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In the present study, the slow and steady flow of Newtonian fluid in the presence of heat 

transfer in annular region formed by two concentric ellipses is considered. The concentric 

ellipses in z-plane are mapped to concentric circles in 𝜁 -plane using conformal 

transformation. Analytical solutions for velocity and temperature are obtained in 𝜁 - plane 

and the same are graphically depicted. The effects of dimensionless parameter such as 

Grashof number Gr, heat flux β, initial temperature at wall of inner ellipse θ0 and area of 

cross section of concentric ellipses on velocity, rate of flow and temperature have been 

studied. The graphical representation shows that the velocity, temperature is enhanced with 

increase in Gr and area of cross section between ellipses, and decreases with increase in 

heat flux β. 
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1. INTRODUCTION

Numerous industrial applications, where heat load is 

considerable and space is constrained, require the utilization 

of tubular heat exchangers for cooling of electronic hardware. 

It is found that elliptical geometries perform better than 

circular geometries in these applications [1]. The Newtonian 

and non-Newtonian fluids flow in the presence of heat transfer, 

across circular and non-circular cross-sectional region 

includes many applications. Some of them include flow in, 

tubular and hair pin heat exchangers, hot wire anemometer, 

screen filters and aerosol filters, resin transfer molding process 

of manufacturing of fiber- reinforced composites [2]. The 

classical example of this flow problem is used in transport 

phenomenon. 

There have been extensive studies on fluid flow and heat 

transfer in doubly connected region. Shivakumar and Ji [3] 

discussed the solution of Poisson’s equation for a doubly 

connected region formed by two curves C1 and C2. They have 

compared rate of flow in case of concentric circles and 

eccentric circles. Flow through an annular region bounded by 

non-concentric ellipses or by an ellipse in a circle has been 

analyzed by Williams et al. [4]. They have calculated the axial 

and cross-sectional resistance numerically, to determine their 

dependence on cross-sectional geometry which includes, a 

circle in an ellipse, an ellipse in a circle and ellipse in an ellipse 

of equal eccentricity and orientation. Saatdijan et al. [5] 

studied analytical solution of Stokes equation between 

confocal ellipses. Here the flow in annular region between two 

concentric ellipses is studied such that the boundaries are 

allowed to slide elliptically in both clockwise and 

anticlockwise direction. The Von Karman - Pohlhausen 

integral method is used by Khan et al. [1] to solve average heat 

transfer from energy equation and total drug from momentum 

equation in flow across an elliptical cylinder under isothermal 

boundary conditions. It is presented in this paper that elliptic 

cylinders provide less resistance to flow and better insulation 

for heat transfer compared to circular cylinders. J.P.B. Mota et 

al. [6] developed efficient code to solve 2D Darcy- 

Boussinessq equations, governing Natural convection heat 

transfer in horizontal eccentric elliptic annular region 

containing saturated porous media. D’alessio and Dennis [7] 

have devised numerical technique to solve two-dimensional 

steady state problem of laminar forced convection in 

isothermal cylinder whose cross section is elliptic. In this 

elliptic region, the asymptotic behavior of Navier-Stokes 

equation and energy equation is studied by conformal mapping 

it to semi-infinite rectangular strip. Bharti et al. [2] studied 

flow of power law fluid past the heated elliptical cylinders 

through forced convection. Saatdijian et al. [8] investigated 

experimental and numerical results of chaotic mixing and heat 

transfer in confocal ellipses. From experimental results they 

have analyzed that better mixing is obtained when the inner 

ellipse displacement per period increases and confocal ellipses 

shown to be particularly effective as a heat exchanger. Indira 

et al. [9] have considered analytical study of pulsatile flow of 

couple stress fluid in doubly connected region. Shivakumar 

[10] considered viscous flow in pipes whose cross section are

bounded by an ellipse on the outside and circle on inside. The

outer ellipse in z-plane is conformal mapped to circle in 𝜁-

plane.

As seen above, there have been many works on Newtonian 

fluid inside or past the circular or elliptical geometries. There 

have been certain works where the flow is considered in a 

doubly connected region [3-5, 9-13]. These regions comprises 

of circle inside ellipse [4, 10], square inside circle [12], 

eccentric circles [3, 4, 9]. These works are restricted to only 

on flow of fluid. Some of the works are only on flow of 

different type of fluids either inside elliptic region or past the 

elliptic cylinders [5, 11, 14]. The introduction to heat transfer 

is done in [7], whose cross section is eccentric ellipses. But 

this work is on saturated porous media between eccentric 

annuli of ellipses. Also, few studies are available on heat 

transfer past or across the elliptic cylinders [1, 2, 7, 14]. 
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Shivakumar [10] has studied viscous flow between ellipse and 

circle, and investigated the rate of flow on three geometries 

which includes concentric circles, concentric ellipses, a circle 

inside ellipse and made comparison between them. Studying 

above all works, the present study is extended to heat transfer 

in fluid flow between concentric ellipses. The method of 

solution used in study is followed from Shivakumar [10] and 

results of rate of flow in present study can be compared to 

Shivakumar [10]. The advantage of using conformal mapping 

technique are, resulting partial derivatives obtained from 

governing equations can be solved easily and closed form of 

solution is obtained.  

The present work deals with study of effect of heat transfer 

on fully developed, steady state, Newtonian flow between two 

concentric ellipses. The boundary conditions are applied by 

mapping concentric ellipses to concentric circles using 

appropriate conformal transformation. This study is restricted 

to low Reynold’s number and thus the velocity, temperature of 

fluid, rate of flow are studied for following ranges of Grashof 

number 1<Gr<10, initial temperature 0.1<θ0<1, heat flux 

β=0.001, 0.01 and area of cross section ε=0.28, 0.31, 0.40. 

 

 

2. MATHEMATICAL FORMULATION 

 

In the present study Newtonian, steady, incompressible, 

fully-developed, viscous flow with low Reynold’s number 

between two rigid, impermeable long concentric elliptic tubes, 

whose cross section is concentric ellipses are considered. The 

inner ellipse is assumed to be at temperature θ=θ0, while outer 

ellipse is at temperature θ=0 and heat is transferred through 

flow from inner ellipse to outer ellipse due to free convection. 

The effect of heat transfer on flow between two concentric 

ellipses is studied. The physical configuration of problem is 

given in Figure 1 and cross section of concentric elliptical 

tubes is shown in Figures 2a, 2b and 2c, accordingly with 

different area of cross section. 

