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 The present study dealt with heat and mass transfer rate, and motile micro-organisms for 

convective micropolar nanofluid flow in a porous medium. The nanofluid contains the 

influence of both Brownian motion and thermodiffusion (thermophoresis). The problem 

considered finds applications in the areas of engineering such as reducing greenhouse 

effects and in the pharmaceutical applications enhancing mixing and slowing down settling 

particles can be mentioned. The numerical results are obtained and discussed. The results 

obtained suggest that micropolar fluids enhance the flow and decrease the temperature, 

nanoparticles concentration and gyrotactic microorganisms concentration profiles 

compared to viscous fluid. It is also noted that Hall parameter increases skin friction, the 

heat transfer rate, the mass transfer rate and density of the motile microorganisms. 
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1. INTRODUCTION 

 

Studying heat and mass transfer phenomenon at small scales 

level attracted many researchers because of its application. To 

enhance the heat transfer is one of the areas of research in 

thermal science. Among the various techniques enhancing 

heat transfer in a flow adding nano size particle in the base 

fluid presented by Choi and Eastman [1] is found to be 

efficient thermal conductivities. The base fluid such as water, 

engine oil, ethylene etc. have low thermal conductivity 

therefore, nanofluids with the metals in it will enhance the 

thermal conductivity of such fluids. Nanofluids appear to 

behave more like single phase fluid than a solid-liquid 

mixture. There are various applications of nanofluid 

cellphones and laptops related to energy resources can be 

considered as an example. By developing a mathematical 

model Buongiorno [2] made a comprehensive survey of 

nanofluid transport mechanisms. A number of researchers 

studied saturating nanofluid is well documented by researchers 

[3-8] to mention a few. 

Bioconvection happens due to a convection driven by the 

collective motion caused by density gradient created by 

collective swimming of motile microorganisms [3]. 

Bioconvection nanofluid describes the impulsive pattern 

formation of instability due to the density stratification. 

Presence of microorganisms in nanofluid boost mass transfer 

especially in micro-volume. The motion of micro-organisms 

is self-intended whereas that of nanoparticle is due to random 

movement (i.e. Brownian motion) and thermophoretic effect 

in nanofluid. Bioconvection i.e. contemporaneous interplay of 

nanoparticles, buoyancy forces and self-propelled 

microorganisms find application in field of biomedical 

systems, bioconjugates, design of bio cells, bio microsystem, 

reduction of blood loos during surgeries [9]. After Platt [10] 

introduced bioconvection and reported the physics of the 

curious streaming several researchers studied bioconvections 

flows. Nanoparticles and gyrotactic microorganisms for 

second grade fluid in a porous medium discussed by Khan et 

al. [11] reported microorganism concentration decreases with 

increase in porosity parameter. Second-grade nanofluid fluid 

flow over stretching sheet in the presence of gyrotactic 

microorganism examined by Waqas et al. [12] disclosed 

bioconvection Rayleigh number decreases velocity. Unsteady 

flow of Oldroyd B nanoparticles flow over a moving 

oscillatory surface considering gyrotatic microorganisms 

studied by Khan et al. [13] showed thermophoresis increases 

with Motile microorganism. Many authors studied 

bioconvection flow see for example [14-18].  

The non-Newtonian fluid models with microstructures such 

as polymeric additives, colloidal suspensions and non-

symmetric stress tensor is classified as micropolar fluid. After 

the pioneer work of Eringen [19] convective flow of 

micriopolar fluid analyzed by many authors. Ariman et al. [20, 

21] reviewed micropolar fluids and showed applications in 

technology.  

Heat transfer of nanofluid in a porous medium improve the 

convection heat transfer and it finds industrial applications. 

From applications of porous medium flow solar collectors, 

geothermal operations, petroleum, porous burners, can be 

mentioned. Fluid flow modelling through a Darcy and/or non-

Darcy porous medium studied by various researchers [22-27] 

to mention a few. A review and applications are documented 

in monographs by Ingham and Pop and Ingham [28], Nield 

and Bejan [29].  

The present paper addresses the gap that are identified in the 

researches mentioned above and finds applications in 

biotechnology, biomedical, oil refinery and bio-microsystems. 

The above-mentioned papers and exhaustive literature survey 

reveal that the study comprising radiation, 

magnetohydrodynamics (hall effects), the interaction of 

moltile microorganisms on bioconvective micropolar 

nanofluid flow in a porous medium has not been carried out so 

far. We have extended the earlier work of Zuhra et al. [14] for 

micropolar fluid by considering hall effects, porosity and 
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thermal radiation on fluid flow, for viscous and micropolar 

fluid then compared. We hope the research will contribute in 

the magnetohydrodynamics theory it’s on part for the 

combined effects of the mentioned parameters. The governing 

partial differential equations of the modeled problem applying 

similarity transformations non-dimensional system of 

differential equations determined then solved numerically 

using spectral quasi linearization method (SQLM). The effects 

of parameters of interest are studied. 

 

 

2. MODELLING THE PROBLEM 

 

Consider the two-dimensional steady, incompressible, 

laminar, micropolar nanofluids along with gyrotactic micro-

organisms over a vertical plate in a porous medium. It is 

assumed transverse magnetic field of strength B0 is applied. In 

order microorganisms not to be absorbed the pore size is 

assumed to be large in the porous medium also the Brinkman-

Darcy model is used. The microorganisms give rise to stabilize 

the nanoparticles. In order microorganisms and gyrotactic 

behavior not be killed it is assumed the temperature variation 

weak. Kuznetsov [30] suggested lower temperature gradient 

will not significantly change gyrotactic behavior. As it is 

reported by Sarkar et al. [31] from their experimental results 

microorganisms can withstand temperatures of 42℃. The 

Brownian type diffusion and thermophoretic mechanisms 

along with Newtonian heating are also considered. It is further 

assumed cross flow is caused due to the magnetic field and 

Hall current. 

