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In this paper we are investigating theoretically the process of solidification of a liquid alloy 

in the space. A simplified quasi steady-state analytical model for the solidification process 

is used. This model describes the phase change phenomenon with the two-phase 

solidification front, so the two-phase layer between the liquidus and the solidus is analyzed 

with a solidification liquid being overheated above the solidification temperature. The 

solution of the problem can be reduced to the solution of a system of differential equations, 

which has been solved numerically. From this model, an influence of various 

dimensionless parameters on the solidification process can be clearly seen. The obtained 

numerical results are presented in graphical figure. In addition, the variable coefficient of 

a heat transfer on the surface of the solidification front during the solidification process is 

also calculated. 
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1. INTRODUCTION

One of the stages during a manufacturing process of an alloy 

is its solidification [1-12]. A very interesting and important 

publication on an alloy solidification is the work of 

Beckermann and Viskanta [1] from 1993, where the 

mathematical modeling of mass, momentum, heat and 

transport phenomena that accompany the alloy solidification 

is reviewed. This article focuses mainly on the role of the two-

phase layer on the solidification front in the casting of metal 

alloys. As the two-phase layer at the front plays a particularly 

important role in the solidification process, there are many 

studies in the professional literature related to the modeling of 

solidification process that includes the two-phase zone [6, 8, 

10-12]. However, there are only a few studies in the literature

that describe the macroscopic process of alloying in a simple

manner [5, 7, 11], which is one of the goals of this work.

The important aim of the work is, however, to determine, 

based on the theoretical foundations, the heat flow between the 

casting mold and the metal that solidifies in it. A simplified 

quasi-stationary analytical model of the crystallization process 

has been proposed. The phenomenon of the phase change with 

a two-stage solidification front, which takes into account the 

areas of columnar and equiaxial crystals, has been also 

described. In this model, the two-phase layer between liquidus 

and solidus is analyzed. To adjust the model to real conditions, 

overheating of the metal above the liquidus temperature is 

included. Furthermore, the variable heat transfer coefficient on 

the surface of the solidification front during the solidification 

process is determined. 

To our best knowledge, there are no studies in the scientific 

literature that theoretically analyze the solidification process 

in the two-phase zone. The distribution of heat sources and 

temperature in this zone in time and space are particularly 

interesting and important. The mentioned parameters 

significantly influence the development and the progress of the 

solidification process in this two-phase space. A novelty in the 

presented work is the analytical determination of the 

development of the solidification front: its position and 

velocity in the solidifying alloy on the basis of Stefan 

equations, and in particular the determination of the 

temperature distribution in a two-phase space using the 

classical Poisson equations. This publication presents an 

example of the solidification process in the continuous casting 

of a brass alloy. 

The article discusses the problem of solidification of alloys 

with particular emphasis on the two-stage crystallization front. 

The research part presents the simulation results of the two-

stage front of the crystallization setting in continuous casting. 

Finally, conclusions were built, indicating further research 

directions. 

2. GENERAL STATEMENT OF THE PROBLEM

There are many solutions, both analytical and numerical, in 

the literature relating to the modeling of crystallization 

processes [1-12]. So far, however, none has fully described 

these nonlinear and non-stationary phenomena. 

The process of solidification of the metal alloy in this work 

is described analytically with quasi-stationary heat flow 

equations using the Stefan solidification model. In this work, 

a numerical analytical model of solidification of a metal alloy 

(brass) was solved. The time and velocity of its solidification 

were determined. In the two-phase zone, the quasi-stationary 

solidification process with heat sources was solved using the 

Poisson differential equation. The calculation results are 

presented in the form of graphs and tables. 

The diagram of solidification of the cooled metal with the 

participation of a crystallizer (referred further as the cold wall) 
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and the theoretical description of this model are presented in 

Figure 1a and Figure 1b, respectively. 

