
Nonlinear Magneto Convection in a Rotating Fluid due to Vertical Magnetic Field and 

Vertical Axis of Rotation 

Avula Benerji Babu1*, Gundlapally Shiva Kumar Reddy1,2, Nilam Venkata Koteswararao3 

1 Department of Mathematics, National Institute of Technology Warangal, Warangal 506004, T.S., India  
2 Department of Applied Sciences, National Institute of Technology Goa, Farmagudi 403401, Goa, India 
3 Department of HBS, Godhavari Institute of Engineering and Technology, Rajamahandravaram 533296, Andhrapradesh, India 

Corresponding Author Email: abenerji@nitw.ac.in

https://doi.org/10.18280/ijht.390311 ABSTRACT 

Received: 1 January 2019 

Accepted: 26 January 2021 

In the present paper, linear and weakly nonlinear analysis of magnetoconvection in a 

rotating fluid due to the vertical magnetic field and the vertical axis of rotation are 

presented. For linear stability analysis, the normal mode analysis is utilized to find the 

Rayleigh number which is the function of Taylor number, Magnetic Prandtl number, 

Thermal Prandtl number and Chandrasekhar number. Also, the correlation between the 

Rayleigh number and wave number is graphically analyzed. The parameter regimes for the 

existence of pitchfork, Takens-Bogdanov and Hopf bifurcations are reported. Small-

amplitude modulation is considered to derive the Newell-Whitehead-Segel equation and 

using its phase-winding solution, the conditions for the occurrence of Eckhaus and zigzag 

secondary instabilities are obtained. The system of coupled Landau-Ginzburg equations is 

derived. The travelling wave and standing wave solutions for the Newell-Whitehead-Segel 

equation are also presented. For, standing waves and travelling waves, the stability regions 

are identified. 

Keywords: 

bifurcation points, secondary instabilities, 

heat transport, travelling and standing waves 

1. INTRODUCTION

Double Diffusive convection is the process of mixing driven 

by the interaction of two fluid components. This can occur if 

the fluid consists of two or more constituents with disparate 

molecular diffusivity and they must contribute rival to the 

vertical density gradient [1]. The Double Diffusive convection 

problem has attracted considerable interest in the last few 

decades because of its wide range of applications, such as the 

disposal of waste material, groundwater contamination, 

chemical transport in packed-bed reactors, food processing 

and many other engineering applications. Double Diffusive 

convection is involved in the migration of moisture like 

transport in environment, magmas, groundwater and in fibrous 

insulation. The examples of Double Diffusive convection are 

magnetoconvection, Convection in Earth’s core and 

thermohaline convection [2]. 

The study of a magnetic field in a rotating fluid is more 

interesting in geophysics; Particularly in the research of 

Earth’s core. Convection in Earth’s outer core is strenuously 

affected by magnetic and rotational field. Drazin and Reid [3] 

had examined both experimental and theoretical results on 

thermal convection in a fluid layer in the presence and absence 

of a magnetic and rotational fields. The earliest work on 

magnetoconvection in rotating fluid was carried out by 

Eltayeb [4], Jones and Roberts [5, 6], Soward [7] and Tagare 

et al. [8]. Babu et al. [9, 10] had thoroughly investigated the 

nonlinear convection in the absence and presence of rotation 

and magnetic fields.  

The number of components which must be varied for the 

bifurcation to occur is known as co dimension of a bifurcation. 

Pitchfork, Hopf, Takens-Bogdanov, Co dimension two 

bifurcation have been studied by Babu et al. [9, 10]. Ravi et al. 

[11] had investigated the stability properties of non-linear

plane wave solutions of the form w=W(z)eiqx+pt. The stability

of these solutions has been investigated for both real and

complex Landau-Ginzburg equations by using Multiscale

analysis [12].

Skew-Varicose, Eckhaus and Zigzag instabilities are 

examples of long wavelength instabilities. These instabilities, 

originally identified in the stability theory for convection rolls. 

These instabilities can arise may be either in stationary 

convection or oscillatory convection. The Eckhaus instability 

is an important mechanism which can lead to a considerable 

change in the wave number. Zigzag instability is the most 

unstable instability.  

Hopf bifurcation gives rise to Standing waves and 

Travelling waves when the Rayleigh number is increased [13]. 

