non-varying boundary and volume conditions in the governing 

equations. A simple radiative heat transfer problem is 

considered and described next. The governing equations are 

derived, followed by the generation of numerical results for a 

training case and different test cases. Although the governing 

equations are derived explicitly and solved here, they are not 

used to generate the ROM, but instead used only to compare 

against the ROM results. The described method is equally 

applicable to larger and more detailed heat transfer systems 

that are solved using commercial solvers. Finally, the DMDc 

method is used to identify the model from the training set 

numerical data and the identified model is used to predict and 

compare with the results from the test cases. 

 

 

2. DYNAMIC MODE DECOMPOSITION WITH 

CONTROL 

 

A brief description of the Dynamic Mode Decomposition 

with control (DMDc) is provided, followed by the additional 

modification used in the study here. One can find lucid and 

detailed explanation of the method and applications in other 

references [15, 21]. 

The DMDc method begins after the collection of dynamical 

data from either experiments, or in this study, from numerical 

simulations. The system output data is collected as n state 

values for m+1 time steps. The time step is assumed to be a 

constant here. This ‘snapshot’ of data is split into two parts, 

offset by one time step. A linear relation between the data at 

time step j, xj, the actuation inputs, uj, and the data at the next 

time step, xj+1, is sought.  

 

𝑥𝑗+1 ≈ 𝐴𝑥𝑗 + 𝐵𝑢𝑗 , ∀𝑗 = 1 …  𝑚. (1) 

 

where, xj are column vectors of length n, the number of states, 

or unknowns, in the system, and uj are column vectors of 

length l, the number of inputs or actuations to the system. In a 

numerical model, n is the number of nodes, or cells, into which 

the computational domain is partitioned, and the data is stored 

at. This can range from the order of tens for simple network 

type models to hundreds of thousands or even millions for two, 

or three-dimensional geometric models. Similarly, for data 

sets from a numerical model, l is the number of volumetric and 

external boundary conditions that do not involve the state 

variable x. For example, in a thermal system, this vector could 

be time varying heat sources, or boundary heat fluxes, or the 

external components of convective and radiative heat flux 

conditions at boundary nodes or the cells of the domain.  

Using the DMDc method, one can then obtain a simplified, 

reduced order representation of the numerical model which 

can be used for quickly analyzing the temporal evolution of 

the system, instead of utilizing, the possibly large and time 

consuming, original numerical model. Assuming we collect 

data for m+1 time steps, the split snapshot data matrices and 

the actuation matrix can be arranged as:  

 

𝑋 = [
| |

𝑥1 𝑥2

| |
…

|
𝑥𝑚

|
] , 𝑋′ = [

| |
𝑥2 𝑥3

| |
…

|
𝑥𝑚+1

|
], and  

Υ = [
| |

𝑢1 𝑢2

| |
…

|
𝑢𝑚

|
] 

(2) 

 

Here, 𝑋, 𝑋′ ∈ ℝ𝑛×𝑚 , and Υ ∈ ℝ𝑙×𝑚 . The relation Eq. (1) 

can be then expressed as: 

 

𝑋′ ≈ [𝐴 𝐵] [ 
𝑋
Υ

 ] = [𝐺][Ω] (3) 
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Here G ∈ ℝ𝑛×(𝑛+𝑙), and Ω ∈ ℝ(𝑛+𝑙)×𝑚. Matrix  contains 

both the states and input snapshot information. Next, in order 

to solve for A and B matrices, a least-square regression using 

a pseudo-inverse is performed, with the help of the singular 

value decomposition (SVD) of   and order reduction: 

 

Ω =  𝑈Σ𝑉∗ ≈ 𝑈Σ̃�̃�∗ (4) 