 

 
(a) 

 
(b) 

 

Figure 1. (a) Diagram of the alloy solidification front, (b) 

Temperature distribution in the solidifying alloy 

 

In the model it was assumed that the liquid alloy with the 

temperature 𝑇𝐶  contacts with the cold wall with the surface 

temperature 𝑇𝑊 . Based on the results of research in the 

literature [1, 13] and own structural analysis, it was found that 

the emergent alloy solidification front is not sharp (Figure 1a). 

It was further assumed that on the surface of the solidified 

layer with a layer thickness of 𝛿𝑆  there is the solidus 

temperature 𝑇𝑆 and at a distance of 𝛿𝐿 from the wall surface is 

the liquidus surface with the temperature 𝑇𝐿 , which is slightly 

higher than the solidus temperature 𝑇𝑆 . The wall surface 

temperature 𝑇𝑊  is lower than the solidus temperature 𝑇𝑆 , 

liquidus 𝑇𝐿  and the temperature of the liquid alloy 𝑇𝐶 , so the 

temperature distribution is as follows: 𝑇𝑊 < 𝑇𝑆 < 𝑇𝐿 < 𝑇𝐶  

(Figure 1b). The phenomenon of heat transfer from the liquid 

alloy to the solidifying alloy occurs on the liquidus surface. 

The direction of heat flow �̇�  is opposite to the 𝑥 -axis that 

defines the direction of the solidification area of the alloy from 

the crystallizer surface). The whole solidification process is 

considered in a two-phase layer (liquid and solid), in which the 

heat of crystallization 𝐿 is additionally generated. 

The modeled phenomenon of quasi-stationary solidification 

of the liquid alloy is described by a simplified heat balance 

equation: 

 

ℎ𝐶𝑂𝑁(�̅� − 𝑇𝑊) =
𝑘𝑆

𝛿𝑠
(𝑇𝑠 − �̅�) = −𝜌𝑠𝑐𝑠

𝑑

𝑑𝑡
∫ (𝑇 −

𝛿𝑠

0

�̅�)𝑑𝑥 + �̇� + ℎ(�̅�𝐶 − 𝑇𝐿), 
(1) 

 

where the first expression defines the heat flux conducted 

through the contact layer, the second expression defines the 

heat flux conducted through the solidified alloy layer, the third 

expression defines the heat absorbed by the solidified alloy 

layer (i.e. heat of accumulation), the heat flux �̇� expresses the 

heat generated as a result of solidification of the alloy in the 

two-phase layer and the last expression describes the heat 

transferred from the liquid alloy to the solidifying alloy. 

 

2.1 Heat generated in the two-phase zone of the alloy 

 

During the solidification of the alloy, a moving interfacial 

layer is formed on its forehead, which is bounded by the 

changing in the time surfaces of the solidus 𝛿𝑆and the liquidus 

𝛿𝐿 (Figure 2). Inside the layer between the liquidus and solidus 

surfaces 𝛿𝑆 < 𝛿𝑆
, < 𝛿𝐿  there is a surface with the position 

coordinate 𝛿𝑆
,
 and with the solid phase volume fraction S. 

 

 
 

Figure 2. Element of the two-phase layer 

 

The energy conservation equation in the two-phase zone 

was analyzed by Mochnacki and Suchy [13]. Based on their 

considerations, the following solidification analysis in this 

zone is given below. The heat of solidification (heat source) 

generated at time t anywhere inside the moving two-phase 

zone can be defined by the expression 

 

𝜌𝑆𝐿
𝑑𝛿𝑆

,

𝑑𝑡
,  

 

where 𝑑𝛿′𝑆 𝑑𝑡⁄ is the solidification rate, L is the latent 

solidification heat of the alloy and𝜌𝑆 is the solidification layer 

density. The volume fraction of the solid 𝑆 in the two-phase 

layer depends on the location x. A hypothesis describing the 

solidification velocity distribution in the layer of the two-
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phase zone 𝑑𝛿′𝑆 𝑑𝑡⁄  as a function of the volume fraction 𝑆 of 

the solid phase in the layer was adopted. It was also assumed 

that the rate of the solidification inside the interfacial area 

depends linearly on the volume fraction of the solid phase S: 

 
𝑑𝛿𝑆

,

𝑑𝑡
= 𝑎𝑆 + 𝑏, (2) 

 

where a and b are constants. 