Steady state convection can take place at large Rayleigh 

number. In the case of weak magnetic field Standing waves 

are stable and for stronger fields Travelling waves are stable 

[14]. In case of the rotating field, either Standing and 

Travelling waves are stable, based on the rate of rotation and 

Prandtl number [15-17]. 

In the present paper, nonlinear magneto convection in a 

rotating fluid due to vertical magnetic field and vertical axis of 

rotation is analyzed. Basic equations for the system, linear 

stability analysis, two-dimensional amplitude equation, 

occurrence of secondary instabilities and the transport of heat 

by convection through Nusselt number are discussed in 

subsequent sections. The system of nonlinear one-dimensional 

amplitude equations, Benjamin-Feir instability for Standing 

and Travelling waves are also examined.  
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2. BASIC EQUATIONS 

 

Let us assume that an electrically and thermally conducting 

fluid confined between two infinite horizontal planes of depth 

d with adverse temperature gradients, which is kept rotating at 

a constant angular velocity Ω with uniform magnetic field Ho 

in the z-direction. The magnetic field ( , , )x y zH H H H , 

velocity ( , , )V u v w , pressure P, temperature θ, time t are non-

dimensionalized by scales 2
0 / , / , / , kH k d k d   d  and 

d2/k. Here k is the coefficient of thermal diffusivity, η is 

electrical resistivity, β is the adverse temperature gradient and 

μ is viscosity.  

The dimensionless equations for the chosen system in the 

Boussinesq approximation are: 

 

. = 0, . = 0V H   (1) 

 

2

1 1

2 22 1

1

1

22

1
( . ) ( . )

1
ˆ= ( | | | | )

2 8

ˆ ˆ( ) ,

z z

z z

V H
V V Q H H Q

t z

Ta
P Q H QH e r

Ta V e V R e



 

 





  
+  −  − 

   

− + + − 

+  + +

 (2) 

 

2( . ) = ,V
t


  


+  +


 (3) 

 

22 2

1 1

ˆ( ) = ( ) .z
H

V H V e H
t

 

 


−     +


 (4) 

 

where, ˆze  is the unit vector along the rotational axis.  

The Non-dimensional numbers 1, , ,R Q Ta   and 2  are 

given by: 
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Here R is Rayleigh number, Q is Chandrasekhar number, Ta 

is Taylor number, 1  is Thermal Prandtl number, 2  is 

Magnetic Prandtl number, 0  is density, m  is Magnetic 

permiability, g is acceleration due to gravity.  

The z-components of curl(2), of curl2(2), of curl (4) and of 

(4) itself, we get:  
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Here ( )ˆ ˆ= . , = .z z z zH e H J e H  and ( )ˆ= .ze V  . 

Now eliminating , , ,z zH J  from the relation (5) and 

together with (3), we get: 
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2.1 Boundary conditions  

 

The fluid is bounded by the planes z=0 and z=1. For further 

analysis free-free boundary conditions are considered. Hence  
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3. LINEAR STABILITY ANALYSIS 

 

For the linear stability analysis substitute w=W(z)ei(lx+my)+pt 

in Lw=0, which is a linearized version of the Eq. (6), hence 
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where, =D
z




, q2=l2+m2 and p is the growth rate of the 

disturbances. Substituting p=iω and W(z)=sinπz in to Eq. (9), 

we get 
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3.1 Stationary convection (ω=0)  

 

For stationary convection substitute ω=0 in to Eq. (10), 
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where, 2 2 2=s s sq l m+  and 2 2 2=s sq  + . The Rayleigh 

number RS represents the stationary convection of Rayleigh 

number R. The critical value of RS exists for qsc, where  
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where, 2 2 2=sc sc scq l m+  and 2 2 2=sc scq  + . From Eq. (11) 

q=qsc. Therefore  
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Figure 1. Marginal stability curves (Solid lines represents stationary convection and dotted lines represents oscillatory 

convection) Ta=1000, 1 = 1.7 , 2 = 0.5 , (a)Q=118, (b)Q=120, (c)Q=121, (d)Q=122 

 

 
 