 

where, 𝑈 ∈ ℝ(𝑛+𝑙)×(𝑛+𝑙) , Σ ∈ ℝ(𝑛+𝑙)×𝑚 , 𝑉∗ ∈ ℝ𝑚×𝑚 , 𝑈 ∈

ℝ(𝑛+𝑙)×𝑞 ,  Σ̃ ∈ ℝ𝑞×𝑞 , and Ṽ∗ ∈ ℝ𝑞×𝑚 . The quantities 

𝑈, Σ̃ 𝑎𝑛𝑑 Ṽ∗ represent truncated arrays with q singular values, 

to retain only the dominant modes of the system. The 

following then provides an approximation for G, and 

subsequently, A and B: 

 

𝐺 = 𝑋′�̃�Σ̃−1𝑈∗, (5) 

 

[𝐴, 𝐵] ≈ [�̅�, �̅�] = [𝑋′�̃�Σ̃−1𝑈1
∗, 𝑋′�̃�Σ̃−1𝑈2

∗] (6) 

 

Here, 𝑈1
∗ ∈ ℝ𝑛×𝑞  and 𝑈2

∗ ∈ ℝ𝑙×𝑞  and �̃�∗ = [𝑈1
∗, 𝑈2

∗] . For 

large systems with over hundreds of thousands of states n, 

using these approximate A and B in a predictive model in Eq. 

(1) is prohibitive. Hence, �̅� and �̅� are further reduced in order 

using a projection for such systems. The projection space is 

obtained using the SVD of the output space. The eigenvalues 

and modes of the system are extracted using the order reduced 

forms of �̅� and �̅�. The dominant modes are typically chosen 

to retain > 95% of the energy in the system. The energy 

corresponds to the sum of the singular values or the sum of 

their values squared [28]. After arranging the singular values 

in descending order, the first q modes are chosen to retain the 

most energy of the system. Other methods have also been 

described for selecting the dominant modes [15]. In the 

demonstrated heat transfer application described in the next 

sections, the order reduction is not used since the number of 

states was very low, of the order of O(10). The matrices �̅� and 

�̅� from Eq. (6) were used directly in Eq. (1). 

 

2.1 Modified DMDc for numerical models 

 

The DMDc method described above was slightly modified 

in this study in order to use the data from numerical models of 

thermal systems. The primary reasons for this modification 

were as follows. Consider the numerical models with 

temperature as the state data variable (𝑥 ≡ 𝑇).  

The governing equations in radiation dominated heat 

transfer typically contain linear (conduction, convection) and 

quartic (radiation) terms of temperature (T4), at least when the 

material and thermal properties are constant throughout the 

computational domain. Correspondingly, an x4 term was added 

to the DMDc formulation.  

The actuation vector uj, in the context of numerical models, 

represents the terms in the boundary and volume conditions 

that do not contain the state data variable T. These terms can 

represent, for example, constant volumetric heat source terms, 

or the external domain’s conduction or convection energy flux, 

or radiation energy flux to or from the ambient. Numerical 

models can have many such boundary conditions, most of 

which may be constant with time. It is not necessary, and may 

even be tedious, to enlist and track all such terms into the 

actuation vector uj.  

Hence the vector uj here was formed from only the 

temporally varying non-state dependent parts of the volume 

and boundary conditions in the numerical model. In order to 

account for the remaining terms of such conditions that are 

constant in time, a constant term is also added to the DMDc 

formulation. With the quartic and constant terms, the modified 

equation (1) is: 

 

𝑥𝑗+1 ≈ 𝐴1𝑥𝑗 + 𝜎′𝐴2𝑥𝑗
4 + 𝐶𝑔 + 𝐵𝑢𝑗 (7) 

 

where, ' is a scaling parameter, based on the Steffan-

Boltzman constant of radiation, pre-multiplied in order to have 

the matrices A1 and A2 similar in numerical magnitude. Vector 

g is a vector of ones, of size n1. Matrices 𝐴1, 𝐴2, 𝐶 ∈ ℝ𝑛×𝑚. 

The terms A2 xk
4 and C represent the nonlinear and the constant 

boundary and/or volume condition terms respectively. The 

similarity between Eq. (7) and the governing equations will be 

more apparent in the next section where the latter are shown 

in detail for an example system.  