Substituting the value of the parameter S=1 (no liquid metal 

- there is 100% of the solid phase) on the solidus surface and 

S=0 (no solid phase in the liquid metal) on the liquidus surface, 

the constants 𝑎 and 𝑏 can be determined and then Eq. (2) takes 

the following form: 

 
𝑑𝛿𝑆

,

𝑑𝑡
= (

𝑑𝛿𝑆

𝑑𝑡
−

𝑑𝛿𝐿

𝑑𝑡
) 𝑆 +

𝑑𝛿𝐿

𝑑𝑡
. (3) 

 

Using Eq. (3), the total heat flux generated in the interphase 

space can be also determined: 

 

�̇� = ∫ 𝜌𝑆𝐿
𝑑𝛿𝑆

,

𝑑𝑡
𝑑𝑆 =

1

0

1

2
𝜌𝑆𝐿 (

𝑑𝛿𝑆

𝑑𝑡
+

𝑑𝛿𝐿

𝑑𝑡
). (4) 

 

The thickness of the space-traveling two-phase layer is 

small and, in general, it constantly changes during the 

solidification. The total heat flux generated in such a layer, 

with equal derivatives 𝜕𝛿𝑆 𝜕𝑡 = 𝜕𝛿𝐿 𝜕𝑡 ⁄⁄ is hence equal to: 

 

�̇� = 𝜌𝑆𝐿
𝑑𝛿𝑆

𝑑𝑡
. (5) 

 

2.2 Solidification heat balance equations for an alloy 

 

The temperature distribution in the stationary overheated 

liquid alloy and the heat flux on the liquidus surface, based on 

the Fourier heat conduction law, are described by the 

equations: 

 

𝑇𝐶 = 2
�̅�𝐶 − 𝑇𝐿

𝐻 − 𝛿𝐿

(𝑥 − 𝛿𝐿) +
𝑇𝐿(𝐻 + 𝛿𝐿) − 2�̅�𝐶𝛿𝐿

𝐻 − 𝛿𝐿

, (6) 

 

�̇� = 𝑘𝐿

𝜕𝑇

𝜕𝑥
|

𝑥=𝛿𝐿

= 2𝑘𝐿

�̅�𝐶 − 𝑇𝐿

𝐻 − 𝛿𝐿

. (7) 

 

By comparing the heat transferred and conducted on the 

liquidus surface. 

 

�̇� = ℎ(�̅�𝐶 − 𝑇𝐿) = 2
𝑘𝐿

𝐻 − 𝛿𝐿

(�̅�𝐶 − 𝑇𝐿),  

 

The heat transfer coefficient ℎ can be obtained as follows: 

 

ℎ = 2
𝑘𝐿

𝐻 − 𝛿𝐿

. (8) 

 

The average temperature of the liquid alloy and the change 

in heat capacity in the variable liquid volume (i.e. 𝐻 − 𝛿𝐿) are 

described by the equations: 

 

�̅�𝐶 − 𝑇𝐿 =
∫ (𝑇𝐶 − 𝑇𝐿)𝑑𝑥

𝐻

𝛿𝐿

𝐻 − 𝛿𝐿

, (9) 

 

𝜌𝐿𝑐𝐿

𝑑

𝑑𝑡
∫ (𝑇𝐶 − 𝑇𝐿)𝑑𝑥

𝐻

𝛿𝐿

= 𝜌𝐿𝑐𝐿

𝑑

𝑑𝑡
[(�̅�𝐶 − 𝑇𝐿)(𝐻 − 𝛿𝐿)]. 