Figure 2. Marginal stability curves (Solid lines represents stationary convection and dotted lines represents oscillatory 

convection) =120Q , 1 = 1.8 , 2 = 0.5 , ( ) = 1000a Ta , ( ) = 2000b Ta , ( ) = 3000c Ta , ( ) = 3500d Ta  

 

 
 

Figure 3. Marginal stability curves (Solid lines represents stationary convection and dotted lines represents oscillatory 

convection) 2= 120, = 1000, = 0.5Q Ta  , 1( ) = 1.42a  , 1( ) = 1.56b  , 1( ) = 1.70c  , 1( ) = 1.85d   
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Figure 4. Marginal stability curves (Solid lines represents stationary convection and dotted lines represents oscillatory 

convection) 1= 90, =1000, =1.8Q Ta  , 2( ) = 0.5350a  , 2( ) = 0.5375b  , 2( ) = 0.5390c  , 2( ) = 0.5410d   

 

3.2 Oscillatory convection (ω2=0)  

 

For Oscillatory convection 0  , the Eq. (10) is complex. 

The Rayleigh number is always real so that equate imaginary 

part to zero. i.e.  
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where, k6, k7, k8 and k9 are given by relation (7). We get k6>0, 

k7<0, k8>0 and k9>0 for 2 11 < <   or 2 1< < 1   and for 

some values of other physical components. So by Descarte’s 

rule there exist at least two positive roots of Eq. (14). From 

k9=0, we get  
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At least three positive roots for Eq. (15) can be obtained. 

Oscillatory convection exists, if at least one positive root of Eq. 

(15) should exist. Critical Rayleigh number depends on Q and 

Ta for stationary convection where as Critical Rayleigh 

number depends on Q, Ta, 1  and 2  for oscillatory 

convection. At Takens-Bogdanov bifurcation point we have  
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The Figures 1-4 predict the relation between wave number 

and critical Rayleigh number. The solid and dotted lines 

represent the stationary (Pitchfork bifurcation) and oscillatory 

(Hopf bifurcation) convections respectively. In Figures 1-4, 

we have shown the effect 1, , Q Ta   and 2  on critical 

Rayleigh number. In Figures 1-4, 1  and 2  do not show any 

effect on solid lines which represent the stationary convection, 

since RSC is independent of 1  and 2 . 

 

 

4. DERIVATION OF LANDAU-GINZBURG 

EQUATION AT THE ONSET OF STATIONARY 

CONVECTION 

 

By Newell and Whitehead Multiple scale analysis [10], 

small amplitude convection cells are imposed on the basic 

flow. If this amplitude size is O(ε) then the interaction of the 

cell with itself forces a second harmonic and a mean state of 

correction of size O(ε) and these in turn drives an O(ε) 

correction to the fundamental component of the imposed roll.  
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Here c.c represents the complex conjugate, eiqxsinπz is the 

critical mode for the linear problem at R=RSC. A=A(X, Y, T) is 

the amplitude which depends on the slow variables X, Y, Z and 

T to be scaled by introducing multiple scales 

1

22= , = , = , = ,X x Y y Z z T t  which formally 

separate the fast and slow independent variables in f. We can 

express differential operators as:  
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By using the transformations in Eq. (19), the linear and 

nonlinear operators of Eq. (6) can be written as:  
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  
 + −  − +

  

   
      
   

  

2
2 2

2
3 ,sc hR Ta

Z


+   −



 
  
 

 

2
4 6 2 2

3 2
1

2
2

2 2

2

1
= 2 8

(

sc hF Q R

Z

Q

Z




  −  − 




+  −



 
  
 

 
  
 

  

2 2
2 2 42

2 2
1

) [ 2sc hTa R Q

Z Z





 
+  +  − 

 

 
  
 

 

2 2
4 6 2

2 2
2 ].Q Ta

Z Z

 
+   −  +

 

 
  
 

 

 

Substituting the zeroth order solution 0w  in to 0 0 = 0L w . 