Now, a similar process is followed to extract the unknown 

matrices A1, A2, B and C: 

 

𝑋′ ≈ [𝐴1 𝐴2 𝐶 𝐵] [ 

𝑋
𝑋4

𝐽
Υ

 ] = [𝐻][Θ] (8) 

 

where, J is a matrix of ones, of size nm. Let the SVD of Θ =
 𝑈Σ𝑉∗ ≈ 𝑈Σ̃�̃�∗ , where 𝑈 ∈ ℝ(3𝑛+𝑙)×(3𝑛+𝑙) , Σ ∈
ℝ(3𝑛+𝑙)×𝑚 ,𝑉∗ ∈ ℝ𝑚×𝑚 , 𝑈 ∈ ℝ(3𝑛+𝑙)×𝑞 , Σ̃ ∈ ℝ𝑞×𝑞 , and Ṽ∗ ∈
ℝ𝑞×𝑚. Then,  

 

𝐻 = 𝑋′�̃�Σ̃−1𝑈∗, (9) 

 

[𝐴1, 𝐴2, 𝐶, 𝐵] ≈   [𝑋′�̃�Σ̃−1𝑈1
∗, 𝑋′�̃�Σ̃−1𝑈2

∗,
𝑋′�̃�Σ̃−1𝑈3

∗, 𝑋′�̃�Σ̃−1𝑈4
∗ ] 

(10) 

 

As before, here 𝑈∗ = [𝑈1
∗, 𝑈2

∗,  𝑈3
∗, 𝑈4

∗] , with 𝑈1
∗, 𝑈2

∗, 𝑈3
∗ ∈

ℝ𝑛×𝑞 and 𝑈4
∗ ∈ ℝ𝑙×𝑞 . The modified method can be expected 

to result in higher accuracy for systems with larger number of 

states – such systems will have a larger number of boundary 

and volume conditions. Then, even though the actuation vector 

consists of only the time-varying heat source or boundary heat 

flux terms, the other terms in the original system are 

represented better in the approximate model from DMDc with 

the constant terms. 

A note on identifying the dynamics of the system with this 

modified DMDc is as follows. The most dominant modes 

identified in the modified DMDc are still those originating 

from the linear matrix A1 in equation 7. Hence the dominant 

patterns in the system are still recognized in the same way as 

they are in the original DMDc method. Additional terms (A2) 

are augmented to the original DMDc primarily to aid in the 

conformity of the identified system to the nature of physics 

that is typically associated with radiative thermal systems. 

These additional terms can also aid in ensuring the stability of 

the system, since the eigenvalues of the system in Eq. (7) can 

be conveniently placed in the stable region by tweaking the 

constant '. 

 

 

3. THE EXAMPLE THERMAL SYSTEM 

 

A small, representative, radiative heat transfer system was 

modeled as a lumped mass thermal network, and the generated 

690



 

solution data was used to rebuild a predictive model using 

DMDc. The procedure is the same for large scale models of 

similar heat transfer application. The configuration considered 

was axisymmetric, as shown in Figure 1. A circular disc was 

positioned in a cylindrical chamber, between a reflector at the 

bottom, and three circular and annular heater plates at the top. 

The model did not include any supports to hold the circular 

plate in position, and hence the heat transfer to and from the 

plate was by radiation only.  

In the network model, the plate was divided into six parts – 

a central disc, and two annular rings on the top and bottom. 

Each of these six parts were represented as lumped thermal 

masses in the network. The chamber wall was represented as 

two nodes, corresponding to the top and bottom halves. Along 

with the three top heater plates and one circular reflector at the 

bottom, there were twelve nodes in total in the thermal 

network. The boundary conditions applied are shown in Figure 

1b. Time dependent heat fluxes were applied in each of the 

three heater elements. The heater, wall and reflector elements 

were assumed to be cooled convectively with constant 

effective heat transfer coefficients and bulk temperatures as 

shown in Table 1. 

All the surfaces participating in radiation were assumed to 

be opaque, gray, diffuse and with constant emissivity for all 

temperatures. Similarly, the specific heat and thermal 

conductivity of components were also treated as constants.  
 