(10) 

 

From the heat balance equation for a liquid alloy (the heat 

acquired from the liquid metal is equal to the accumulation 

heat of the liquid alloy), it follows that, 

 

ℎ(�̅�𝐶 − 𝑇𝐿) = −𝜌𝐿𝑐𝐿

𝑑

𝑑𝑡
[(�̅�𝐶 − 𝑇𝐿)(𝐻 − 𝛿𝐿)]. (11) 

 

Suitable transformations of Eqns. (1) and (11) lead to a 

system of differential equations, which in dimensionless 

coordinates take the form: 

 
𝐵𝑖𝐶𝑂𝑁

1+�̃�𝐵𝑖𝐶𝑂𝑁
+

1

2

𝑑�̃�

𝑑𝜏
(𝑆𝑡𝑒𝛿

𝐵𝑖𝐶𝑂𝑁

1+�̃�𝐵𝑖𝐶𝑂𝑁
− 2) = 2

�̃�

1−∆̃−�̃�
𝐵�̅�𝐶, (12) 

 

2
�̃�

1 − ∆̃ − 𝛿
�̅�𝐶 = −𝑆𝑡𝑒

𝑑

𝑑𝜏
[�̅�𝐶(1 − ∆̃ − 𝛿)]. (13) 

 

In addition, system of Eqns. (12)-(13) satisfies for 𝜏 = 0 the 

initial conditions: 

 

𝛿 = 0 and �̅�𝐶 = 1. (14) 

 

Variables and parameters used in problem (12)-(14) are 

equal to: 

 

𝛿 =
𝛿𝑠

𝐻
, 𝜏 = 𝑆𝑡𝑒 ∙ 𝐹𝑜, �̅�𝐶 =

�̅�𝐶 − 𝑇𝐿

𝑇𝐶0 − 𝑇𝐿

, ∆̃=
∆

𝐻
, 

 

�̃� =
𝑘𝐿

𝑘𝑆

, �̃� =
𝑎𝐿

𝑎𝑆

, 𝐵 =
𝑇𝐶0 − 𝑇𝐿

𝑇𝑆 − 𝑇𝑊

, 𝐵𝑖𝐶𝑂𝑁 =
ℎ𝐶𝑂𝑁𝐻

𝑘𝑆

 , 

 

and they respectively denotes: dimensionless thickness of the 

solidified layer, dimensionless time, dimensionless mean 

overheating temperature of the liquid, dimensionless thickness 

of the interfacial layer, the ratio of thermal conductivities of 

the liquid alloy to the solidified layer, the ratio of the thermal 

conductivity of the liquid and the solidified layer, the heat 

diffusion ratio of the liquid and the solidified layer, the liquid 

overheating parameter and finally Biot number in the contact 

layer. 

Moreover, Stefan number Ste, Fourier number Fo and 

thermal diffusivity coefficients aS and aL in Eqns. (11)-(12) are 

respectively given by: 

 

𝑆𝑡𝑒 =
𝑐𝑆(𝑇𝑆 − 𝑇𝑊)

𝐿
, 𝐹𝑜 =

𝑎𝑆𝑡

𝐻2
, 𝑎𝑆 =

𝑘𝑆

𝑐𝑆𝜌𝑆

, 𝑎𝐿 =
𝑘𝐿

𝑐𝐿𝜌𝐿

. 

 

The non-linear system of differential equations (12)-(13) 

cannot be solved analytically, thus the use of numerical 

calculations is necessary. The complete solution of the system 

of equations, i.e. the determination of unknown 

functions: 𝛿(𝜏), �̅�𝐶(𝜏), ∆̃(𝜏)  requires the creation of an 

additional constitutive relationship defining the thickness of 

the two-phase layer ∆̃(𝜏), based on either the laws of physics 

or from experimental research, however, additional analysis is 

needed for this purpose. The numerical solution of problem 

(12)-(14), assuming a constant thickness of the two-phase 
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layer (i.e. ∆ = 𝛿𝐿 − 𝛿𝑆 = 𝑐𝑜𝑛𝑠𝑡), is presented graphically in 

Figure 3. 