We get:  

 

2 2 2
4 2

2 4 2
=

sc sc
sc sc

sc sc

Ta
R Q

q Q

  
 

 

+ +

+

 
 
  

  
(27) 

 

From the equation 0 1 1 0 0
=L w L w N+ , 0

= 0N  and 

0
= 0Lw . The equation reduces to 1

= 0w , from the 

equation of continuity we obtain 1
= 0u . Similarly,  

 

3
2 ( )22

1 4
1

= [ . ],

8

i l x m y
sc sc

sc sc

ikQ
v A e c c

l q





+

−
 

1 1

= 0, = 0,x y   

3
2 ( )22

41
1

= [ . ],

4

i l x m y
sc sc

z

sc

kQ
A e c c

q






+

− +
 

1 1

= 0, = 0,x yH H  

2
2 ( )22

2 21
1

= [ . ],

2

i l x m y
sc sc

z

sc sc

H A e c c

q





+

+  

2

1 2

1
= | | sin 2 .

2 sc

A z 

 

−   

(28) 

 

where, 

4 1/2

8 2 2
=

sc

sc

Ta
k

Q



 +
. 

Taking 1
= 0w  in Eq. (23), 1 2 0

N L w−  and 0
w  are 
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orthogonal to each other. Equating the coefficient of sin z  

in 1 2 0
N L w−  is zero. We obtain:  

 

2
2

0 1 22

2

3

2

| | = 0.

sc

A i
A A

T X q Y

A A

  



  
− − −

  

+

 
  
    

(29) 

 

where, 

 

( )

( )

4
6 2 2 2

0

1

2 4 2 2 2 2

= 2 8

( )

sc
sc sc sc sc

sc sc sc

Q R q

Q Ta


   



    

+ +

− + −
 

2 4 2

2

4 6 2 2 2
1

(2 )
,

2 ( )

sc sc sc

sc sc sc

R q Q

Q Ta

 

     

+
+

+ − −

 
 
  

 

8 2 2

1

4 2 2 2 2

= 15 ( )

3 ( 4 ) 3 ( ),

sc sc

sc sc sc sc sc

Q R Q

R Q Ta R q

   

   

− −

− − + −
 

2 6

2 = ,sc sc scR q 
 

24
2 22

2 2
4 2 1

3
2

(3 )

2
= ( )

2

sc sc

sc
sc

sc sc

Q l q

q
Q

R q




  

−

+

−

 
 
 
 
 
  

 

1/2 4 4
4 2

22 2

1

2
( ).

sc
sc

sc

kTa
Q

q

 
  



+ +

 

(30) 

 

Eq. (29) is known as Landau-Ginzburg equation. If 

0 1 2
, ,    and 3

  are positive, then Eq. (29) is meaningful. 

If 3
> 0  then Pitchfork bifurcation is supercritical and if 

3
< 0  then Pitchfork bifurcation is subcritical (see Figure 5). 

Dropping y -dependence and t -dependence terms from the 

Eq. (29), we obtain:  

 
2

232

2

1 1

d
(1 | | ) = 0.

d

A
A A

X



 
+ −   (31) 

 

0

0

( ) = tanh( ),A A





  (32) 

 

where, 

1 1

2 2
0 2 3 0 1 2= ( / ) = (2 / ) .A and     

 

 
 

Figure 5. The curve λ3 explains the type of pitchfork 

bifurcation. If λ3>0 then the bifurcation is supercritical and if 

λ3<0 then the bifurcation is subcritical. λ3=0 gives tricortical 

bifurcation point 

 

4.1 Long wave-length instabilities 

 

The long Wave-length Instabilities arising in non-

equilibrium systems do not exhibit strict symmetries but may 

show spatially slow deformations of the cellular structures, 

such phenomena had studied by using amplitude equations 

which are slowly varying in time and space. Following Newell 

and Whitehead [12], we derive such types of equations. Eq. 

(29), can be written in fast variables x, y, z and 

( , , ) = ( , , ) /A X Y T A x y t , as: 

 

2

2

0 1 2

2 2

2 3

( )
2

| | = 0,

sc

A i
A

t x q y

A A A

 

 

  
− −

  

− +

  (33) 

 

Now, we substitute the phase winding solution ,k  of the 

form. 