(a)  

(b)  
 

Figure 1. (a) Geometry (top), (b) Boundary conditions 

(bottom) 
 

The densities, specific heats and emissivities used for the 

components are shown in Table 2. Conduction term between 

any two nodes having conductive heat transfer used the lengths 

calculated as distance between the centers of components, 

which are represented as black dots in Figure 1a. 

 

Table 1. Geometric parameters 

 
Geometric variable Value 

rh1, rh2, rh3 80, 120, 150 mm 

r1, r2, r3 55, 80, 100 mm 

H1, H2 40, 60 mm 

Hh, Hp, Hw 0.2, 1, 10 mm 

Table 2. Boundary conditions and material properties 

 
Volume/boundary 

Condition 
Values (SI units) 

hh, Tfh 25 W/m2K, 330 K 

hp, Tfp 10, 330 

hw1, Tfw1 2000, 330 

hw2, Tfw2 500, 330 

href, Tfref 400, 330 

, cp, k, : Plate 2300, 700, 100, 0.4 (top), 0.7 (bottom) 

, cp, k, : Reflector 8000, 500, 30, 0.1 

, cp, k, : Walls 
2700, 900, 160, 0.2 (upper), 0.3 

(lower) 

, cp, k, : Heater 15000, 200, 80, 0.25 

 

The equations for heat transfer between the components 

were derived using the surface to surface radiation method 

[29]. Theoretical formulations [30] for radiation view factors 

between circular disc, annular rings and cylindrical surfaces 

were used. The derivation is summarized as follows. Consider 

the heat transfer in an enclosure with N components, with 

precisely one radiatively participating surface in each 

component. It is assumed that temperatures of none of the 

nodes is known. The formulation for transient heat balance for 

the ith node can be written as: 

 

∑ [
1

𝐴𝑗

(
𝛿𝑖𝑗

𝜀𝑗

− 𝐹𝑖𝑗

(1 − 𝜀𝑗)

𝜀𝑗

) (𝑄𝑖 − 𝑀𝑖𝑐𝑝𝑖

𝑑𝑇𝑖

𝑑𝑡
)]

𝑁

𝑗=1

= ∑(𝛿𝑖𝑗 − 𝐹𝑖𝑗)𝜎𝑇𝑗
4

𝑁

𝑗=1

 

(11) 

 

where, Aj is the radiative area of node j, and Qi is the heat 

transfer to node i apart from radiation, Mi and cp,i are mass and 

specific heat of the ith node. Denoting the thermal mass matrix 

as Mc. 

 

𝑹 (�̂� − 𝑴𝑐

𝑑�̂�

𝑑𝑡
) − 𝜎𝑩�̂�4 = 0 (12) 

 

with Mc ij = ij Mi cp,i 

𝑅𝑖𝑗 =
1

𝐴𝑗
(

𝛿𝑖𝑗

𝜀𝑗
− 𝐹𝑖𝑗

(1−𝜀𝑗)

𝜀𝑗
) and 

𝐵𝑖𝑗 = 𝛿𝑖𝑗 − 𝐹𝑖𝑗    ∀ 𝑖, 𝑗 = 1 … 𝑁, and 

𝑅𝑖𝑗 = 𝐵𝑖𝑗 = 0      ∀ 𝑖, 𝑗 ≠ 1 … 𝑁 

(13) 

 

The heat flow into the node Qi, can be represented as a sum 

of internal conduction from other nodes (Qint), by ambient 

convection (Qext_conv), and from a heat source (Qext_fixed). Any 

radiative exchange with surfaces external to the enclosure is 

not considered here. 