 

 
 

Figure 3. Solidification of 𝑍𝑛10 with parameters ∆̃= 0.1, 

𝐵 = 1.2 and 𝐵𝑖𝐶𝑂𝑁 = 10 

 

Table 1 presents the main parameters of the solidifying 

alloy, which were used in numerical calculations of the 

solidified layer and the overheating temperature (see Figures 

3 and 4). 

 

Table 1. Parameters that characterize the solidification 

phenomenon of Zn10 brass, describing the actual 

solidification conditions for a cold flat wall with a 

temperature of TW=998℃ 

 
𝑻𝑳, °𝐶 𝑻𝑺, °𝐶 𝑳, 𝑘𝐽 𝑘𝑔⁄  𝒌𝑺, 𝑊 (𝑚𝐾)⁄  𝒄𝑺, 𝐽 (𝑘𝑔𝐾)⁄  

1,050 1,040 200 370 386 

1,050 1,040 200 376 386 

𝝆𝑺, 𝑘𝑔 𝑚3⁄  ∆̃ 𝑺𝒕𝒆 𝑩𝒊𝑪𝑶𝑵 𝑩 

8,740 0.1 0.081 10 0 

8,740 0.1 0.081 10 1.2 

 

The influence of overheating parameter𝐵 on the Zn10 alloy 

is shown in Figure 4. The presented comparative results of the 

solidification process clearly suggest that the rate of 

solidification of the alloy strongly depends on the degree of 

overheating. As it increases, the alloy solidification velocity 

decreases. 

 

 
 

Figure 4. Development of the solidified layer for Zn10 and 

𝐵𝑖𝐶𝑂𝑁 = 10 for overheating parameters B 

 

Using the following model simplification in the nonlinear 

problem (12)-(14): no overheating of the liquid alloy (B=0), a 

simple differential equation for the thickness of the solidified 

layer �̃� can be obtained. 

 

1

2
(2

1 + 𝛿𝐵𝑖𝐶𝑂𝑁

𝐵𝑖𝐶𝑂𝑁

− 𝑆𝑡𝑒𝛿)
𝑑𝛿

𝑑𝜏
= 1, (15) 

which analytical solution is given by: 

 

𝛿  = −
2

𝐵𝑖𝐶𝑂𝑁(2−𝑆𝑡𝑒)
+ √

4

𝐵𝑖𝐶𝑂𝑁
2 (2−𝑆𝑡𝑒)2 +

4

2−𝑆𝑡𝑒
𝜏, (16) 

 

 
 

Figure 5. Development of the solidified layer for B=0 

 

Formula (16) allows to present in graphical form the 

development of the solidified layer and the speed of the 

solidification front of the alloy (see Figure 5). The graphs on 

this figure were made, for comparison purposes, for two 

different thermal resistances of the contact layer between the 

solidified layer and the cold wall surface that limit a wide 

range of thermal resistance: 𝐵𝑖𝐶𝑂𝑁 = ∞  (perfect thermal 

contact) and 𝐵𝑖𝐶𝑂𝑁 = 10. As can be seen, the solidification 

rates of alloys for times 𝜏 > 0.1 are almost the same. 

 

2.3 Temperature distribution in a two-phase layer 

 

The phenomenon of alloy solidification under quasi-steady 

conditions in the two-phase zone (see Figure 2) can be 

described by the classical Poisson equation: 

 

𝜕2𝑇

𝜕𝑥2
+

�̇�𝑉(𝑥)

𝑘𝑚

= 0, (17) 

 

where the mean volume heat flux �̇�𝑉 (see Eq. (4)) is equal to: 

 

�̇�𝑉 =
�̇�

𝛿𝐿 − 𝛿𝑆

=
1

2
𝜌𝑆𝐿

𝑑𝛿𝑆

𝑑𝑡
+

𝑑𝛿𝐿

𝑑𝑡
𝛿𝐿 − 𝛿𝑆

. (18) 

 

 
 