Under the above assumptions following [11, 12, 14, 32] the 

equations governing the flow are: 
 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (1) 

 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= (

𝜇𝑓+ϗ𝑓

𝜌𝑓
)

𝜕2𝑢

𝜕𝑦2 −
ϗ𝑓

𝜌𝑓

𝜕𝛤

𝜕𝑦
−

𝜐𝑓

𝑘1
𝑢 −

𝜎𝐵0
2

𝜌𝑓(1+𝑚2)
(𝑢 + 𝑚 𝑤)+

𝑔∗

𝜌𝑓
[(1 − 𝐶𝑓)𝛽𝑇(𝑇 − 𝑇∞) +

(𝜌𝑝 − 𝜌𝑓)(𝐶 − 𝐶∞) + 𝛾𝑤(𝑁 − 𝑁∞)(𝜌𝑚 − 𝜌𝑓)] 

(2) 

 

𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
= (

𝜇𝑓 + ϗ𝑓

𝜌𝑓

)
𝜕2𝑤

𝜕𝑦2
−

ϗ

𝜌𝑓

𝜕𝛤

𝜕𝑦
−

𝜐𝑓

𝑘1

𝑤

+
𝜎𝐵0

2

𝜌𝑓(1 + 𝑚2)
(𝑢 − 𝑚 𝑤) 

(3) 

 

𝑢
𝜕𝛤

𝜕𝑥
+ 𝑣

𝜕𝛤

𝜕𝑦
= 𝛾𝑓

𝜕2𝛤

𝜕𝑦2
− 2ϗ𝑓𝛤 − ϗ𝑓

𝜕𝑢

𝜕𝑦
 (4) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼𝑓

𝜕2𝑇

𝜕𝑦2
+

𝜎𝐵0
2

𝜌𝑓(1 + 𝑚2)
(𝑢2 + 𝑤2)

+
16𝜎∗𝑇∞

3

3 𝑘∗𝜌𝑓𝐶𝑝

𝜕2𝑇

𝜕𝑦2

+
(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
[
𝐷𝑇

𝑇∞
 (

𝜕𝑇

𝜕𝑦
)
2

+ 𝐷𝐵 (
𝜕𝑇

𝜕𝑦
) (

𝜕𝐶

𝜕𝑦
)] 

(5) 

 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2
+

𝐷𝑇

𝑇∞

 
𝜕2𝑇

𝜕𝑦2
 (6) 

 

𝑢
𝜕𝑁

𝜕𝑥
+ 𝑣

𝜕𝑁

𝜕𝑦
=

𝑏 𝑊𝑐

(𝐶𝑤 − 𝐶∞)
[
𝜕

𝜕𝑦
(𝑁

𝜕𝐶

𝜕𝑦
)] + 𝐷𝑚  

𝜕2𝑁

𝜕𝑦2
 (7) 

 

where, ϗ  is the material or micropolar parameter, T∞ the 

reference temperature, u, v, w are the velocity components of 

the flow, T is the temperature, m is hall parameter, Dm is the 

diffusivity of microorganisms, g is the gravity, k1 is the 

permeability of the porous medium, αf is the thermal 

diffusivity, (ρc)p is heat capacity of nanofluid, ρcf is heat 

capacity of base fluid, σ* is Stefan-Boltzmann constant, βT is 

the volume expansion coefficient, C is the nanoparticles 

volume fraction, C∞ reference concentration of nanoparticles, 

𝐷𝑇  and 𝐵𝐷  are the coefficient of thermophoretic diffusion and 

Brownian diffusion, k* is mean absorption coefficient, N is the 

local density number of the motile microorganisms, 𝑁∞ 

reference concentration of the microorganisms and 𝐶𝑤 is the 

maximum cell swimming speed. 

Following [27] the spin gradient viscosity, γf, in Eq. (4) is 

given by:  

 

𝛾𝑓=(𝜇𝑓 +
ϗ𝑓

2
) 𝑗 

 

where, 𝑗 =
𝜐𝑓

𝑐1
 is the micro-inertia. 

The boundary conditions are: 

 

u=Uw=c1 x, v=Vw, w=𝛤=0, 
𝜕𝑇

𝜕𝑦
=-h (T), 

𝜕𝐶

𝜕𝑦
=-kc(C),  

𝜕𝑁

𝜕𝑦
=-hn (N), at y=0 

 

𝑢 → 0, 𝑤 → 0, 𝑇 = 𝑇∞, 𝐶 = 𝐶∞,
𝑁 = 𝑁∞ 𝑎𝑠 𝑦 → ∞ 

(8) 

 

where, Vw is suction velocity. 