 
 

Figure 1. Physical configuration of problem 

 

 
 

(a) α1=3.2, β1=1.8, α2=4, β2=3, ε=0.28 

 

 
 

(b) α1=4.9, β1=2, α2=6, β2=4, ε=0.31 

 
 

(c) α1=5.8, β1=4.3, α2=8.9, β2=8, ε=0.40 

 

Figure 2. Cross section of concentric elliptic tubes 

 

Two concentric, rigid, impermeable ellipses are given by, 

 

𝐶1 : 
𝑥2

𝛼1
2 +

𝑦2

𝛽1
2 = 1, 𝛼1 > 𝛽1,   𝐶2 : 

𝑥2

𝛼2
2 +

𝑦2

𝛽2
2 = 1, 𝛼2 > 𝛽2 (1) 

 

where, ellipse C1 lies completely inside ellipse C2 such that 

distance between foci satisfies 

 

𝛼1
2 − 𝛽1

2 = 𝛼2
2 − 𝛽2

2 (2) 

 

The governing equations for a Newtonian flow in z-

direction for above defined region are as follows, 

 

𝜌 [
𝑑�⃗�

𝑑𝑡
+ �⃗�. ∇�⃗�] = −∇𝑝 + ∇. �̃� + 𝜌𝑔𝛼(𝑇 − 𝑇0), (3) 

 

∇. �⃗� = 0, (4) 
 

𝜌𝐶𝑣 [
𝑑𝑇

𝑑𝑡
+ �⃗�. ∇𝑇] = 𝜅∇2T + ϕ. (5) 

 

where, �̃� is the stress tensor given by, �̃� = 2𝜇∇�⃗� + (∇�⃗�)T. 

where, ρ, p and T are density, pressure and temperature of fluid 

respectively. Also, k is co-efficient of thermal conductivity of 

fluid, φ is viscous dissipation, T0 is initial temperature of fluid, 

Cv is specific heat capacity, q⃗⃗ is the velocity of fluid and μ is 

dynamic viscosity. 

Flow is steady, fully developed for which velocity falls in 

the form of (0,0,w(x,y)). Since the ratio of diameter of ellipses 

to length of elliptical tubes is very small, the derivative 
𝜕2𝑤

𝜕𝑧2  is 

neglected. Thus above Eqns. (3) to (5) reduce to, 
 

−
𝜕𝑝

𝜕𝑧
+ 𝜇 [

𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
] + 𝜌𝑔𝛼(𝑇 − 𝑇0) = 0, (6) 
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𝜅 [
𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2] + 𝜑 = 0.   (7) 

 

Non-dimensionalizing Eqns. (6) and (7) using the following 

parameters, 

 

𝑝∗ =
𝑝ℎ

𝜇𝑢0
, 𝑤∗ =

𝑤

𝑢0
, 𝑥∗ =

𝑥

ℎ
, 𝑦∗ =

𝑦

ℎ
, 𝑧∗ =

𝑧

ℎ
, 𝜃 =

𝑇−𝑇0

𝑇1−𝑇0
. (8) 

 

where, u0 is characteristic velocity and h = α1
2 − β1

2 = α2
2 −

β2
2  is characteristic length which is calculated as difference 

between diameters of concentric ellipses. 

Neglecting (*) and substituting Non-dimensional numbers 

from Eq. (8) into Eqns. (6) and (7) we get, 

 
𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 + 𝐺𝑟𝜃 =
𝜕𝑝

𝜕𝑧
, (9) 

 
𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2 = −𝛽. (10) 

  

where, θ is the temperature of fluid in Non-dimensional form, 

𝑤 is non-dimensional velocity, 

 

𝐺𝑟 =
𝜌𝑔𝛼ℎ2(𝑇1−𝑇0)

𝜇
   and    𝛽 =

𝜑ℎ2

𝜅(𝑇1−𝑇0)
. (11) 

 

2.1 Boundary conditions 

 

The boundary conditions on temperature 𝜃 and velocity 𝑤 

for the elliptic tubes whose cross section is concentric ellipses 

shown as in Figure (2a, 2b, 2c), are as given below. 

The wall of inner ellipse is treated to be at constant 

temperature θ=θ0 and the temperature at the wall of outer 

ellipse is taken to be zero. 

 
𝜃 = 𝜃0  at inner ellipse 𝐶1 and  𝜃 = 0 at outer ellipse 𝐶2 (12) 

 

For velocity of fluid flow, the no-slip boundary condition is 

taken which assumes that velocity of fluid is zero at 

boundaries between inner and outer ellipses. Since the fluid 

particles sticks to rigid surfaces between two concentric 

ellipses, the velocity at these walls are taken to be zero. 

 

𝑤 = 0 at wall of inner ellipse 𝐶1and outer ellipse 𝐶2. (13) 

 

 

3. METHOD OF SOLUTION 

 

3.1 Velocity and Temperature 

 

To facilitate the conformal mapping at boundaries, it 

becomes necessary to use complex variables. As velocity is 

real, it will be function of 𝑧𝑧 ̄ and 𝑧 + 𝑧̅, where 𝑧 = 𝑥 + 𝑖𝑦 

and �̄� = 𝑥 − 𝑖𝑦. 

By chain rule of partial differentiation, derivative with 

respect to 𝑥 and 𝑦 in Eq. (10) and Eq. (11) can be converted 

to complex variable (𝑧, �̄�) as follows, 
 

𝜕2𝜃

𝜕𝑧𝜕�̄�
= −

𝛽

4
, (14) 

 

𝜕2𝑤

𝜕𝑧𝜕�̄�
= −

1

4
(

𝜕𝑝

𝜕𝑧
− 𝐺𝑟𝜃). (15) 

 

The solution for temperature θ can be obtained from Eq. 

(13), 

𝜃 = −
𝛽

4
𝑧�̄� + 𝜔(𝑧) + 𝜔(�̄�). (16) 

 

where, 𝜔(𝑧) = 𝐵 𝑙𝑜𝑔 𝑧 + ∑ 𝑏𝑛𝑧𝑛∞
−∞ .  