 

( ) ( )1, , = , , ,
i kx

A x y t A x y t e


  (34) 

 

into the Eq. (33) and we get, 

 

2 21
0 2 1 1( )

A
k A

t
   


+ −


  

2 2
2

1 1 1 12 2
2 ( ) ( )

2 2sc sc

i i
i k A A

x q x qy y

  
   

+ − + −
  

  

2

3 1 1| | = 0.A A−  

(35) 

 

The steady-state uniform solution of Eq. (35) is: 

 

( )
1

1 2 2 2
1 1 3 2 1= = [ ( ) ] .oA A k   

−
−  

(36) 

 

To study the long wave-length instabilities, we impose an 

infinitesimal perturbation on the uniform steady-state solution 

of the form. 
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( )
1

1 2 2 2
1 1 3 2 1= = [ ( ) ] ,oA A k u iv   

−
− + +  

(37) 

 

into Eq. (35) and equating real and imaginary parts, we get: 

 

2 2

0 2 1

2 2 4

1 2 2 2 4

= [ 2( )

1
( )]

4sc sc

u
k

t

k
u

qx y q y

   





− −



  
+ + −

  

 

2

1
1 2

(2 ) ,

sc

v
k

q xy


 

 
− −


 

(38) 

 

2

1
0 1 2

2 2 4

1 2 2 2 4

= (2 )

1
( ) .

4

sc

sc sc

v u
k

t q xy

k
v

qx y q y


  




  
−

 

  
+ + −

  

 
(39) 

 

We analyze Eqns. (38) and (39) by using the method of 

normal modes in the form of: 

 

= cos( ) cos( ),
St

x yu Ue q x q y
 

= sin( ) cos( ).
St

x yv Ve q x q y
 

(40) 

 

Substituting Eq. (40) in Eqns. (38) and (39) we obtain, 

 

2 2

1 0 2 1

1 2

[ 2( ( ) )]

= 0,x

S k U

q V

    

 

+ + −

+
 

1 2 1 0( ) = 0.xq U S V   + +  

(41) 

 

Here 

2 4

2

1 12
= ( )

4

y y

x

sc sc

q k q
q

q q


 + +  and 

2

2 = (2 )
y

sc

q
k

q
  + . 

On solving Eq. (41) we obtain, 

 

2 2 2 2

0 0 1 0 2 12 [ 2 ( ( ) )]S S k      + + −  

2 2 2

1 2 1 1 1 2[ 2( ( ) )] = 0,xk q      + + − −  

(42) 

 

whose roots (𝑆±) are real. Here (𝑆±) is defined as: 

 

2 2

0 1 0 2 12

0

1
( ) = [[ 2 ( ( ) )]S k     



 − + −   

1

2 2 2 2 2 2 2
1 2 0 2 1( 2 ( ( ) ) ) ].xq k     + −  

(43) 

 

For negative root 𝑆(−), the mode can become stable and for 

positive root 𝑆(+), the mode can become unstable. 

4.1.1 Eckhaus instability 

Putting qy=0 in Eq. (43), we get:  

 

2 2 2 2 2

0 0 1 0 2 12 [ 2 ( ( ) )]xS S q k      + + − +  

2 2 2 2

1 2 1[ 2( 3 ( ) )] = 0,x xq q k   + −  

(44) 

 

For the above equation either two roots are negative or one 

root is negative and another root is positive. If two roots of Eq. 

(44) are negative then the product of the roots is positive and 

then the pattern is stable. If one root is positive and another 

root is negative then the product of roots is negative and the 

pattern is unstable, i.e., when 
2 2 2

1 2
2(3 )

x
q k   −  

requires that 

2

2

1

| |
3

k





 . This condition defines the 

domain of Eckhaus instability. 

 

4.1.2 Zigzag instability  

Substituting qx=0 in Eq. (43), we obtain: 

 
2 2 2 2
0 0 0 2 112 [ 2 ( ( ) )]

y
S S k      + + − +  

2 2
2 11 1[2( ( ) )] = 0,

y y
k    + −  

(45) 

 

where, 

2 4

11 2
= ( ).

4

y yy

s sc

q k q

q c q


  +  

Following the subsection 4.1.1, we get domain of the zigzag 

instability of the form 

2
2

1( ) = ( ) > 0
4

y
y

sc

q
S q k

q
 + − + . In 

Figure 6, we have shown that Eckhaus instability and Zigzag 

instability regions. 
 