The following transformations applied for non 

dimesionalization: 

 

𝑢 = 𝑐1𝑥𝑓′(𝜂), 𝑣 = √𝑐1𝜐𝑓  𝑓(𝜂), 𝑤 = 𝑐1𝑥𝑔(𝜂), 

𝛤 = 𝑐1𝑥√
𝑐1

𝜐𝑓
𝜔(𝜂), 𝜂 = √

𝑐1

𝜐𝑓
𝑦 

𝜃(𝜂) =
𝑇−𝑇∞

𝑇∞
, 𝜑(𝜂) =

𝐶−𝐶∞

𝐶∞
, ℎ(𝜂) =

𝑁−𝑁∞

𝑁∞
 

(9) 

 

Substituting Eq. (9) into Eqns. (1-7), we get the following 

non-dimensional equations: 

 

(1 + 𝜒)𝑓′′′ − 𝑓′ 2 + 𝑓𝑓′′ − 𝛿𝑓′ − 𝜒𝜔′

+ 𝜆[𝜃 − 𝑁𝑟𝜑 − 𝑅𝑏 ℎ]

−
𝑀

(1 + 𝑚2)
(𝑓′ + 𝑚 𝑔) = 0 

(10) 

 
(1 + 𝜒)𝑔′′ − 𝑓′𝑔 + 𝑓𝑔′ − 𝛿 𝑔 − 𝜒𝜔′

+
𝑀

(1 + 𝑚2)
(𝑓′ − 𝑚 𝑔) = 0 

(11) 

 

(1 +
𝜒

2
)𝜔′′ − 𝑓′𝜔 + 𝑓𝜔′ − 𝜒(2𝜔 + 𝑓′′) = 0 (12) 

 

(1 +
4 𝑅𝑑

3
)𝜃′′ + 𝑃𝑟 𝑓𝜃′ + 𝑝𝑟 𝑁𝑡 𝜃′2 + 𝑝𝑟 𝑁𝑏 𝜃′𝜑′

+
𝑀 𝐸𝑐

(1 + 𝑚2)
(𝑓′2 + 𝑔2) = 0 

(13) 

 

728



 

𝜑′′ + 𝐿𝑒 𝑓 𝜑′ −
𝑁𝑡

𝑁𝑏
𝜑′′ = 0 (14) 

 

ℎ′′ + 𝐿𝑏 𝑓 ℎ′ − 𝑃𝑒[𝜑′ℎ′ + ℎ 𝜑′′] = 0 (15) 

 

where, 𝜒 =
ϗ𝑓

𝜇𝑓
 is the material or micropolar parameter, 𝜆 =

𝛽𝑇 𝑔
∗(1−𝐶∞)𝑇∞

𝑐1
2𝑥

 the mixed convection parameter, 𝑀 =
𝜎𝐵0

2

𝜌𝑓𝑐1
 

magnetic parameter, 𝑅𝑑 =
4 𝜎∗𝑇∞

3  

 𝑘∗𝑘𝑓
 is the thermal radiation, 

𝑁𝑟 =
(𝜌𝑝−𝜌𝑓)(𝐶𝑤−𝐶∞)

𝛽𝑇𝜌𝑓𝑇∞(1−𝐶∞)
 the buoyancy ratio parameter, 𝑁𝑡 =

(𝜌𝑐)𝑝𝐷𝑇

(𝜌𝑐)𝑓𝜐𝑓
 represents thermophoresis parameter, 𝐿𝑒 =

𝜐𝑓

𝐷𝐵
 Lewis 

number,  𝑁𝑏 =
(𝜌𝑐)𝑝𝐷𝐵𝐶∞

(𝜌𝑐)𝑓𝜐𝑓
 is Brownian motion parameter, 

𝑃𝑟 =
𝜐𝑓

𝛼
 Prandtl number, 𝑃𝑒 =

𝑏 𝑊𝑐

𝐷𝑚(𝐶𝑤−𝐶∞)
 bioconvection 

Peclet number, A is the suction/injection parameter, 𝐸𝑐 =
𝑈𝑤

2

𝐶𝑝𝑇∞
 the Eckert number, 𝛿 =

𝜐𝑓

𝑘1 𝑐1
 is porosity parameter, 𝐿𝑏 =

𝜐𝑓

𝐷𝑚
 represent bioconvection Lewis parameter and 𝑅𝑏 =

𝛾𝑤(𝜌𝑚−𝜌𝑓)

𝛽𝑇𝑔∗(1−𝐶∞)𝑇∞
 is Rayleigh number. 

The non dimensional boundary conditions are:  

 

𝑓(0) = 𝐴, 𝑓′(0) = 1, 𝑔(0) = 0, 𝜔(0) =
0, 𝜃′(0) = −𝛽1(𝜃(0) + 1), 𝜑′(0) = −𝛽2(𝜑(0) +

1), ℎ′(0) = −𝛽3(ℎ(0) + 1), 

(16) 

 

𝑓′ → 0, 𝑔 → 0, 𝜔 → 0, 𝜃 → 0, 𝜙 → 0 as 𝜂 → 0. 

 

where, 𝐴 =
𝑉𝑤

√𝜐𝑓𝑐1
, 𝛽1 = ℎ𝑠√

𝜐𝑓

𝑐1
, 𝛽2 = ℎ𝑐√

𝜐𝑓

𝑐1
, 𝛽3 = ℎ𝑛√

𝜐𝑓

𝑐1
. 

The shearing stress components can be calculated in non-

dimensional form: 

 

𝜏𝑤 = [(𝜇 + ϗ)
𝜕𝑢

𝜕𝑦
+ ϗ𝛤]

𝑦=0
, 𝐶𝑓𝑥 =

𝜏𝑤𝑦=0

𝜌𝑈𝑤
2  

𝑅𝑒𝑥

1
2(1 + 𝜒) 𝐶𝑓𝑥 = 𝑓′′(0) 

(17) 

 

The engineering parameters of interest local Nusselt Nux, 

Sherwood Shx and the density number Nnx given by: 

 

𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘(𝑇−𝑇∞)
, 𝑆ℎ𝑥 =

𝑥𝑞𝑐

𝐷(𝐶−𝐶∞)
, 𝑁𝑛𝑥 =

𝑥𝑞𝑛

𝐷𝑛(𝑁−𝑁∞)
 (18) 

 

𝑞𝑤 = −𝑘
𝜕𝑇

𝜕𝑦
, 𝑞𝑐 = −𝐷

𝜕𝐶

𝜕𝑦
, 𝑞𝑛 = −𝐷𝑛

𝜕𝑇

𝜕𝑦
 (19) 

 

𝑅𝑒𝑥

−
1
2 𝑁𝑢𝑥 = 𝛽1 (1 +

1

𝜃(0)
) (20) 

 

𝑅𝑒𝑥

−
1
2 𝑆ℎ𝑥 = 𝛽2 (1 +

1

𝜙(0)
) (21) 

 

𝑅𝑒𝑥

−
1
2 𝑁𝑛𝑥 = 𝛽3 (1 +

1

𝜒(0)
) (22) 

 

𝑅𝑒𝑥 =
𝑐1𝑥2

𝜐
 Reynolds number.  