Now to find the solution for velocity w, substitute θ from 

Eq. (16) into Eq. (15) and solving, we get, 

 

𝑤 =
1

4

𝜕𝑝

𝜕𝑧
𝑧�̄� +

𝐺𝑟𝛽

16
(𝑧�̄�)2 − 𝐺𝑟𝐼(𝑧) + 𝜑(𝑧) + 𝜑(�̄�). (17) 

 

where, 𝐼(𝑧) =  (𝜔(𝑧) + 𝜔(�̄�)) 𝑑𝑧𝑑�̄�  and 

𝜑(𝑧) = 𝐹 𝑙𝑜𝑔 𝑧 + ∑ 𝑓𝑛𝑧𝑛∞
−∞ . 

 

3.2 Conformal mapping 

 

As the region is elliptical, applying boundary condition 

becomes complicated. Thus, in order to use boundary 

conditions (12) and (13) the concentric ellipses are mapped to 

concentric circles using conformal mapping. 

 

𝑧 = 𝑐 (𝜁 +
𝜆

𝜁
)  and   �̄� = 𝑐 (𝜁 +

𝜆

�̄�
). (18) 

 

Such that 𝜁 = 𝜉 + 𝑖𝜂 and 𝑐 =
𝛼2+𝛽2

2
> 0, 𝜆 =

𝛼2−𝛽2

𝛼2+𝛽2
> 0. 

𝑧(𝜁) appearing in Eq. (18) is an analytic function in entire 

𝜁plane, except at pole 𝜁 = 0, which makes the mapping in Eq. 

(18) well defined. The mapping in Eq. (18) transforms 

concentric ellipses C1 and C2(C1<C2) in Eq. (1) from z-plane 

to concentric circles with radius a and b(a<b) in 𝜁 - plane, such 

that 𝜁𝜁 = 𝜌2 and ρ varies from a to b, 

 

𝑎 =
𝛼1+𝛽1

2𝑐
, 𝑏 =

𝛼2+𝛽2

2𝑐
, 𝜀 = 𝑏 − 𝑎.    (19) 

 

where, α1, β1 are lengths of major and minor axis of ellipse C1 

and α2, β2 are lengths of major and minor axis of ellipse C2. 

Applying the conformal mapping in Eq. (18) to boundary 

conditions in Eqns. (12) and (13), we get, 

 

θ=θ0 on ρ=a, inner ellipse C1 is mapped to inner circle with 

radius a, 

θ=0 on ρ=b, outer ellipse C2 is mapped to outer circle with 

radius b, 

 

𝑤 = 0  on  𝜌 = 𝑎 and 𝜌 = 𝑏. (20) 

 

𝜃 = −
𝛽𝑐2

4
[(𝜌2 +

𝜆2

𝜌2
) +

𝜆

𝜌2
(𝜁2 +

𝜌4

𝜁2
)] + 𝐵 𝑙𝑜𝑔 𝜌

+ 𝑏0

+              (𝑏2 +
𝑏−2

𝜌4
) (𝜁2 +

𝜌4

𝜁2
), 

(21) 

 

𝑤 =
1

4

𝜕𝑝

𝜕𝑧
𝑐2 𝐴11 +

𝐺𝑟𝛽𝑐4

64
𝐴12 − 𝐺𝑟𝑐2𝐴13

+ 𝐹 𝑙𝑜𝑔 𝜌 + 𝑓0 

           + (𝑓2 +
𝑓−2

𝜌4
) (𝜁2 +

𝜌4

𝜁2
)

+ (𝑓4 +
𝑓−4

𝜌8
) (𝜁4 +

𝜌8

𝜁4
) 

(22) 

 

where, notations A11, A12, A13 are listed in appendix. 
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4. RATE OF FLOW 

 

On using complex form of the Green’s theorem, the rate of 

flow is given as, 

 

𝑅 =  𝜕𝐹

𝜕�̄�
𝑑𝑠 =

1

2𝑖
∫ 𝐹𝑑𝑧

𝑐2−𝑐1
 . (23) 

 

where, F is fluid flow and it is given by, 

 

𝐹 = ∫ 𝑤𝑑�̄�. (24) 

 

where, w is the velocity of the fluid. 

Thus, using Eq. (24) in (23), the rate of flow can be written 

as, 

 

𝑅 =
1

2𝑖
∬ 𝑤𝑑�̄�𝑑𝑧

𝐷
, 

           𝑅 =
1

2𝑖
∫ [

1

8

𝜕𝑝

𝜕𝑧
𝑧�̄�2 +

𝐺𝑟 𝛽

192
𝑧2�̄�3 +

𝑐2−𝑐1

 (−𝐺𝑟(ω(z) +  ω(z̄)))𝑑�̄�𝑑𝑧 − z z̄φ′(z)] 𝑑𝑧. 

(25) 

 

On application of conformal transformation to the rate of 

flow, Eq. (25) transforms to, 

 

𝑅𝑎𝑡𝑒 = 𝜋 [
1

8

∂p

∂z
c4 A14 +

Grβc5(2−λ)

192
 A15 − Grc4A16

+𝐺𝑟c4 (A17 − A18) − c2(A19 − A20)
]. (26) 

 

where, notations A14 to A20 are listed in appendix. 

 

 

5. LOCAL WALL SHEAR STRESS   

 

The shear stress at wall of concentric ellipses can be 

determined by, 
 

𝜏𝑤𝑎𝑙𝑙 = ±𝜇
𝜕𝑤

𝜕𝑛
. (27) 

 

where, n is normal direction.  

Non-dimensionalizing Eq. (27) using the following 

parameters, 

 

𝑤∗ =
𝑤

𝑢0
, 𝑛∗ =

𝑛

ℎ
, 𝜏∗ =

𝜏
𝜇𝑢0

ℎ

. 

 
Neglecting (*), the Eq. (27) can be written as,  

 

𝜏𝑤𝑎𝑙𝑙 = ±
𝜕𝑤

𝜕𝑛
. (28) 

 

Applying the conformal transformation from Eq. (18), the 

shear stress in Eq. (28) is given by, 

 

𝜏𝑤𝑎𝑙𝑙 = ±
𝜕𝑤

𝜕𝜌
. (29) 

 

where, ρ is radial direction of concentric circles obtained after 

transformation and measured from inner circle to outer circle. 