Figure 6. Dependence of the heat volume flow generated in 

the two-phase zone on the solidification time for Zn10 

and 𝐵𝑖𝐶𝑂𝑁 = ∞, 𝐵 = 0, 𝑆𝑡𝑒 = 0.081 
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Table 2. Parameters of the two-phase zone during the solidification of the Zn10 alloy for selected times 

 

𝝉 𝒕, 𝒔 𝜹 𝜹𝑺,𝒎 𝜹𝑳,𝒎 𝒅𝜹 𝒅𝝉⁄  𝒅𝜹 𝒅𝒕⁄ , 𝒎 𝒔⁄  �̇�𝑽, 𝑴𝑾 𝒎𝟑⁄  

0.01 11.3 0.144 1.44·10-2 3.44 ∙ 10−2 7.22 6.42·10-4 56.08 

0.05 56.3 0.322 3.22·10-2 5.22 ∙ 10−2 3.23 2.87·10-4 25.08 

0.1 112.5 0.457 4.57·10-2 6.57 ∙ 10−2 2.28 2.03·10-4 17.73 

0.2 225 0.646 6.46·10-2 8.46 ∙ 10−2 1.61 1.43·10-4 12.54 

 

 

The graph of �̇�𝑉 , treated as a function of t, is shown in 

Figure 6 whereas its some values along with the other 

parameters of two-phase layer related to the solidification of 

the Zn10 alloy are collected in Table 2. 

Changes of the parameters during the solidification process 

are showed in Table 2. The results of the conducted theoretical 

research show that the solidification front 𝛿(𝑡) increases as 

time 𝑡 increases but with slower and slower velocity 𝑑𝛿 𝑑𝑡.⁄  

On the other hand, the volumetric heat flux �̇�𝑉 generated in the 

solidification process decreases with time. 

The solution of the Poisson equation (17) in the space of the 

traveling two-phase layer, under the following conditions at 

the boundary of the layer: 

 

𝑇 = 𝑇𝑆 for 𝑥 = 𝛿𝑆, 𝑇 = 𝑇𝐿  for 𝑥 = 𝛿𝐿 , (19) 

 

is the temperature field expressed by a square polynomial 

depending on the location in the layer 𝛿𝑆 < 𝑥 < 𝛿𝐿, i.e. 

 

𝑇 = 𝑇𝑆 −
1

2𝑘𝑚
�̇�𝑉𝑥2 + [

𝑇𝐿−𝑇𝑆

𝛿𝐿−𝛿𝑆
+

1

2𝑘𝑚
�̇�𝑉(𝛿𝐿 + 𝛿𝑆)] 𝑥 −

− (
𝑇𝐿−𝑇𝑆

𝛿𝐿−𝛿𝑆
+

1

2𝑘𝑚
�̇�𝑉𝛿𝐿) 𝛿𝑆. 

(20) 

 

Figure 7 shows the temperature distribution in the two-

phase layer at selected solidification times t for the Zn10 alloy. 

Inside the layer, the alloy temperature changes monotonically 

from the solidus temperature 𝑇𝑆 = 1040℃  to the liquidus 

temperature 𝑇𝐿 = 1050℃. As can be seen form the graph, for 

the initial solidification times, for which the heat of 

crystallization flux is high, the temperature reaches its 

maximum at a certain point inside the layer and this maximal 

value is slightly higher than the liquidus temperature. The 

reason for this is the fact that the volumetric heat flux �̇�𝑉 

generated in the solidification process in the two-phase zone 

of the alloy exceeds the heat flux removed from the layer. 