 

 

3. SOLUTION USING SQLM 

 

In this subsection Eq. (10)-(15) together with the boundary 

conditions Eq. (16) are solved using SQLM. Bellman and 

Kalaba [33] first presented the (QLM) as a generalization of 

the Newton Raphson method they showed that this method 

could solve non-linear boundary value problems. Motsa et al. 

[34] by modifying QLM introduced SQLM. The main idea of 

SQLM is introduction of a differentiation matrix which is used 

to approximate the derivatives of the unknown linearized 

functions and apply Chebyshev pseudo-spectral Collocation 

method to integrate the coupled system obtained. The 

convergence of the method happens rapidly if the initial guess 

of the solution is close to the true solution. We assume that the 

solutions fr, gr, ωr, θr, φr and hr of Eqns. (10)-(15) at the (r+1)th 

iteration are given as fr+1, gr+1, ωr+1, θr+1, φr+1 and hr+1. If we 

obtain the solutions at the previous iteration being sufficiently 

close to the present iteration, the non-linear components of 

Eqns. (10)-(15) can then be linearized using one term Taylor's 

series for multiple variables so that we obtain the following 

iteration of linear differential equations, 

 

𝑎1,𝑟  𝑓𝑟+1
′′′ + 𝑎2,𝑟 𝑓𝑟+1

′′ + 𝑎3,𝑟 𝑓𝑟+1
′ +𝑎4,𝑟 𝑓𝑟+1 +

 𝑎5,𝑟 𝑔𝑟+1+ 𝑎6,𝑟 𝜃𝑟+1 + 𝑎7,𝑟 + 𝑎8,𝑟 𝜑𝑟+1 +

 𝑎9,𝑟 ℎ𝑟+1 = 𝑅𝑟
(1)

 

(23) 

 

𝑏1,𝑟 𝑔𝑟+1
′′ + 𝑏2,𝑟 𝑔𝑟+1

′ + 𝑏3,𝑟 𝑔𝑟+1 + 𝑏4,𝑟 𝑓𝑟+1
′ +

 𝑏5,𝑟 𝑓𝑟+1 = 𝑅𝑟
(2)

 
(24) 

 

𝑐1,𝑟  𝜔𝑟+1
′′ + 𝑐2,𝑟 𝜔𝑟+1

′ + 𝑐3,𝑟 𝜔𝑟+1 +𝑐4,𝑟 𝑓𝑟+1
′′ +

𝑐5,𝑟 𝑓𝑟+1
′ + 𝑐6,𝑟 𝑓𝑟+1 = 𝑅𝑟

(3)
 

(25) 

 

𝑑1,𝑟 𝜃𝑟+1
′′ + 𝑑2,𝑟 𝜃𝑟+1

′ + 𝑑3,𝑟 𝑓𝑟+1
′ + 𝑑4,𝑟 𝑓𝑟+1

+ 𝑑5,𝑟 𝑔𝑟+1 +  𝑑6,𝑟 𝜑𝑟+1
′ = 𝑅𝑟

(4)
 

(26) 

 

𝜑𝑟+1
′′ + 𝑒1,𝑟 𝜑𝑟+1

′ + 𝑒2,𝑟 𝜃′𝑟+1
′ + 𝑒3,𝑟 𝑓𝑟+1 = 𝑅𝑟

(5)
 (27) 

 

ℎ𝑟+1
′′ + 𝑝1,𝑟 ℎ𝑟+1

′ + 𝑝2,𝑟 ℎ𝑟+1 + 𝑝3,𝑟 𝑓𝑟+1

+ 𝑝4,𝑟  𝜑′𝑟+1
′ + 𝑝5,𝑟  𝜑𝑟+1

′ = 𝑅𝑟𝜙
(6)

 
(28) 

 

where, 

 

𝑎1,𝑟 = 1 + 𝜒, 𝑎2,𝑟 = 𝑓𝑟  + 𝑎3,𝑟 = −2𝑓𝑟 − 𝛿 −
𝑀

(1 + 𝑚2)
,  

𝑎4,𝑟 = 𝑓𝑟
′′, 𝑎5,𝑟 = −

𝑀

(1 + 𝑚2)
, 𝑎6,𝑟 = 𝛿, 𝑎7,𝑟 = 𝜆, 𝑎8,𝑟

= −𝜆 𝑁𝑟, 𝑎9,𝑟 = −𝜆 𝑅𝑏 

𝑏1,𝑟 = 1 + 𝜒, 𝑏2,𝑟 = 𝑓𝑟 , 𝑏3,𝑟 = 𝑓𝑟 − 𝛿 −
𝑀

(1+𝑚2)
, 𝑏4,𝑟 =

−𝑔𝑟 + 
𝑀 𝑚

(1+𝑚2)
, 𝑏5,𝑟 = 𝑔𝑟

′  

 