 

𝑄𝑖 = 𝑄𝑖𝑛𝑡 + 𝑄𝑒𝑥𝑡_𝑐𝑜𝑛𝑣 + 𝑄𝑒𝑥𝑡_𝑓𝑖𝑥𝑒𝑑 (14) 

 

𝑄𝑖 = ∑
𝑘𝑖𝑗𝐴𝑖𝑗

𝑑𝑖𝑗

(𝑇𝑗 − 𝑇𝑖)

𝑁

𝑗=1

+ ℎ𝑖𝐴𝑖,ℎ(𝑇𝑖,𝑏 − 𝑇𝑖) + 𝑄𝑖
𝑓
 (15) 

 

Separating the terms involving node i, we can write  

 

�̂� = 𝑲�̂� + �̂� (16) 

 

where,  
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𝐾𝑖𝑗 = − ∑
𝑘𝑖𝑗𝐴𝑖𝑗

𝑑𝑖𝑗

𝑁
𝑗=1 − ℎ𝑖𝐴𝑖,ℎ i = j 

𝐾𝑖𝑗 =
𝑘𝑖𝑗𝐴𝑖𝑗

𝑑𝑖𝑗
 i ≠ j, and, �̂�𝑖 = ℎ𝑖𝐴𝑖,ℎ𝑇𝑖,𝑏 + 𝑄𝑖

𝑓
 

 

For a large system, not all the terms in �̂�𝑖 above may vary in 

time, and it will be as such unnecessary to incorporate them in 

the DMDc actuation vector uk. For this reason, the modified 

DMDc was developed and used in this example. The 

assembled governing equation set is written as: 

 

𝑹𝑲�̂� + 𝑹�̂� − 𝑹𝑴𝑐
𝑑𝑇

𝑑𝑡
− 𝜎𝑩�̂�4 = 0 Or, 

𝑴𝑐

𝑑𝑇

𝑑𝑡
= 𝑲�̂� + �̂� − 𝜎𝑫�̂�4 

(17) 

 

where, D=R-1B. This was the final equation set solved to 

obtain the unknown temperatures.  

The resulting system Eq. (17) for the network model in 

Figure 1 was solved using the stiff ODE solver routine ODE45 

in Matlab [31]. For fixed heat source values Qi
f, the system 

reached a steady state. Two sets of steady states were solved 

for, as shown below, with a time step of 0.1s. The choice of 

the time step here was based on the smallest time constant in 

the system, which is that of the heaters – of the order of ten 

seconds, as seen from Figure 2. Although the convergence to 

increases as the time step → 0 [15, 32], for practical purposes, 

the time step could be chosen such that the model is able to 

accurately learn the highest frequency dynamics in the actual 

full order system.  

 

(a)  

(b)  

 

Figure 2. (a) Evolution to steady state A (top) and (b) 

Evolution to steady state B (bottom) 

 

The following steady states were used as initial conditions 

later for test cases: 

 

(1) Steady State (SSA) corresponds to QA 
f= [Q1

f, Q2
f, Q3

f ] 

= [425W, 470W, 385W], and the evolution of the temperatures 

in the 12 nodes are shown in Figure 2a. The average wafer 

temperature was 266.5C. The three nodal temperatures were 

on the plate were Tp = [269.1, 266.1 264.4] C.  

(2) Steady State (SSB) Corresponds to QB 
f = [625W, 

710W, 665W], and the evolution of the temperatures in the 12 

nodes are shown in Figure 2b. The average wafer temperature 

was 411.7C. The three nodal temperatures were on the plate 

were Tp = [415.3, 411.1, 408.8] C.  
 

 

4. DATA SETS 

 

Several transient data sets generated from the model in Eq. 

(7) were used as training and test cases for the predictive 

models identified with modified and original DMDc. These 

data sets are described below. 
 

4.1 Training data set 
 

Typical interest in practical applications of heat transfer lie 

in heat-up, soak and cool down behavior of systems. Hence the 

training data of temperatures was generated using randomized 

ramp-up, dwell, and ramp-down signals as shown in Figure 3 

starting from a baseline heat source corresponding to steady 

state A, Qf = QA 
f. The heat source magnitudes varied up to 

100% of the baseline values. The ramp-up-down durations 

varied between 10 to 16 s, and dwell time durations varied 

between 8 to 13s. The total duration of the signals was 660 s. 

The initial condition of the system was steady state A. The 

temperature variations for the 12 components are plotted in 

Figure 3. The plate temperatures varied between 178.6 and 

551.6℃.  
 