 
 

Figure 6. Regions of Eckhuas(E), Zigzag(Z) instabilities and 

Stable region (S) are plotted for 

1 2=1000, =1000, =1.5, = 0.5.Q Ta    

 

4.2 Heat transport by convection 

 

The almost value of steady amplitude A is denoted by 

| |maxA  which defined as:  

 
1

2 2
2

3

| |= ,maxA




 
 
 
 

 (46) 
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which is obtained from Eq. (32) with 1tanh( / ) 1X  = . To 

calculate Nusselt number Nu , we use | |maxA . We study the 

heat transfer by calculating Nusselt number Nu . =
Hd

Nu
T

, 

where H is heat transfer per unit area which is defined as:  

 

=0

= .total

z

T
H

z 


−


 (47) 

 

In Eq. (47), angular brackets correspond to a horizontal 

average. We calculate the Nusselt number in terms of 

amplitude A in the form of:  

 
2

2

2
= 1 | | .max

sc

Nu A


+  (48) 

 

From Eq. (48), we obtain convection for > scR R  and 

conduction for scR R . Amplitude equation is valid for 

3 > 0  and it is possible for > scR R , Thus we obtain,  

1). convection for > 1Nu  and  

2). conduction for 1Nu   (Figure 7).  

 

 

 

Figure 7. (a) is plotted for 3= 10Ta  and (b) is plotted for 
8= 10Ta  for the fixed values of 1 2= 100, = 0.6, = 1.8Q    

 

 

5. DERIVATION OF LANDAU-GINZBURG 

EQUATION AT THE ONSET OF OSCILLATORY 

CONVECTION 

 

Now consider the region near the onset of oscillatory 

convection. Here y-axis is taken as the axis of cylindrical rolls, 

so that y-dependence vanishes from Eq. =Lw N . The z-

dependence contained entirely in sine  and cosine  functions. 

We introduce  as:  

 

2 = 1.o oc

oc

R R

R

−
 (49) 

 

We assume that the solution of the equation = 0Lw , which 

satisfies boundary conditions is of the form.  

( )

1
0 ( )

1

= sin ,

. .

i l x m y t
oc oc oc

L

i l x m y t
oc oc oc

R

A e
w z

A e c c






+ +

+ −

 
 
 
+ + 

 

 

Here 1LA  and 1RA  denotes the amplitude of left and right 

travelling waves of the roll, which depends on slow variables.  

 
1

22= , = , = , = ,X x Y y t T t  
(50) 

 

and assume that 1 1= ( , , )L LA A X T , 1 1= ( , , )R RA A X T . We 

express the differential operators in the form of:  

 
1

2

2

, ,

.

x x X y y Y

t t T

     
→ + → +

     

   
→ + +

   

 (51) 

 

We assume that the solution of basic Equations as power 

series in ,  

 
2 3

0 1 2= ,f f f f+ + +  (52) 

 

where, = ( , , , , , , )x y zf f u v w H H H  and the first 

approximation is given by eigenvector of the linearized 

problem:  

 

( )

0 1

( )

1

= [

. .]cos ,

i l x m y t
oc oc oc

L
oc

i l x m y t
oc oc oc

R

i
u A e

l

A e c c z









+ +

+ −
+ −

 

1

2 ( )

0 1 1

( )

2 1

= [

. .]cos ,

i l x m y t
oc oc oc

L
oc

i l x m y t
oc oc oc

R

Ta
v J A e

il

J A e c c z









+ +

+ −
+ −

 

( )

1
0 ( )

1

= sin ,

. .

i l x m y t
oc oc oc

L

i l x m y t
oc oc oc

R

A e
w z

A e c c






+ +

+ −

 
 
 
+ + 

 

( )

0 12

( )

12

1
= [

1
. .]sin ,

i l x m y t
oc oc oc

L

oc oc

i l x m y t
oc oc oc

R

oc oc

A e
i

A e c c z
i






 


 

+ +

+ −

+

+ +
−

 

2
( )

3 1
0

( )

4 1

= [

. .]sin ,

i l x m y t
oc oc oc

x L
oc

i l x m y t
oc oc oc

R

H J A e
il

J A e c c z









+ +

+ −
+ −

 

1

2 2 ( )

5 1
0

( )