𝑐1,𝑟 = (1 +
𝜒

2
) , 𝑐2,𝑟 = 𝑓𝑟 , 𝑐3,𝑟 = −𝑓𝑟 − 2𝜒, 𝑐4,𝑟 = −𝜒 𝑐5,𝑟 

= −𝜔𝑟 , 𝑐6,𝑟 = 𝜔𝑟
′  

𝑑1,𝑟 = 1 +
4 𝑅𝑑

3
, 𝑑2,𝑟 = 𝑝𝑟(𝑓𝑟 , +2 𝑁𝑡 𝜃𝑟

′  + 𝑁𝑏 𝜙𝑟
′  ),  

𝑑3,𝑟 = 
2 𝑀 𝐸𝑐

(1 + 𝑚2)
 𝑓𝑟

′, 𝑑4,𝑟 = Pr  𝜃𝑟
′ , 

𝑑5,𝑟 = 
2 𝑀 𝐸𝑐

(1 + 𝑚2)
 𝑔𝑟 , 𝑑6,𝑟 = Pr𝑁𝑏 

2 𝑀 𝐸𝑐

(1 + 𝑚2)
 𝑓𝑟

′ 
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𝑒1,𝑟 = 𝐿𝑒 𝑓𝑟 , 𝑒2,𝑟 =
𝑁𝑡

𝑁𝑏
 , 𝑒3,𝑟 = 𝐿𝑒 𝜙𝑟

′ , 

𝑝1,𝑟 = 𝐿𝑏 𝑓𝑟+1 − 𝑃𝑒 𝜑𝑟
′ , 𝑝2,𝑟 = −𝑃𝑒, 𝑝3,𝑟 = 𝐿𝑏 ℎ𝑟

′ ,  

 𝑝4,𝑟   = −𝑃𝑒, 𝑝5,𝑟 = −𝑃𝑒 ℎ𝑟
′  

 

The boundary conditions are: 

 

𝑓𝑟+1(𝜂) = 𝐴, 𝑓𝑟+1
′ (𝜂) = 1,   𝑔𝑟+1(𝜂) = 0, 

𝜔𝑟+1(𝜂) = 0, 𝜃𝑟+1
′ (𝜂) =  𝛽1(𝜃(𝜂) + 1), 

𝜑𝑟+1
′ (𝜂) = 𝛽1((𝜂) + 1),  ℎ𝑟+1

′ (𝜂) =  𝛽1(ℎ(𝜂) + 1) 

at 𝜂 = 0 

(29) 

 

𝑓𝑟+1
′  →  0, 𝑔𝑟+1  → 0, 𝜔𝑟+1  → 0, 𝜃𝑟+1 → 0 𝜙𝑟+1 →

0, ℎ𝑟+1  → 0 as 𝜂 → ∞. 
 

Eqns. (23)–(28) solved by using the Chebyshev pseudo-

spectral method. In the spectral collocation method we 

introduce a differentiation matrix D which we then use to 

approximate the derivatives of the unknown functions f(η), 

g(η), ω(η), θ(η), φ(η) and h(η) at the collocation Chebyshev‐

Gauss‐Lobatto points [35, 36]. 

 

𝜂𝑖 = cos (
𝜋𝑖

𝑁
),   𝑖 = 0, 1, 2, … , 𝑁 (30) 

 

𝑓(𝑝) → 𝑫(𝑝)𝑭,   𝑔(𝑝) → 𝑫(𝑝)𝑮, 𝜔(𝑝) →
𝑫(𝑝)𝜴.  𝜃(𝑝) → 𝑫(𝑝)𝜣,𝜙(𝑝) → 𝑫(𝑝)𝜱, ℎ(𝑝) →

𝑫(𝑝)𝑯 

(31) 

 

[
 
 
 
 
 
𝐴11 𝐴12 𝐴13 𝐴14 𝐴15 𝐴16

𝐴21 𝐴22 𝐴23 𝐴24 𝐴25 𝐴26

𝐴31 𝐴32 𝐴33 𝐴34 𝐴35 𝐴36

𝐴41 𝐴42 𝐴43 𝐴44 𝐴45 𝐴46

𝐴51 𝐴52 𝐴53 𝐴54 𝐴55 𝐴56

𝐴61 𝐴62 𝐴63 𝐴64 𝐴65 𝐴66]
 
 
 
 
 

 

[
 
 
 
 
 
𝐹𝑟+1

𝐺𝑟+1

𝛺𝑟+1

𝛩𝑟+1

𝛷𝑟+1

𝐻𝑟+1]
 
 
 
 
 

=

[
 
 
 
 
 
𝑅1

𝑅2

𝑅3

𝑅4

𝑅5

𝑅6]
 
 
 
 
 

 (32) 

 

where, 

 

𝐴1,1 = 𝑑𝑖𝑎𝑔(𝑎1,𝑟)𝑫
3 + 𝑑𝑖𝑎𝑔(𝑎2,𝑟)𝑫

2 + 𝑑𝑖𝑎𝑔(𝑎3,𝑟)