 

 
 

Figure 7. Temperature distribution in a two-phase layer 

depending on the time for Zn10 with 𝐵𝑖𝐶𝑂𝑁 = ∞, 𝐵 = 0 and 

𝑆𝑡𝑒 = 0.081 

3. SOLIDIFICATION OF THE ALLOY IN THE 

CONTINUOUS CASTING PROCESS  

 

The solidification of pure metals during a continuous 

casting was investigated analytically, for instance, in works [4] 

(casting of bars) and [5] (casting of flat castings). In Ref. [5], 

the influence of the casting shape on the solidification process 

was additionally examined. In both studies, the stationary 

solidification front with respect to the crystallizer was 

determined by applying the superposition of two movements: 

the flow of liquid metal in the vertical direction (perpendicular 

to the surface of the crystallizer) and the movement of the 

solidification front in the direction perpendicular to the surface 

of the crystallizer wall. A special attention was paid to the 

thermal resistance of the contact layer between the solidified 

metal and the surface of the crystallizer. The dependence of 

the solidification front shape on the thermodynamic and flow 

parameters of the metal was also shown. 

The proposed model of the cold wall solidification of the 

alloy used in this paper is shown in Figure 1. Now it is time to 

present the analytical method of determining the solidification 

front shape in the continuous casting of a brass plate (Figure 

8). To determine the stationary solidification fronts with 

respect to the crystallizer, the superposition of two movements: 

vertical flow of the liquid alloy through the crystallizer and the 

horizontal movement of the solidification front inside the 

crystallizer, was used. It was assumed that the appropriate 

selection of the alloy flow rate and the solidification rate 

(superposition of both movements) ultimately leads to the 

formation of a solidification front that is immobile in relation 

to the crystallizer. Obviously, the shape of this solidification 

front depends on the thermodynamic and flow parameters of 

the alloy. 

Due to the analysis of the alloy – not a pure metal –

solidification phenomenon in the continuous casting process, 

a stratified solidification front related to the phase space 

between boundaries the liquidus and solidus of a given alloy 

is adopted as opposite to a sharp solidification front that is 

characteristic for pure metals. The other assumptions are as 

follows:  

- the liquid alloy with the temperature 𝑇𝐶  flows into the 

crystallizer (Figure 8) where it contacts the cold flat wall with 

the surface temperature 𝑇𝑊,  

- the surface temperature of the wall is lower than the 

freezing point of the alloy and satisfies inequality 𝑇𝑊 < 𝑇𝑆. 

In addition, on the surface of the solidus layer with the 

thickness 𝛿𝑆 there is the solidus temperature 𝑇𝑆 and at the 

distance 𝛿𝐿 there is the liquidus surface with the temperature 

𝑇𝐿 , which is slightly higher than the solidus temperature. The 

solidification time of the element of the liquid alloy stream, 

described by the Eq. (16), depends on the velocity of the alloy 

in the crystallizer in the direction of the 𝑦-axis starting from 

the inlet to the crystallizer and is described by the Eq. [10]: 
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𝑡 =
𝑦

𝑢
 , (21) 

 

where 𝑢 is the velocity of the alloy in the crystallizer and y is 

the travel path from the inlet to the crystallizer. 

Comparing the equations determining the time of the 

solidification front movement (16) and the alloy movement 

time in the crystallizer (21), the stationary equation of the 

solidification front was obtained: 

 

�̃� =
𝑃𝑒

4𝑆𝑡𝑒
[(2 − 𝑆𝑡𝑒)𝛿2 +

4𝛿

𝐵𝑖𝐶𝑂𝑁

] , (22) 

 

where the dimensionless coordinate of the solidification front 

position and the Peclet number are given by respectively. 

 

�̃� =
𝑦

𝐻
 and 𝑃𝑒 =

𝑢𝐻

𝑎𝑆

,  

 

 
 

Figure 8. The shape of the solidification front of Zn10 in a 

flat crystallizer for 𝑆𝑡𝑒 = 0.081, 𝐵𝑖𝐶𝑂𝑁 = ∞ and 𝐵 = 0 

 

The stationary shape of the brass solidification front in 

relation to the crystallizer in the continuous casting of a flat 

cast is presented in Figure 8 for two Peclet numbers: Pe=1 and 

Pe=2. With an increase in the Peclet number (indirectly with 

an increase in the alloy flow velocity in the crystallizer), the 

solidification front in the direction of flow lengthens. This 

information is very important when designing the height of the 

crystallizer. 