Since the shear stress at inner wall, τinner>0 and shear stress at 

outer wall, τouter<0, to make τwall positive, the algebraic is 

chosen in above equation. Thus,  

 

𝜏𝑖𝑛𝑛𝑒𝑟 = +
𝜕𝑤

𝜕𝜌
|

𝜌=𝑎
 and   𝜏𝑜𝑢𝑡𝑒𝑟 = −

𝜕𝑤

𝜕𝜌
|

𝜌=𝑏
 (30) 

The velocity w from Eq. (22) is partially differentiated with 

respect to 𝜌 and resultant shear stress is given by, 

 

𝜏𝑤𝑎𝑙𝑙 =
1

2

𝜕𝑝

𝜕𝑧
𝑐2𝐴21 +

𝐺𝑟𝛽𝑐4

16
[𝐴22 + 𝐴23] −

𝐺𝑟𝑐2 [𝐴24 + 𝐴25 +               𝐴26 −
4𝜌3

𝜁2 𝐴27 −

4𝑏−2

𝜌5 𝐴28 + 𝜆𝐴29 + 𝐴30 − 8𝜆𝜌3𝑏2] +

             
4𝜌3

𝜁2 𝐴31 − 𝐴32 +
8𝜌7

𝜁4 𝐴33 −
8𝑓−4

𝜌9 𝐴34 . 

(31) 

 

𝜏𝑖𝑛𝑛𝑒𝑟 = +𝜏𝑤𝑎𝑙𝑙|𝜌=𝑎 and  𝜏𝑜𝑢𝑡𝑒𝑟 = −𝜏𝑤𝑎𝑙𝑙|𝜌=𝑏. (32) 

 

where, notations A21 to A34 are listed in appendix. The shear 

stress at inner wall and outer wall is graphically depicted and 

studied for various parameters. 

 

 

6. RESULTS AND DISCUSSION 

 

In the present study an analytical approach using conformal 

mapping to study velocity and temperature of fluid flow 

between concentric ellipses C1 and C2 is presented. The 

temperature and velocity in 𝜁 plane are given by Eqns. (21) 

and (22). The velocity and temperature are graphically 

represented in 𝜉 − 𝜂 plane between a to b by assigning values 

to α1, β1, α2, β2, x, y in x-y plane. The variables are converted 

to complex but velocity will be real, which is function of 𝜁𝜁  ̅

and 𝜁 + 𝜁.̅ An initial temperature θ0 is assumed to be at wall 

of inner ellipse C1, which gradually causes heat transfer due to 

free convection towards outer ellipse C2. The effect of non- 

dimensional parameters arising in study such as ε=b-a, 

Grashof number Gr, heat flux β, initial temperature  𝜃0 , on 

temperature and velocity is studied. The variation of parameter 

ε=b-a, which is difference between radii of concentric circles 

obtained by conformal mapping from concentric ellipses, 

signifies variation of velocity and temperature with respect to 

different area of cross section between concentric ellipses. The 

behaviour of velocity and temperature due to change in area of 

cross section is studied by varying major and minor axes of 

concentric ellipses α1, β1, α2, β2 accordingly with condition in 

Eq. (2). The parameters such as Grashof number Gr, heat flux 

β, initial temperature θ0, indicate the effect of heat transfer on 

velocity and rate of flow.  

It is essential to note that temperature and velocity behave 

differently with varying area of cross section between 

concentric ellipses. As seen in Eq. (1), the inner ellipse C1 has 

α1, β1 as major and minor axis while outer ellipse C2 has α2, β2 

as major and minor axis. The Figures 2a, 2b, 2c shows the 

different sizes of ellipses which gives rise to different area of 

cross section between concentric ellipses. The concentric 

ellipses are transformed to concentric circles with radius 

a,b(b>a) using conformal mapping from Eq. (18). The radii 

𝑎 and 𝑏 are calculated from Eq. (19) for different set of values 

of α1, β1, α2, β2. 

Following three sets of concentric ellipses with increasing 

area of cross section between them are considered. 

 

Set1: For 𝛼1 = 3.2, 𝛽1 = 1.8,  𝛼2 = 4,  𝛽2 = 3 

corresponding radii of concentric circles are 𝑎 = 0.72,  
 𝑏 = 1, 𝜀 = 0.28 as in Figure 2a. 

Set2: For 𝛼1 = 4.9, 𝛽1 = 2, 𝛼2 = 6, 𝛽2 = 4 

corresponding radii of concentric circles are 𝑎 = 0.69,  
 𝑏 = 1, 𝜀 = 0.31 as in Figure 2b. 
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Set3: For𝛼1 = 5.8, 𝛽1 = 4.3, 𝛼2 = 8.9, 𝛽2 = 8 

corresponding radii of concentric circles are 𝑎 = 0.6, 𝑏 = 1,
𝜀 = 0.4 as in Figure 2c. 

Thus, studying the effect of area of cross section between 

concentric ellipses will be equivalent to studying the effect of 

area of cross section between concentric circles, after 

conformal transformation, which is given by parameter 𝜀 =
𝑏 − 𝑎. Therefore, the effect of geometry of system on velocity, 

temperature and rate of flow is studied by varying 𝜀 =
0.28, 0.31, 0.40 for three different set of concentric ellipses. 

 

6.1 Comparison of present results with previous work 

 

The present study is compared with results given by 

Shivakumar [10], who studied the viscous flow between an 

ellipse and a circle and rate of flow in region between ellipse 

and circle, concentric circles and concentric ellipses. Thus we 

can compare the rate of flow in present study in absence of 

heat transfer to the rate of flow in [10] for the case of 

concentric ellipses. Shivakumar [10] has computed rate of 

flow in concentric ellipses and found to be 0.60079  for 

parameter 𝜀 =
𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠

𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠
= 0.7 of outer ellipse.  

This can be found in Table 1 of [10] with 𝑅3as rate of flow 

in concentric ellipses. The above case of rate of flow in [10] is 

equivalent to rate of flow in case of 𝛼1 = 4.9,  𝛽1 = 2,  𝛼2 =
6,  𝛽2 = 4 ,  𝜀 = 0.31  of present study, in absence of heat 

transfer. From Table 2, the rate of flow in absence of heat 

transfer (𝐺𝑟 = 0, 𝛽 = 0, 𝜃0 = 0)  for 𝜀 = 0.31  is given by 

0.5517. This comparison shows that rate of flow in our study 

follows that of previous work for similar cases. Assuming that 

this error percentage is acceptable, the present results can be 

considered as reliable and can be extended to inclusion of heat 

transfer to flow. The comparison is done in Table 1. 

 

Table 1. Comparison of rate of flow in absence of heat 

transfer 

 

Source Rate of flow 

Present study (𝐺𝑟 =
0, 𝛽 = 0, 𝜃0 = 0) 

0.5517 for 𝜀 = 0.31 

Shivakumar [10] 

0.6007 For 𝜀 =
𝛽

𝛼
= 0.7 equivalent 

to case of 𝛼1 = 4.9, 𝛽1 = 2, 𝛼2 =
6, 𝛽2 = 4 in the present study. 