+ 𝑑𝑖𝑎𝑔(𝑎4,𝑟)𝐼 

𝐴1,2 = 𝑑𝑖𝑎𝑔(𝑎5,𝑟) 𝐼, 𝐴1,3 = 𝑑𝑖𝑎𝑔(𝑎6,𝑟) 𝐼, 

𝐴1,4 = 𝑑𝑖𝑎𝑔(𝑎7,𝑟) 𝐼, 𝐴1,5 = 𝑑𝑖𝑎𝑔(𝑎8,𝑟) 𝐼, 

𝐴1,6 = 𝑑𝑖𝑎𝑔(𝑎6,𝑟) 𝐼 

𝐴2,1 = 𝑑𝑖𝑎𝑔(𝑏4,𝑟)𝑫 + 𝑑𝑖𝑎𝑔(𝑏5,𝑟),

𝐴2,2  

= 𝑑𝑖𝑎𝑔(𝑎3,𝑟)𝑫
2 + 𝑑𝑖𝑎𝑔(𝑏2,𝑟)𝐷

+ +𝑑𝑖𝑎𝑔(𝑏3,𝑟)𝐼 

𝐴2,3 = 𝟎, 𝐴2,4 = 𝟎, 𝐴2,5 = 𝟎, 𝐴2,6 = 𝟎 

𝐴3,1 = 𝑑𝑖𝑎𝑔(𝑐4,𝑟)𝑫 + 𝑑𝑖𝑎𝑔(𝑐5,𝑟), 𝐴3,2  = 𝟎, 

𝐴3,3 = 𝑑𝑖𝑎𝑔(𝑐1,𝑟)𝑫
2 + 𝑑𝑖𝑎𝑔(𝑐2,𝑟)𝐷 + +𝑑𝑖𝑎𝑔(𝑐3,𝑟)𝐼 

𝐴3,4 = 𝟎, 𝐴3,5 = 𝟎, 𝐴3,6 = 𝟎 

𝐴4,1 = 𝑑𝑖𝑎𝑔(𝑑3,𝑟)𝑫 + 𝑑𝑖𝑎𝑔(𝑑4,𝑟), 𝐴4,2  = 𝟎, 𝐴4,3 = 𝟎, 

𝐴4,4 =  𝑑𝑖𝑎𝑔(𝑑1,𝑟)𝑫
2 + 𝑑𝑖𝑎𝑔(𝑑2,𝑟)𝐷 

𝐴4,5 = 𝑑𝑖𝑎𝑔(𝑑5,𝑟)𝑫
2, 𝐴4,6 = 𝟎 

𝐴5,1 = 𝑑𝑖𝑎𝑔(𝑒3,𝑟), 𝐴5,2  = 𝟎, 𝐴5,3 = 𝟎, 

𝐴5,4 =  𝑑𝑖𝑎𝑔(𝑑1,𝑟)𝑫
2 + 𝑑𝑖𝑎𝑔(𝑑2,𝑟)𝐷,𝐴5,5 =  𝑑𝑖𝑎𝑔(𝑒2,𝑟)𝑫

2,

𝐴5,6 = 𝟎 

𝐴6,1 = 𝑑𝑖𝑎𝑔(𝑝3,𝑟), 𝐴6,2  = 𝟎, 𝐴6,3 = 𝟎, 

𝐴6,4 = 𝟎, 𝐴6,5 = 𝑑𝑖𝑎𝑔(𝑝1,𝑟)𝑫
2, 

𝐴6,6 = 𝑫2 + 𝑑𝑖𝑎𝑔(𝑝1,𝑟)𝐷 

𝑅1 = 𝑅𝑟
(1)

, 𝑅2 = 𝑅𝑟
(2)

, 𝑅3 = 𝑅𝑟
(3)

, 𝑅4 = 𝑅𝑟
(4)

,

𝑅5 = 𝑅𝑟
(5)

, 𝑅6 = 𝑅𝑟
(6)

 

 

F, G, Ω, Θ, Φ, H are the values of the functions f, g, ω, θ, φ 

and h evaluated at the grid points, 0 is an (N+1)×(N+1) matrix 

of zeros and (I) is a (N+1)×(N+1) identity matrix. Applying the 

approximate boundary conditions the matrix Eq. (31) can be 

solved. 

 

 

4. RESULTS AND DISCUSSION 

 

For parameters of interest, namely porosity parameter δ, 

Hall parameter m, radiation parameter Rd, Brownian motion 

parameter Nb, thermophoresis parameter Nt, and mixed 

convection parameter λ, numerical results are obtained. In 

Eqns. (2-4) when ϗf=0 hence χ=0 in (10-12) the governing 

equations reduce to viscus fluid, χ=0.8 represent micropolar. 

Research studies, for example, the studies [8, 13, 17] have 

determined that the ranges of the parameters δ, m, λ, Nt and Nb 

are given by 0−3, 0−3, -0.5−2 and 0−2, respectively. In the 

entire numerical computational process, the parameter values 

were chosen as M=2, Nr=0.5, Rb=0.5, pr=0.7, Le=2, Lb=1, 

pe=0.3, β1= 0.2, β2 =0.2, β3 =0.2, A=0.5 and Ec=0.01. In order 

to get asymptotically smooth solution a numerical experiment 

was carried out and maximum value for the boundary is taken 

𝜂=15 to get consistent and to the given accuracy.  
 

4.1 Primary velocity profile, f', secondary velocity, Rd and 

microrotation, ω 

 

Figure 1(a)-Figure 1(c) velocities and microrotation 

variations with 𝛿 (porosity parameter) for the case viscous and 

micropolar fluids presented. It is found that the velocities and 

microrotations profiles decreases with porosity parameter 

increases. Increasing the porosity parameters increases 𝜐 more 

than K hence the porous drug increases causing low motion 

the nanofluid. Note that there is no flow for micropolar 

parameter χ on the flow fields as seen in Figure 1(c) this is 

because in Eq. (2) ϗ=0⇒Eq. (10) χ=0. It is noted that the 

impact of porosity parameter is higher in micropolar fluid 

(χ=0.8) compared to the viscous (χ=0).  
 