(a)  

(b)  
 

Figure 3. Training case: (a) Inputs (top) and (b) States 

(bottom) 
 

4.2 Test data sets 

 

Four sets of test data sets were used to compare with the 

DMDc model predictions. The test data sets were generated 

with the same time step of 0.1s. The simulations used either 
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steady state A or B as the initial conditions of the components. 

The initial conditions, heat source input signals and the 

temperature evolutions for these sets are described below. 

 

4.2.1 Square wave response 

The input signal corresponded to 50% square waves from 

the baseline values corresponding to states A and B. The inputs 

and outputs are depicted in Figure 4 and Figure 5, for initial 

conditions of states A & B.  

 

  

 
 

Figure 4. Inputs and numerically solved states for square 

wave inputs, starting from steady state A 

 

 

 
 

Figure 5. Inputs and numerically solved states for square 

wave input, starting from steady state B 

4.2.2 Step response 

The input signal at time=0 corresponded to a step function 

from the input heat source values corresponding to SSA, to 

those at SSB. The initial conditions were from SSA. The 

system allowed to evolve from SSA to SSB. The inputs are not 

shown in Figure 6 below since they are constant values after 

t=0.  

 

 
 

Figure 6. Numerically solved states for step input, starting 

from steady state A and reaching state B 

 

4.2.3 Ramp response 

The input signal corresponded to 50% sawtooth wave from 

the baseline values corresponding to B. The inputs and outputs 

are depicted in Figure 7, for initial conditions of states from B. 

 

 

 
 

Figure 7. Inputs and numerically solved states for ramp 

input, starting from SSB 

 

4.2.4 Chirp signal response 

The input heat source values were from a chirp signal, with 

a frequency content varying from 0.02 to 0.033, 0.081, and 

0.054Hz for heat sources 1, 2 and 3 respectively. The 

frequencies were selected approximately based on the below 

two criteria:  

a) The ramp rates in each cycle were covered those in the 

training signal and higher or lower values, in order to test the 
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validity of DMDc for conditions different from the training 

case.  

b) The frequency values were specified so as to detect any 

input-output lag in the thermal behavior of the system in the 

reduced order model with sufficient accuracy, within the tested 

time range of 10 mins. 

The mean value of the heat sources were such that the plate 

temperatures vary approximately around 400C, similar to the 

training signal. The initial condition was set using the steady 

state A. Results are shown in Figure 8. 

 

 

 
 

Figure 8. Inputs and numerically solved states for chirp 

signal inputs, starting from SSA 

 

 

5. PREDICTION RESULTS FROM THE IDENTIFIED 

MODELS 

 

The data from the numerical model was normalized in the 

following way, so that 0  Xij  1: X = (T-300)/1000, with 

Temperatures in degree Kelvins. The inputs (heat source 

values) were also normalized using 1000 W, so that the inputs 

are of the order of one. The scaling parameter’s value in Eq. 

(7) was fixed at 0.1. It was seen that increasing this to higher 

values (> 1) resulted in an instability in the system Eq. (10). 

The effect of the parameter on the accuracy of the ROM was 

negligible. This suggested that the added non-linearity (A2 

term) was not contributing much to the accuracy of predictions.  

 

5.1 Predictions using the identified models with DMDc 

 

The models identified using the modified DMDc (Eq. 7-10) 

and the original DMDc method (Eq. 6-9) were used to predict 

the thermal evolution for different cases. The figures in the 

following sections show the comparison of modified DMDc 

predictions and the results from the original numerical model. 

Also, relative errors of predictions compared to the numerical 

simulation data are plotted and for the modified and the 

original DMDc methods. 

Relative error was calculated using the L2 norm of the 

difference between the DMDc predictions and the numerical 

model’s results for the 12 nodes, divided by the L2 norm of 

the numerical model’s predictions. This error is plotted for all 

cases as a percentage. 