6 1

= [

. .]sin ,

i l x m y t
oc oc oc

y L
oc

i l x m y t
oc oc oc

R

i Ta
H J A e

l

J A e c c z









+ +

+ −
+ −

 

( )

3 1
0

( )

4 1

= [

. .]cos .

i l x m y t
oc oc oc

z L

i l x m y t
oc oc oc

R

H J A e

J A e c c z









+ +

+ +
+ −

 

(53) 
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here 

2 2 2 2 2 2
5 1 3 6 2 4

2
2 2 2

1 1
1 2 2

2 2 2 22

1 1

2
2 2 2

1 1
2 2

2 2 2

1

= , = , = , = ,

1

= ,

1

1

=

1

oc oc oc oc oc

oc oc oc oc

oc oc oc oc

oc oc oc oc

oc oc oc

q l m q J J J J J J

i i

J

i i Q

i i

J

i

 


   

 


    

 


   

 


  



+ +

  
+ +  

  

   
+ + +   

   

  
− −  

  

 
− − 

 

2
2 2

1

3 4
2 22 2

1 1

, 

1 1
= , =

oc

oc oc oc oc

i Q

J J

i i

 


 
   

 

 
+ 

 

+ −

 

and c.c stands for complex conjugate. By employing the 

definitions of Eq. (47) and Eq. (48) in to Eq. (6) and equating 

the coefficients of , 2 , 3  to zero, we get:  

 

0 0 = 0,L w  

1 0 0 1 0= ,L w L w N+  

2 0 1 1 0 2 1= ,L w L w L w N+ +  

(54) 

 

From the linear equation 0 0 = 0L w , we obtain the critical 

Rayleigh number. At 2( )O , 0 = 0N  and 1 0 = 0L w  gives 

1 1 = 0L L
g

A A

X




 
−

 
 and 1 1 = 0L L

g

A A

X




 
+

 
. Where 

== ( )g q q
scq







 is the group velocity and is real. Hence we 

get 1 = 0u . Similarly, the remaining first order solutions are:  

 

1 = 0,u  

1/2
2 ( )21

1 1
21

1

2 ( )22
1

2

1

2 ( )1 2
1 12

= {
2

4

 
2

4

. .},
4

i l x m y t
oc oc oc

L
ocsc

i l x m y t
oc oc oc

R
oc

oc

i l x m y
oc oc

L R

oc

JTa
v A e

iil
q

J
A e

i
q

J J
A A e c c

q















+ +

+ −

+

+

+

−

+
+ +

 

1 = 0,w  

( )( )

2 2 2
1 1

1 4 2

*
21 1

2 2

| | | |
= {

. }sin 2 ,
2

oc L R

oc oc

i tL R oc

oc oc oc

A A

A A
e c c z

i i




 

 


   

 +
 

+

+ +
+ +

 

2
2

2 21
4 21 2

2
1

2 2
1 1

1
=

| | | | sin 2 ,

oc
x

oc
oc oc

L R

H
l

A A z

 

 
 





+

 +
 

 

1
= 0,yH  

(55) 

2 ( )2 232
121 1

2
2 ( )

1 12
2 4 2 2

2
1

= 2 {
4 2

2

4

i l x m y t
oc oc oc

z L

oc oc

i l x m yoc oc oc
L R

oc oc

J
H A e

q i

A A e

q




 




 



+ +

+

+

+
 

+ 
 
 

 

2 ( )24
12

. .}.
4 2

i l x m y t
oc oc oc

R

oc oc

J
A e c c

q i





+ −
+ +

−
 

 

Equating the coefficients of sin z  in 1 2 0N L w−  are equal 

to zero. We obtain: 
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where, 0 , 1 , 2 , 3 , 4  and 5  are the complex 

coefficients in physical components ocq , Q  and Ta . Here, 
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Here 2 1= ( )L g LA A
X




 
+

 
 and 

2 1= ( )R g RA A
X




 
−

 
. 1LA , 1RA  and 2LA , 2RA  are of 

orders  and 2  respectively. From the Eqns. 