 
(a) Porosity parameter effect on f'(η) 

 
(b) Porosity parameter effect on g(η) 
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(c) Porosity parameter effect on ω(η) 

 

Figure 1. Primary, secondary velocities and microrotation 

profiles variation with δ 

 

 
(a) Radiation parameter effect on f'(η) 

 
(b) Radiation parameter effect on g(η) 

 
(c) Radiation parameter effect on ω(η) 

 

Figure 2. Primary, secondary velocities and microrotation 

profiles variation with Rd 

 

The primary and secondary velocities increase with an 

increase in conduction radiation parameter can be seen in 

Figure 2(a) and Figure 2(c). This is because with the radiation 

parameter increase the absorption of radiated heat from the 

plate releases more heat energy to the fluid resulting buoyancy 

forces in the boundary layer increases fluid motion.  

Physically, heat increases with radiation parameter 

increases and hence increase in both velocities. The 

microrotation show increase with increase around the 

boundary layer to its peak and then asymptotically flow to the 

downstream.  

Figure 2(c) describes the microrotation profile for different 

values radiation parameter Rd. We observe a cross flow in the 

microrotation profile 𝜔(𝜂) at 𝜂 ≅ 2 in the reverse flow. The 

primary velocity and microrotation shows an increasing effect 

with hall parameter as seen in Figure 3(a) and Figure 3(b). 

When a magnetic field is applied perpendicular to the flow 

direction a reverse flow will be caused due to the force, 

Lorentz force, produced by the magnetic field. The flow 

caused due to this force is called the secondary flow. Reducing 

effect of magnetic field on the flow enhanced by Hall current 

parameter. Figure 3(b) shows the Hall effect on secondary 

velocity flow, when m=0 there is no flow in this component.  
 

 
(a) Hall parameter effect on f'(η) 

 
(b) Radiation parameter effect on g(η) 

 
(c) Radiation parameter effect on ω(η) 

 

Figure 3. Primary, secondary velocities and microrotation 

profiles variation with m 

 
(a) Mixed convection parameter effect on f'(η) 

731



 

 
(b) Mixed convection parameter effect on g(η) 

 
(c) Mixed convection parameter effect on ω(η) 

 

Figure 4. Primary, secondary velocities and microrotation 

profiles with λ 

 

The mixed convection parameter effect is shown in Figure 

4(b) indicates increasing in the secondary flow profile. It is 

interesting to see from Figure 4(b) for opposing flow λ<0 

flows reversal. 

 

4.2 Temperature, θ profile 

 

Figure 5 depicted the temperature profile varying the values 

of porosity parameter. Porosity parameters increase shows an 

increasing effect on the boundary layer. This is due to viscosity 

in 
𝜐𝑓

𝑘1
 in Eq. (2) and hence 𝛿 in Eq. (10) increase then friction 

in between the surface and fluid increases lead in temperature 

increase. In Figure 5(b) the decrease in secondary flow effect 

is more notable for viscus flow compared to micropolar fluid. 

 
(a) Porosity parameter effect on θ(η) 

 
(b) Radiation parameter effect on θ(η) 

 
(c) Hall parameter effect on θ(η) 

 
(d) Thermophoresis parameter effect on θ(η) 

 
(e) Brownian motion parameter effect on θ(η) 

 

Figure 5. Temperature profiles 

 

In Figure 5(b) increasing values of radiation parameter Rd 

show increase in temperature profile. Rosseland radiation 

absorption decrease when with more Rd which leads to more 

heat produced hence arise in temperature.  

The effects of Hall parameter, m, on the temperature 

distributions is depicted in Figure 5(c). Generally, applied 

magnetic field decreases the temperature similar result is 

observed in the presence of nanoparticles also. Figure 5(d) 

shows increasing the thermophoresis parameter enhance the 

temperature. Physically the Brownian motion and 

thermophoresis parameters appeared due to presence of 

nanoparticles and the presence of these nanoparticles enhance 

thermal diffusion in the flow. 

 

4.3 Nanoparticles concentration, φ profile 

 

Figures 6(a) display the variations in dimensionless 

nanoparticles concentration profile for various values of 

porosity parameters. It demonstrates that nanoparticle 

concentration enhanced with increasing in porosity parameter. 

Figure 6(a) is plotted for the effect of porosity parameter. From 

Figure 1(a) we have seen velocity decreases with increase in 

porosity parameter, this increase in porosity parameter 

increases the concentration because of the nanoparticles in unit 

volume of the fluid enhance. Figure 6(b) depicts the effect of 
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radiation parameter, Rd; shows increase the nanoparticles 

concentration profile. Figure 6(c) shows clear fall in 

nanoparticles concentration as Hall parameter increases. It is 

also noted that the viscous fluid enhances the flow than 

micropolar fluid. Figure 6(e) depicted the nanoparticle 

concentration profile for various values of thermophoresis 

parameter Nt. Since the nanoparticles related with the 

thermophoresis parameter results particle migration increase 

and momentum boundary layer decreases leads to more 

particles near the boundary layer region. The hot nanoparticles 

that are close to the plate are being pushed to the cold fluid at 

the ambient temperature due to thermophoresis force. 

Table 1 presents the numerical outcomes of engineering 

parameters. Shear stresses decreases when Hall, radiation 

parameters and coupling number increases. Nusselt number 

and the density number of the motile microorganisms decrease 

with radiation and coupling parameters. 
 