 

𝑅𝑒𝑙. 𝐸𝑟𝑟𝑜𝑟 = ‖𝑋 − 𝑋𝐷𝑀𝐷‖2/‖𝑋‖2 (18) 

 

5.2 Results from training data sets 

 

 

 

 
 

Figure 9. Predicted temperatures from modified DMDc for 

training set, compared with the original numerical results 

 

The results from applying the modified DMDc to the 

training data set itself is shown in Figure 9. The errors are 

relatively within 5 to 10% for most of the time, except at 300s, 

when the relative errors are large, of the order of 25%, as 

shown in Figure 10. The high error in the predictions is 

possibly due to the high degree of non-linearity in the system, 
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which is not captured completely by the linear operator in the 

DMDc. The introduction of the non-linear operator in the 

modified DMDc was not seen to decrease the magnitude of the 

error though. This could be due to the smaller magnitude of 

the non-linear operator compared to the linear operator in the 

modified DMDc method. 

As mentioned in section 2.1, the dominant modes in the 

identified model were from the matrix A1. In the identified 

model using the training data, the resulting L2 norms were: 

||A1|| = 7.62, and ||A2|| = 6.92e-6. The dominant contributor to 

the eigenmodes of the system, even considering the 

nonlinearity, were from the matrix A1. Thus, the identified 

system is only weekly non-linear. Nonetheless, the addition of 

the extra T4 terms helps to improve accuracy and stability 

depending on the choice of the multiplier ' in Eq. (7). 

 

 
 

Figure 10. The relative prediction errors for the training case 

 

5.3 Results from test data sets 

 

Below the predicted results are compared with the 

numerical model’s data for different test cases. The relative 

errors are also computed and plotted for different test cases 

spanning input and initial condition variations. 

 

5.3.1 Square wave response, at initial conditions SSA 

The predicted values from the identified model shows a 

decent correlation to the original data from the numerical 

model in Figure 11. The absolute deviation is within 80C, 10C 

and 0.3C for the heater, plate and the wall temperatures. The 

relative errors, plotted in Figure 12, is within 7% for the 

identified model using modified DMDc, and 10% with the 

DMDc method. The error is slightly lower with the modified 

DMDc model for most of the time duration.  

 

5.3.2 Square wave response, at initial conditions SSB 

This case tests the identified model for an initial condition 

which is very different from the one in the training data. 

However, the values of the control input, that is, the heat 

source to the heaters were still within the range of those in the 

training data set. The values of the temperatures were also 

within the range of the temperature data in the training set. The 

absolute deviation increased for the plate temperatures to 25℃, 

whereas the deviations for the heater and walls were similar to 

the previous case, as shown in Figure 13. 

The relative error for the DMDc identified model was lower 

compared to the modified DMDc method for most of the time 

duration. The difference in the relative errors of the two 

predictions was less than 1.2%, as seen in Figure 14. 

 

 

 
 

Figure 11. Predicted temperatures from modified DMDc for 

square wave response, with initial condition SSA 

 

 
 

Figure 12. Relative errors for square wave response, with 

initial condition SSA 
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Figure 13. Predicted temperatures from modified DMDc for 

square wave response, with initial condition SSB 
 

 
 

Figure 14. Relative errors for square wave response, with 

initial condition SSB 

5.3.3 Step response, at initial conditions SSA 

 

 

 

 
 

Figure 15. Predicted temperatures from modified DMDc for 

step response, with initial condition SSA 

 

  
 

Figure 16. Relative errors for step response, with initial 

condition SSA 
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In this example, the system reaches steady state B starting 

from steady state A. The predictions showed a large deviation 

from the numerical simulation results for 100s < t < 150s, as 

shown in Figure 15. Even then, the relative errors were within 

9% for the DMDc identified model and 6% for the modified 

DMDc identified model, seen in Figure 16. 

 

5.3.4 Ramp input response, at initial conditions SSB 

The predictions (Figure 17) were fairly similar to the 

numerical simulation values using both identifications in this 

case. The error magnitudes, in Figure 18, were within 1% of 

each other, although the errors from DMDc identification were 

smaller than those from the modified DMDc. 