1 1 = 0L L
g

A A

X




 
−

 
 and 1 1 = 0L L

g

A A

X




 
+

 
 we obtain 

1 ( , )LA T   and 1 ( , )RA T . Where = g X   +  

= g X   − . Eqns. (52) and (53) can be written as: 
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 (60) 

 

Let 1[0, ]l , 2[0, ]l  where 1l  is the period of 1LA  and 

2l  is the period of 1RA  . Eq. (48) remains asymptotic for times 

( )2=t O −  only if an appropriate solvability condition holds. 

This condition derived by integrating Eq. (59) over   and Eq. 

(60) over   , we obtain,  
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( )

1 1
0 2 3 12

2 2
4 1 5 1 1
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R R
R

R L R

A A
A

T X

A A A


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 

−  +

 (62) 

 

The Eqns. (61) and (62) are for the amplitudes of left and 

right moving waves respectively. These equations are known 

as one-dimensional coupled Landau-Ginzburg equations with 

original slow spatial coordinate and time. 

 

5.1 Travelling wave and standing wave convection 

 

On dropping slow variable X from Eqns. (61) and (62), we 

obtain a system of first order ODE’s.  
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Put 3 54

0 0 0
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Then Eqns. (63) and (64) take the following form:  
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i
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i
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= ( ) = ( )tan

( )

R
R R

R

Im A
arg A

Re A
 − , here La , Ra , 

L  and R  are functions of time T . Clearly La  and Ra  are 

positive functions. Putting 1 =
i

L
L LA a e


, 1 =

i
R

R LA a e


 and 

1 2= i   + , 1 2= i   + , 1 2= i   +  into Eqns. (65) and 

(66) we get,  
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R
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T


  + +  (70) 

 

Since the Eqns. (67) and (69) does not contain phase term, 

so that we consider these two equations for the further 

discussions. Let us consider the Eqns. (67) and (69) as:  
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a
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Since La  and Ra  are positive functions. Put,  
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d d

L R
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 (73) 

 

Let us discuss the stability of equilibrium points of above 

Eq. (73). We obtain four equilibrium points, i.e.,  

1). ( , ) = (0,0),L Ra a   

2). ( , ) = ( ,0),L R La a a   

3). ( , ) = (0, ),L R Ra a a   

4). for 0La   and 0Ra   we obtain 

1 1

1 1 1 1

( , ) = ,L Ra a
 

   

 
− − 

+ + 
.  

From these points we can say the conditions for Travelling 

Waves and Standing Waves. The conditions for TW and SW 

are =L RA A  and = 0LA  or = 0RA .  

Travelling Waves exist if 
2 1

1

| | = > 0LA



−  and they are 

supercritical if 1 < 0 . Standing Waves exist if 

2 2 1

1 1

| | =| | = > 0L LA A


 
−

+
 and supercritical if 1 1 < 0 + .  

Also, TW are stable if 1 1> 0, < 0   and 1 1< < 0  .  

SW are stable if 1 1> 0, < 0   and  

(i) if 1 > 0 , then 1 1> > 0 − , 

(ii) if 1 < 0 , then 1 1> > 0 − − . 

 

 

 
 

Figure 8. Stability regions of Travelling waves (TW), 

Standing waves (SW) and steady state (SS) are plotted for 

2 = 0.5 , (a) = 1000Ta , (b) =1000Q  

 

 

6. CONCLUSION 

 

The nonlinear magneto convection in rotating fluid due to 

vertical magnetic field and vertical axis of rotation are 

analyzed. The problem was examined by using normal mode 

method by performing linear and weakly nonlinear analyses. 

The stationary Rayleigh number (Rs) and oscillatory Rayleigh 

number (Ro) versus wave numbers are described graphically. 

Takens-Bogdanov bifurcation point had obtained. In order to 

study the secondary instabilities viz. Eckhaus instability and 

Zigzag instability the well-known equation, Ginzburg-Landau 

equation has been derived.  

The system of coupled nonlinear one-dimensional 

amplitude equations is also derived. The stability regions for 

both Standing waves ( 1 1=L RA A ) and Travelling waves 

( 1 = 0LA  or 1 = 0RA ) are identified. Travelling waves exist if 

2 1
1

1

| | = > 0RA



−  and they are supercritical if 1 < 0 . 

Standing waves exist if 
2 2 1

1 1
1 1

| | =| | = > 0L RA A


 
−

+
 and 

they are supercritical if 1 1 < 0 +  (Figure 8).  
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