 

6.2 Temperature profiles 

 

Analytical solution of temperature θ is given by Eq. (21) 

and the non-dimensional parameters affecting θ  are initial 

temperature θ0, heat flux β and area of cross section between 

ellipses. The variation of temperature θ, with respect to 

different parameters, is graphically represented in ξ-η plane. 

The parameter β is assumed to be very small and hence it is 

varied from 0.001 to 0.01 and effects on temperature has been 

recorded. Figure 3 shows that as heat flux β increases from 

0.001 to 0.01, the temperature θ decreases, for fixed values 

of θ0 = 0.1, ε = 0.40. This may be due to rigorous exchange 

of thermal energy. The increase in temperature, with decrease 

in β, is due to reduction of heat transfer at the boundaries. The 

initial temperature θ0, at wall of inner ellipse is found to be 

enhancing the temperature of fluid θ. From Figure 4, the initial 

temperature is varied from 0.1 to 1  and temperature θ has 

been noted for fixed values of ε = 0.31 and β = 0.001. It can 

be observed from the figure that the temperature θ, is almost 

doubled when initial temperature θ0  is doubled 

from 0.1 to 0.5. The increase in initial temperature signifies 

the presence of excess heat initially and hence there is more 

heat transfer and rise in temperature. 

 
 

Figure 3. Temperature profiles for various values of 𝛽 

 

 
 

Figure 4. Temperature profiles for various values of 𝜃0  

 

The geometry is also affecting factor for temperature of 

fluid. Figures 5-7 show contour lines for temperature for 

various area of cross section between concentric ellipses in ξ −
η plane. As we move from lower vertex (0.2, 0.2) towards 

opposite vertex of figures, the value of temperature θ 

decreases. This pattern is visible in all figures. The curves 

closer to lower vertex of real axis shows magnitude of 

temperature at inner ellipse, while curves away from real axis 

are temperature profiles near outer ellipse. As assumed in 

boundary conditions, all patterns in figures suggest higher 

temperature at inner surface and lower temperature at outer 

surface of concentric ellipses. In Figure 5, for 𝜀 = 0.28, less 

contour near outer surface of boundary are visible. This 

indicates faster diffusion of heat, away from inner surface. 

This is due to smaller area of cross section created between 

concentric ellipses at  𝜀 = 0.28 . From Figures 6, 7 as ε 

increases from 0.31 to 0.40, the area of cross section between 

concentric ellipses also increases. In Figures 6-7, for higher 

values of  ε , the hotter region more prominent and shows 

slower rate of heat transfer. This is because increase in ε , 

increases the area of cross section and availability of larger 

area of cross section causes heat transfer to slow down towards 
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outer boundary. Thus more contour lines suggest less 

temperature at outer ellipse. Thus it is evident that larger area 

of cross section between concentric ellipses slows down the 

rate of heat transfer near boundaries. 

 

 
 

Figure 5. Temperature contour profile θ for 𝜀 = 0.28 

 

 
 

Figure 6. Temperature contour profile θ for 𝜀 = 0.31 

 

6.3 Velocity profiles 

 

The velocity of fluid is analytically evaluated and 

represented in Eq. (22). The velocity is studied for different 

values of Grashof number 𝐺𝑟 , heat flux 𝛽 and area of cross 

section between concentric ellipses 𝜀 = 𝑏 − 𝑎. The velocity 

profile for 𝐺𝑟→0 gives values of velocity in absence of heat 

transfer. Velocity shows a parabolic profile between two 

elliptical tubes, which is indicated through rectangular cross 

section of doubly connected region in 𝜉 − 𝜂 plane.  

 
Figure 7. Temperature contour profile θ for 𝜀 = 0.40 

 

Figure 8 shows the effect of 𝐺𝑟  on velocity of fluid for fixed 

of values of  𝜃0 = 0.5, 𝛽 = 0.001, 𝜀 = 0.31 . From Eq. (11) 

Grashof number 𝐺𝑟  is ratio of, product of various parameters 

such as density 𝜌, characteristic length h, difference between 

temperatures of fluid near boundaries, to viscosity of fluid. 

The variation of density of fluid 𝜌 and viscosity of fluid 𝜇, 

caused due to natural convection from inner ellipse to outer 

ellipse can be seen in variation of Grashof number 𝐺𝑟 . Thus 

the increase in Grashof number 𝐺𝑟 , shows the effect of heat 

transfer on velocity and rate of flow. When Grashof number 𝐺𝑟  

increases from 1 to 3, the velocity also increases. It can be 

observed that increase in value of  𝐺𝑟 , increases the 

temperature at wall of inner ellipse, which decreases the 

viscosity of fluid. Thus the velocity of fluid is enhanced with 

the greater value of 𝐺𝑟. The same behaviour can be attributed 

to initial temperature 𝜃0. Figure 9 represents variation of initial 

temperature 𝜃0 from 0.1 to 1.0 for fixed values of 𝐺𝑟 = 1, 𝜀 =
0.31, 𝛽 = 0.001. It can be seen from Figure 9 that when initial 

temperature 𝜃0  is enhanced the velocity of fluid increases. 

Thus the Grashof number 𝐺𝑟  and initial temperature 𝜃0 

influences the effect of heat transfer between concentric 

ellipses on velocity in increasing way. 

 
 

Figure 8. Velocity profiles for various values of 𝐺𝑟  
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Figure 9. Velocity profiles for various values of 𝜃0 

 

Heat flux 𝛽, denotes exchange of thermal energy from fluid 

to surface of concentric ellipses and vice versa. Figure 10 

shows a comparative study of velocity of fluid w for various 

values of heat flux at 𝛽 = 0.01,0.001 with fixed values ε =
0.31, 𝜃0 =  0.5, 𝐺𝑟 = 5 . When heat flux 𝛽  increases 

from0.001 to 0.01, the velocity decreases. The reduction of 

rate of heat transfer at the boundaries causes loss in 

temperature of fluid as observed in section 6.2. Due to 

decrease in temperature, the viscosity is enhanced which in 

turn decreases the velocity of fluid. Therefore, contrary to 

behaviour of 𝐺𝑟  and θ0, increase in heat flux  𝛽 , reduces 

velocity of fluid flow. 