 

 

 

 
 

Figure 17. Predicted temperatures from modified DMDc for 

ramp input response, with initial condition SSB 

 

 
 

Figure 18. Relative errors for ramp input response with 

initial condition SSB  

 

5.3.5 Chirp response, at initial conditions SSA 

 

 

 

 
 

Figure 19. Predicted temperatures from modified DMDc for 

chirp input response, with initial condition SSA 
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Figure 20. Relative errors for chirp input response with 

initial condition SSA 

 

The chirp signal input contains frequency and ramp contents 

that are more different compared to the training signal in 

Figure 8. The response to the chirp signal was predicted well 

by both the DMDc identifications (Figure 19). The relative 

errors were slightly higher again near 100<t<150s time 

interval, as depicted in Figure 20. The relative errors were 

largely similar for both the identifications, although the peak 

error was lower using the modified DMDc identification. 

 

 

6. CONCLUSIONS 

 

The DMDc method has been used for non-solver intrusive 

model identification, order reduction and predictions. 

Although the problem considered here was simple and with 

small number of states (or components), the same method can 

be used for more complex systems with varying thermal 

properties, and with much larger number of states. Reasonably 

accurate and realistic predictions were obtained using the 

method. The original DMDc method was modified with 

constant and non-linear augmentation terms to improve the 

similarity of the identified system with the equations 

governing radiative heat transfer. The fourth order non-linear 

term can be used to position the eigenvalues for stability and 

the constant term provides for a better incorporation of time-

independent boundary and volume conditions in the numerical 

model.  

The identified models were tested with different initial 

conditions and actuation inputs, significantly different from 

the ones used to generate the training data. Even then, the 

identified models resulted in predictions within 10% relative 

error compared to the original numerical model. Augmenting 

the DMDc method improved the accuracy of predictions for 

the following cases - square wave input response, chirp input 

response and step response with the same model initial 

condition as training data. It did not improve the accuracy for 

other cases when the initial conditions were different, at SSB, 

from training data set. The non-linear augmentation term did 

not improve the accuracy of predictions, but changed the 

eigenvalues of the system slightly. However, the constant 

augmentation term did result in changes in predictions 

compared to the original DMDc method. When the number of 

boundary and volume conditions in the model are larger, the 

constant term in Eq. (7) is expected to further increase the 

accuracy of the predictions.  

The use of more recent method of SINDYc could possibly 

provide a more precise system identification. However, 

uncertainties could exist in the convergence of the 

identification process itself, and the applicability to a fresh test 

data set. The DMDc method is simpler and provides a simple 

means to reduce the order of the system drastically, for 

systems with large number of states. The DMDc method also 

provides information on the dominant eigenvalues and the 

evolution of the dynamic modes of the system for a better 

understanding. Although the identified models in this study 

showed stable and reasonably accurate predictions for 

different conditions compared to the training data set, care 

should be taken in practical applications to test the identified 

models sufficiently for both accuracy and more importantly 

for stability, for different operating conditions and initial 

conditions of practical interest. In this article, the truthfulness 

of the derived models using DMDc with respect to only the 

numerical solution to the full set of theoretical governing 

equations has been addressed. The accuracy of the full order 

numerical model needs to be ensured with respect to the actual 

system using experiments, and calibration of the full order 

numerical model accordingly prior to practical applications. 
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NOMENCLATURE 

x Generic state variable (any unit) 

u Input (W)

n Number of states 

l Number of actuation inputs 

m Number of time steps 

q Truncated number of states 

r Radius (m) 

H,d Height, thickness (m) 

h Heat transfer coefficient (W/m2K) 

t Time (s) 

T Temperature (K) 

Q,s Heat source (W) 

K Conductivity (W/mK) 

D Distance between nodes (m) 

F View factor 

A Area (m2) 

k Thermal conductivity (W/mK) 

Greek symbols 

 Emissivity 

 Kronecker delta 

 Steffan Boltzmann Constant, W/m2K 
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Subscripts 

 

h Heater 

w Wall 

p Plate 

f Fluid 

A Steady State Condition A 

B Steady State Condtition B 
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