 
(a) Porosity parameter effect on φ(η) 

 
(b) Radiation parameter effect on φ(η) 

 
(c) Hall parameter effect on φ(η) 

 
(d) Mixed convection parameter effect on φ(η) 

 
(e) Thermophoresis parameter effect on φ(η) 

 

Figure 6. Nanoparticles concentration profile 

 

Table 1. Shearing stresses, the local Nusselt number, 

Sherwood number and the density number of the motile 

microorganisms. M=2, Nr=0.2, Rb=0.2, pr=1.0, Le=0.2, 

Lb=1.0, Nt=0.1, Nb=0.1, pe=2.0, β1=0.1, β2=0.1, β3=0.1, 

A=0.1, Ec=0.02, δ=0.5 

 

m Rd χ -𝑅𝑒𝑥

1

2 (1+ 𝜒)Cfx 𝑅𝑒𝑥

−
1

2Nux 𝑅𝑒𝑥

−
1

2𝑆ℎx 𝑅𝑒𝑥

−
1

2Nnx 

0.5 2 0.8 0.76399  0.07554  0.07127  0.09726  

1 2 0.8 1.25610  0.18928  0.42385  0.88912  

2 2 0.8 1.10915  0.19485  0.45519 0.91168 

3 2 0.8 1.04765 0.19787 0.47030 0.92277  

0.5 0 0.8 1.40812   0.12803 0.22287 0.03989 

0.5 1 0.8 1.13217  0.19005  0.58564  0.90350  

0.5 2 0.8 1.11888  0.19268   0.49947  0.90825 

0.5 3 0.8 1.10915    0.19485 0.45519 0.91168 

0.5 2 0 1.45902  0.17940  0.39461  0.84634  

0.5 2 0.3 1.28630  0.18516  0.42049  0.87599 

0.5 2 0.7 1.13803  0.19297   0.44909 0.90561 

0.5 2 1 1.05802  0.19851  0.46627  0.92259 

 

4.4 Gyrotactic microorganism concentration, h profile  

 

The presence of radiation, porosity and magnetic force 

applied in the flow external stimuli the movement of 

microorganisms. Porosity parameter shows an increase in the 

gyrotactic microorganism profiles of the boundary layer 

thickness as can be seen in the Figure 7(a). Hall parameter 

decreases the Gyrotactic microorganisms concentration as 

seen in Figure 7(c). Figure 7(b) reports the effect of the 

radiation parameter, Rd, on Gyrotactic microorganisms 

concentration profile. Increasing the radiation parameter 

increases the Gyrotactic microorganisms concentration. 

Figure 7(e) depict as the Brownian motion parameter, Nb, 

increases the density of motile microorganisms decreases. 

This is because Nb will suppress the diffusion of nanoparticles 

away from the region.  

 

 
(a) Porosity parameter effect on h(η) 
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(b) Radiation parameter effect on h(η) 

 
(c) Hall parameter effect on h(η) 

 
(d) Mixed convection parameter effect on h(η) 

 
(e) Thermophoresis parameter effect on h(η) 

 

Figure 7. Gyrotactic microorganism concentration profile 

 

 

5. CONCLUSION 

 

Two-dimensional MHD steady incompressible flow, 

transfer of heat and mass in a micropolar nanofluid comprising 

gyrotactic microorganisms in porous medium is modelled. The 

numerical results were computed using the SQLM. The effects 

of various parameters for viscous and micropolar fluid studied 

and compared. The salient features are listed below: 

• For the viscous flow, χ=0, the parameters 𝛿, Rd, m 

and λ show enhancing f', g and ω than micropolar 

fluid. 

• Results disclose increase in the value of Hall current 

parameter leads to increase in the primary velocity 

and microrotation diminished for temperature 

nanoparticles concentration and gyrotactic 

microorganisms concentration. 

• Greater porosity reduces velocities and 

microrotation whereas it enhances temperatures, 

nanoparticles concentration and gyrotactic 

microorganisms concentration.  

• The microrotation and secondary velocity show a 

shoot to the pic and dwindle.  

• An increment in λ and Rd corresponds to an 

enhancement in microrotation, the primary and 

secondary velocities. 

• The local shear stress decreases with increase in the 

m, Rd and χ.  

• Mass transfer increases with increase the Hall 

parameters.  

Generally, the flow velocity when the fluid is micopolar 

shows a tendency of increase compared to the viscus fluid. On 

the other hand, micropolar fluid shows reduce in temperature 

profile than the viscous fluid. 
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NOMENCLATURE 

A suction/injection parameter 

b chemotaxis constant (m) 

C Nanoparticles volume concentration 

g* acceleration due to gravity, (m s2) 

Lb bioconvection Lewis number 

Le Lewis number 

f(η) dimensionless stream function 

h(η) dimensionless number of motile 

microorganism 

j micro-inertia 

m Hall parameter 

M magnetic parameter 

N number density of motile microorganisms 

Nb Brownian motion parameter 

Nw wall motile microorganisms 

Nt Thermophoresis parameter 

Pe bioconvection Péclet number 

Pr Prandtl number 

Wc maximum cell swimming speed 

Rb Rayleigh number 

Rd Radiation parameter 

Greek symbols 

νf kinematic viscosity of fluid 

λ Mixed convection parameter 

Γ dimensional microrotation 

ω(η) Dimensionless microrotation 

φ(η) dimensionless nanoparticles volume 

fraction 

ρ𝑓 density of the fluid 

𝜎 electric conductivity 

σ∗ Stefan-Boltzmann constant 

θ(η) nondimensional temperature 

Subscripts 

B0 constant magnetic field 

Cw Wall nanoparticles volume concentration 

C∞ Ambient nanoparticles volume 

concentration 

DB Brownian diffusion coefficient (m2s-1) 

Dn microorganism diffusion coefficient (m2s-1) 

DT thermophoretic diffusion coefficient (m2s-1) 

hs heat transport (coefficient) 

hc mass transport (coefficient) 

hn heat transfer rate 

k1 Permeability of the porous medium 

kf thermal conductivity (wm-1 K-1) 

μ𝑓 Dynamic viscosity of the fluid (Pa s) 

ϗf vortex viscosity 

β1, β2, β3 constants 

qw constant wall heat flux (W m-1) 
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