 
 

Figure 10. Velocity profiles for various values of 𝛽 

 

Geometry of concentric ellipses also cause change in 

velocity of fluid flow. Figures 11 to 15 show effect of 

difference between radii of concentric circles ε =  𝑏 − 𝑎 and 

thus area of cross section between concentric ellipses, on 

velocity of fluid. Figure 11 shows effect of smaller area of 

cross section on velocity at ε =  0.28. Comparing Figure 11 

and 12 it can be assessed that when area of cross section is 

smaller there will be less flow and hence magnitude of velocity 

will be less. Figure 13 shows velocity at ε =  0.40 which has 

larger area of cross section and can be seen enhancement in 

magnitude of velocity. Figure 14 shows comparative study of 

flow velocity for different area of cross section between 

concentric ellipses at ε =  0.28, 031, 0.40. Thus it is visible 

from Figures 11 to 14 that as ε increases, in presence of heat 

transfer, the magnitude of velocity will be high. This is due to 

availability of larger area of cross section for flow. Figure 15 

shows variation of velocity of fluid for different  ε =
 031, 0.40, in the absence of heat transfer (Gr → 0 and 𝛽 = 0). 

In this case also, the velocity enhances with larger area of cross 

section. Comparing Figures 14-15, the presence of heat 

transfer improves velocity much compared to velocity in 

absence of heat transfer. The effect of increase in area of cross 

section on improving the velocity of flow can be seen here too. 

 
Figure 11. Velocity profile 𝑤 along axial axes (𝜉, 𝜂) 

for 𝜀 = 0.28, 𝜃0 =  0.5, 𝛽 = 0.001, 𝐺𝑟 = 5 

 

 
Figure 12. Velocity profile 𝑤 along axial axes (𝜉, 𝜂) 

for 𝜀 = 0.31, 𝜃0 =  0.5, 𝛽 = 0.001, 𝐺𝑟 = 5 

 

 
 

Figure 13. Velocity profile 𝑤 along axial axes (𝜉, 𝜂) 

for 𝜀 = 0.40, 𝜃0 =  0.5, 𝛽 = 0.001, 𝐺𝑟 = 5 
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Figure 14. Velocity profiles for various values of 𝜀 and for 

𝜃0 =  0.5, 𝛽 = 0.001, 𝐺𝑟 = 5 

 

 
 

Figure 15. Velocity profiles for various values of 𝜀 and 

for 𝜃0 =  0, 𝛽 = 0, 𝐺𝑟 = 0 

 

6.3 Rate of flow 

 

The rate of flow is computed from Eq. (26) and studied, by 

varying parameters such as 𝜃0,  𝐺𝑟 , ε which affect the rate of 

flow. 

 

Table 2. Rate of flow computed for various values of 𝜃0 ,𝐺𝑟 , ε 

and at fixed value of β=0.001 

 

1. 𝜷 2. θ0 3. 𝑮𝒓 ε =0.28 ε=0.31 ε=0.40 

0 0 0 0.12745 0.5517 4.95717 

0.001 

0.1 

1 

0.12745 0.5517 4.95717 

0.5 47.7102 179.002 617.009 

1 244.105 940.354 4340.37 

0.1 

5 

489.6 1892.04 8994.58 

0.5 238.041 892.804 3065.22 

1 1220.02 4699.56 21682.2 

0.1 

10 

2447.49 9458.01 44953.1 

0.5 475.955 1785.06 6125.47 

1 2439.91 9398.58 43359.1 

 

Table 2 lists the different values of rate of flow for fixed 

value of  β = 0.001  and for various values of initial 

temperature  𝜃0 = 0.1, 0.5, 1 , Grashof number  𝐺𝑟 = 1, 5, 10 , 

andε = 0.28,0.31,0.40. A case of rate of flow in the absence 

of heat transfer is studied by setting parameters 𝜃0, 𝐺𝑟 , β to 

zero for various ε. These values are used to compare rate of 

flow with previous work [10]. 

In Table 1, when parameter ε increased 

from 0.28, 0.31, 0.40, there is subsequent increase in rate of 

flow. This is due to increase in magnitude of velocity with 

increase in area of cross section of concentric ellipses as 

studied in section 6.3 Also, when initial temperature  𝜃0  is 

raised from 0.1, 0.5 to 1  corresponding rate of flow is 

increased for fixed 𝐺𝑟 = 1 .The same behaviour can be 

observed in case of  𝐺𝑟 . Thus when  𝜃0 , 𝐺𝑟  and ε increases, 

corresponding rate of flow also increases. 

 

6.4 Shear stress at wall of elliptical tubes 

 

The normal shear stress at inner wall and outer wall of 

concentric ellipses is given by Eqns. (31) and (32) and same 

are represented graphically. The shear stress at inner wall 

𝜏𝑖𝑛𝑛𝑒𝑟  and outer wall 𝜏𝑜𝑢𝑡𝑒𝑟 is calculated along surface 𝜌 =
𝑎 and 𝜌 = 𝑏 respectively. The graphs of 𝜏𝑖𝑛𝑛𝑒𝑟  and 𝜏𝑜𝑢𝑡𝑒𝑟  are 

plotted against 𝜉 axis at fixed 𝜂 for various values of Grashof 

number 𝐺𝑟 = 1, 1.05 and heat flux 𝛽 = 0.001,0.002. 

 

 
 

Figure 16. Shear stress at inner wall of concentric ellipses 

𝜏𝑖𝑛𝑛𝑒𝑟  for various values of 𝛽 

 

 
 

Figure 17. Shear stress at inner wall of concentric ellipses 

𝜏𝑖𝑛𝑛𝑒𝑟  for various values of 𝐺𝑟 . 
 

The graphs of 𝜏𝑖𝑛𝑛𝑒𝑟  and 𝜏𝑜𝑢𝑡𝑒𝑟  follows the rule of viscosity 

and proportional to the velocity of fluid flow. Figure 16 

represents graph of shear stress at inner wall of concentric 

ellipses 𝜏𝑖𝑛𝑛𝑒𝑟  for various values of 𝐺𝑟. It can be seen that for 

small increase in 𝐺𝑟 , shear stress 𝜏𝑖𝑛𝑛𝑒𝑟 increases considerably. 

The considerable increase in velocity for small increase in 

values of 𝐺𝑟  is reason for this behaviour of 𝜏𝑖𝑛𝑛𝑒𝑟 . Figure 17 

demonstrates that shear stress 𝜏𝑖𝑛𝑛𝑒𝑟  decreases with increase 
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in heat flux 𝛽 . This behaviour follows from decrease in 

velocity of fluid with increase in 𝛽, as seen in section 6.3.  