 

 

4. CONCLUSIONS 

 

The two-phase layer on the solidifying surface of the alloy 

generates the phase change heat which is carried away through 

the solidified layer to the crystallizer surface. The amount of 

the generated heat decreases as the solidification process 

progresses. The heat of solidification causes a local 

temperature increase in the layer. The biggest increase in 

temperature is observed at the beginning of the solidification 

process. The analytical model used in this work, describing the 

solidification of brass, is simple and yet allows to determine 

very important macroscopic technological parameters of the 

alloy solidification: the solidification time and the shape of the 

alloy solidification front in the crystallizer. 

The conducted theoretical research will allow metallurgists 

and founders to correctly analyze and design the solidification 

processes of alloys. They will allow a better understanding of 

the solidification phenomenon, which has a significant impact 

on the structure and strength properties of the obtained alloys 

as a result of solidification processes. 

Future studies should be carried out using theoretical 

models that are even closer to real solidification conditions. 

For this purpose, non-stationary and fully non-linear equations 

describing the solidification process should be used. However, 

finding analytical solutions of these equations is extremely 

difficult. Of course, one can get their numerical solutions, but 

still the question of the correct interpretation of the results 

obtained in this way remains an important challenge. 
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NOMENCLATURE 

 

�̃� dimensionless ratio of thermal diffusivities,  

𝑎𝐿 thermal diffusivity of the liquid alloy, m2. s-1 

𝑎𝑆 thermal diffusivity of the solidified layer, m2. s-1 

𝐵 dimensionless overheating parameter 

𝐵𝑖𝐶𝑂𝑁  dimensionless Biot number in the contact layer 

𝑐𝐿 specific heat of the liquid, J. kg-1. K-1 

𝑐𝑆 specific heat of the solidified layer, J. kg-1. K-1 

𝐹𝑜 dimensionless Fourier number 

ℎ heat transfer coefficient at the solidification front, W. 

m-2. K-1 

ℎ𝐶𝑂𝑁 heat transfer coefficient at the contact layer, 

W. m-2. K-1 

𝐻 width of the channel, m 

�̃� dimensionless ratio of heat conductivities 

𝑘𝐿 heat conductivity of the liquid metal, W. m-1. K-1 

𝑘𝑚 average heat conductivity of the mixture of liquidus 

and solidus, W. m-1. K-1 

𝑘𝑆 heat conductivity of the solidified layer, W. m-1. K-1 

𝐿 latent heat of liquid, J. kg-1 

𝑃𝑒 dimensionless Peclet number 

�̇� heat flux, W. m-1 

�̇�𝑉 volume heat flux, W. m-3 

𝑆 dimensionless volume fraction of the solid phase 

𝑆𝑡𝑒 dimensionless Stefan number 

𝑡 time, s 

𝑇 temperature, K 

𝑇𝐶  temperature of the liquid metal, K 

�̅�𝐶  average liquid metal temperature, K 

𝑇𝐶0 initial liquid metal temperature, K 

𝑇𝐿  liquidus temperature, K 

𝑇𝑆 solidus temperature, K 

𝑇𝑊 wall temperature, K 

𝑢 velocity, m. s-1 

𝑢𝐿 velocity of the liquidus, m. s-1 

𝑢𝑆 velocity of the solidus, m. s-1 

�̃� dimensionless coordinate of the solidification front 

position 

 

Greek symbols 

 

𝛿 dimensionless position of the solid layer 

𝛿𝐿 position of the liquidus, m 

𝛿𝑆 position of the solidus, m 

𝛿𝑆
,
 position of the volume fraction 𝑆 

∆ thickness of the two-phase layer, m 

∆̃ dimensionless thickness of the two-phase layer 

�̅�𝐶 average dimensionless overheating temperature of 

the liquid 

𝜌𝐿 liquid density, kg. m-3 

𝜌𝑆 density of the solidified layer, kg. m-3 

𝜏 dimensionless time 
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