 

 
 

Figure 18. Shear stress at outer wall of concentric ellipses 

𝜏𝑜𝑢𝑡𝑒𝑟  for various values of 𝐺𝑟  

 

 
 

Figure 19. Shear stress at outer wall of concentric ellipses 

𝜏𝑜𝑢𝑡𝑒𝑟  for various values of 𝛽 

 

The variation of shear stress at outer wall of concentric 

ellipses  𝜏𝑜𝑢𝑡𝑒𝑟  are given by Figures 18 and 19 for various 

values of 𝐺𝑟  and 𝛽. 𝜏𝑜𝑢𝑡𝑒𝑟 shows decreasing curve due to 

sticking of fluid particles near outer wall. The Figure 18 shows 

that shear stress at outer wall 𝜏𝑜𝑢𝑡𝑒𝑟  is enhanced with small 

increase in 𝐺𝑟  while Figure 19 shows 𝜏𝑜𝑢𝑡𝑒𝑟  depletes with 

increase in heat flux 𝛽. Thus it can be concluded that shear 

stress at inner and outer wall of concentric ellipses follows the 

law of viscosity and is proportional to velocity gradient. 

 

 

7. NUMERICAL SOLUTION OF VELOCITY IN 

ABSENCE OF HEAT TRANSFER AND COMPARISON 

WITH ANALYTICAL SOLUTION 

 

In this section, an attempt is made to compare numerical 

solution of velocity in absence of heat transfer ( 𝐺𝑟 → 0, 𝛽 =
0, 𝜃0 = 0), by adopting the transformation used in D’Alessio 

and Dennis [7] which maps concentric ellipses to rectangular 

region, and later using finite difference scheme to find velocity. 

The velocity in Eq. (3) of present study in absence of heat 

transfer is given by, 

 
∂2w

∂x2 +
∂2w

∂y2 =
1

μ

∂p

∂z
 . (33) 

 

Non- dimensionalizing Eq. (33) using parameters in Eq. (8) 

and neglecting (*), the Eq. (33) reduces to, 

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 =
𝜕𝑝

𝜕𝑧
 .   (34) 

 

Following D’Alessio and Dennis [7], the concentric ellipse 

𝐶1 𝑎𝑛𝑑 𝐶2 in Eq. (1) are transformed to rectangular strip using 

mapping, 

 

𝑥 + 𝑖𝑦 = 𝐶𝑜𝑠ℎ(𝜉 + 𝑖(𝜃 + Α)) (35) 

 

where, 𝜉1 ≤ 𝜉 ≤ 𝜉2  and −𝜋 ≤ 𝜃 ≤ 𝜋  and Α  is inclination 

angle. 

The values of 𝜉  are taken along horizontal axis of mesh 

which are determined following [7]. The values of 𝜉are given 

by 𝑡𝑎𝑛ℎ𝜉1 =
𝛽1

𝛼1
 and 𝑡𝑎𝑛ℎ𝜉2 =

𝛽2

𝛼2
 which specifies the ratio of 

minor axis to major axis of concentric ellipses. Due to 

symmetry along y axis, 𝜃  is varied from – 𝜋 𝑡𝑜 𝜋  and is 

considered vertical axis in rectangular mesh. Applying 

conformal map in Eq. (35) to Eq. (34), the transformed form 

of Eq. (34) in (𝜉, 𝜃) co-ordinates is given by, 

 

𝜕2𝑤

𝜕𝜉2
+

𝜕2𝑤

𝜕𝜃2
=

𝜕𝑝

𝜕𝑧
(

𝑐𝑜𝑠ℎ2(𝜉)𝑠𝑖𝑛2(𝜃 + 𝛼) +

𝑠𝑖𝑛ℎ2(𝜉)𝑐𝑜𝑠2(𝜃 + 𝛼)
) (36) 

 

Using finite difference scheme of numerical solution to Eq. 

(36), the solution for velocity 𝑤𝑖,𝑗  is obtained by varying 

horizontal strips 𝜉 = 𝜉1 𝑡𝑜 𝜉 = 𝜉2  and vertical strips 𝜃 =

−𝜋 𝑡𝑜 𝜃 = 𝜋 with 𝛿𝜉 =
𝜉2−𝜉1

𝑛
, 𝛿𝜃 =

2𝜋

𝑛
 as step size, where n is 

number of intervals mesh to be divided. The boundary values 

of rectangular mesh is taken by incorporating no- slip 

boundary condition 𝑤 = 0 𝑎𝑡 𝜉 = 𝜉1 𝑡𝑜 𝜉 = 𝜉2 and symmetry 

condition at 𝜃 = −𝜋 𝑡𝑜 𝜋. 

Figures 20 and 21 show the graph of both numerical and 

analytical solution for various area of cross section  𝜀 , in 

absence of heat transfer. The graphs show similar 

characteristic of velocity obtained using both numerical and 

analytical approach with little deviation. Comparing graphs in 

Figures 20 and 21, we can observe that velocity obtained from 

both numerical and analytical approach increases with 

increase in area of cross section of concentric ellipses from 

ε=0.28 to ε=0.31. Since results from both methods are 

approximately equal, the computation of velocity using the 

analytical approach in present study can be extended to 

inclusion of effect of heat transfer. 

 

 
 

Figure 20. Velocity profiles w along ξ axis for 𝜀 = 0.28 in 

absence of heat transfer 𝐺𝑟 = 0, 𝛽 = 0, 𝜃0 = 0 
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Figure 21. Velocity profiles w along ξ axis for 𝜀 = 0.31 in 

absence of heat transfer 𝐺𝑟 = 0, 𝛽 = 0, 𝜃0 = 0 

 

 

8. CONCLUSIONS 

 

The present study effectively analyses the flow of 

Newtonian fluid between concentric elliptic cylinders kept at 

different temperatures. The effect of heat transfer on velocity 

and rate of flow are studied by varying parameters 𝐺𝑟 , 𝜃0, 𝛽 

and 𝜀. Ellipse creates a larger area of cross section due to its 

geometry and hence provides more fluid to pass through. 

Usage of conformal mapping helps to map region which is not 

in perfect symmetry to region having perfect symmetry. Thus 

the results of former region can be studied through later region 

by mapping. Variation different parameters on the flow is 

represented graphically which proves that the effect of heat 

transfer has great influence on velocity and rate of flow. 

Inclusion of heat transfer through parameter 𝐺𝑟  enhances 

magnitude of velocity and hence rate of flow considerably. 

Thus, increase in temperature of fluid increases the velocity of 

fluid and rate of flow and thermal exchange can be maintained 

with heat flux 𝛽. 
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NOMENCLATURE 

 
dp

dz 
   pressure gradient in normal direction 

Cv  specific heat capacity 

Gr  Grashof Number 

q⃗⃗ = u(x, y, z)î +
+v(x, y, z)ĵ +

w(x, y, z)k̂  

velocity of the fluid 

�̃�  Stress tensor 
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𝑐1  Inner ellipse 

𝑐2  Outer ellipse 

𝛼1 major axis of inner ellipse 

𝛽1 minor axis of inner ellipse 

𝛼2 major axis of outer ellipse 

𝛽2 minor axis of outer ellipse 

a radius of inner circle after conformal 

map of ellipse 𝑐1 

b radius of outer circle after conformal 

map of ellipse 𝑐2 

𝜀 = 𝑏 − 𝑎 parameter representing area of cross 

section 

𝑤 dimensionless velocity in z direction 

ℎ = 𝛼1
2 − 𝛽1

2 = 𝛼2
2 −

𝛽2
2  

 

characteristic length representing 

difference between diameter of ellipses 

 

Greek symbols 

 

ρ density of fluid 

κ Co-efficient of thermal conductivity 

ϕ Viscous dissipation 

 thermal diffusivity 

θ dimensionless temperature of fluid 

β heat flux 

μ Coefficient of viscosity of fluid 

θ0 Initial temperature at wall of inner 

ellipse 

𝜏𝑖𝑛𝑛𝑒𝑟   Shear stress at inner ellipse 

𝜏𝑜𝑢𝑡𝑒𝑟   Shear stress at outer ellipse 

 

 

APPENDIX 

 

𝐴11 = (𝜌2 +
𝜆2

𝜌2) +
𝜆

𝜌2 (𝜁2 +
𝜌4

𝜁2), 

𝐴12 = (𝜌2 +
𝜆2

𝜌2
)

2

+
𝜆2

𝜌4
(𝜁4 +

𝜌8

𝜁4
+ 2𝜌4) + 2 (𝜌2 +

𝜆2

𝜌2
) (𝜁2 +

𝜌4

𝜁2
), 

𝐴13 = 𝜌2(2𝐵 𝑙𝑜𝑔 𝜌 + 2𝑏0) (1 +
𝜆2

𝜌4
) − 𝜆(2𝐵 𝑙𝑜𝑔 𝜌 + 2𝑏0)  

            (
𝜁2

3
−

𝜌4

𝜁2
) + 𝜌2 (𝑏2 +

𝑏−2

𝜌4
) (1 +

𝜆2

𝜌4
) (

𝜁2

3
−

𝜌4

𝜁2
) +  

            𝜌2 (𝑏2 +
𝑏−2

𝜌4
) (1 +

𝜆2

𝜌4
) (

𝜁2

3
−

𝜌4

𝜁2
) − 𝜆 (𝑏2 +

𝑏−2

𝜌4
) (

𝜁4

5
−

𝜌8

3𝜁4
)    

           −2𝜆𝜌4 (𝑏2 +
𝑏−2

𝜌4
).   

𝐴14 = (b4 −
λ

4

b4) − (a4 −
λ

4

a4) , 𝐴15 = (b2 −
λ

2

b2) − (a2 −
λ

2

a2),  

𝐴15 = (2B log b + 2b0) (b4 +
4λ

2b2

3
−

λ
4

b
4),  

𝐴16 = (2B log a +  2b0) (a4 +
4λ

2a2

3
−

λ
4

a4) , 

𝐴17 = (
4λb

4

3
+

4λ
3

3
+ 2λ (b6 − λ

2b2
)) (b2 +

b−2

b4 ) , 

𝐴18 = (
4λa4

3
+

4λ
3

3
+ 2λ (a66 − λ

2a2)) (b2 +
b−2

a4 ), 

𝐴19 = (F (b2 +
λ

2

b2) −
2λf−2

b2 + 2λf2b2), 

𝐴20 = (F (a2 +
λ

2

a2) −
2λf−2

a2 + 2λf2a2), 

𝐴21 = (𝜌 −
𝜆2

𝜌3) + 𝜆 (
𝜌

𝜁2 −
𝜁2

𝜌3) , 

𝐴22 = (𝜌 −
𝜆2

𝜌3) + 𝜆 (
𝜌

𝜁2 −
𝜁2

𝜌3), 

𝐴23 = (𝜌 −
𝜆2

𝜌3) (𝜁2 +
𝜌4

𝜁2) +
𝜌3

𝜁2 (𝜌2 +
𝜆2

𝜌2),  

𝐴24 = (2𝐵 𝑙𝑜𝑔 𝜌 + 2𝑏0) (2𝜌 −
2𝜆2

𝜌3 ) +
2𝐵

𝜌
(𝜌2 +

𝜆2

𝜌2),   

𝐴25 = 𝜆(2𝐵 𝑙𝑜𝑔 𝜌 + 2𝑏0) (
4𝜌3

𝜁2 ) −
2𝐵𝜆

𝜌
(

𝜁2

3
−

𝜌4

𝜁2), 

𝐴26 = (𝑏2 +
𝑏−2

𝜌4 ) (
𝜁2

3
−

𝜌4

𝜁2) (2𝜌 −
2𝜆2

𝜌3 ), 

𝐴27 = (𝑏2 +
𝑏−2

𝜌4 ) (𝜌2 +
𝜆2

𝜌2), 𝐴28 = (𝜌2 +
𝜆2

𝜌2) (
𝜁2

3
−

𝜌4

𝜁2), 

𝐴29 = (𝑏2 +
𝑏−2

𝜌4 ) (
8𝜌7

3𝜁4), 

𝐴30 =
4𝑏2𝜆

𝜌5 (
𝜁4

5
−

𝜌8

3𝜁4),  

𝐴31 = (𝑓2 +
𝑓−2

𝜌4 ), 𝐴32 = (𝜁2 +
𝜌4

𝜁2), 𝐴33 = (𝑓4 +
𝑓−4

𝜌8 ), 

𝐴34 = (𝜁4 +
𝜌8

𝜁4),
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