

Minimization of the Number of Iterations in K-Medoids Clustering with Purity Algorithm

Rozzi Kesuma Dinata1*, Sujacka Retno2, Novia Hasdyna2

1 Department of Informatics, Universitas Malikussaleh, Aceh 24353, Indonesia
2 Department of Informatics, Universitas Islam Kebangsaan Indonesia, Aceh 24352, Indonesia

Corresponding Author Email: rozzi@unimal.ac.id

https://doi.org/10.18280/ria.350302

ABSTRACT

Received: 11 April 2021

Accepted: 20 June 2021

 With k-medoids algorithm, it often takes many iterations to cluster a large dataset, that is,

the k-medoids algorithm cannot achieve the optimal performance. Based on cluster validity,

this paper tries to optimize the clustering performance of k-medoids algorithm, using the

purity algorithm. Specifically, the medoids value was determined by the purity value, and

cluster validity was measured with the Davies Bouldin Index (DBI) on the Iris Dataset and

the Death/Birth Rate Dataset. The results show that the cluster validity of the proposed

purity k-medoids algorithm was better than the conventional k-medoids algorithm. The

conventional k-medoids converged in an average of 8.7 iterations on the Death Birth Rate

Dataset and 13.2 on the Iris Dataset. By contrast, the purity k-medoids algorithm only

needed 2 iterations on either dataset. Therefore, the purity k-medoids algorithm can

effectively minimize the number of iterations in the clustering of large datasets.

Keywords:

clustering, iteration, K-medoids, purity,

Davies-Bouldin Index

1. INTRODUCTION

Machine learning is the study of computer algorithms and

statistical models that execute tasks without explicit

instructions [1]. K-medoids, a.k.a. partitioning around

medoids (PAM), is one of the machine learning algorithms

relying on unsupervised learning. As a variant of the k-means

algorithm, k-medoids provides a non-hierarchical clustering

tool. In essence, data clustering is to divide data into several

clusters (groups), trying to achieve the maximum intra-cluster

similarity and minimum inter-cluster similarity [2, 3]. During

the clustering tasks, k-medoids algorithm faces a serious

problem: the number of iterations is unpredictable and instable

[4]. If a large volume of data needs to be processed, the

algorithm could hardly achieve the optimal performance.

Some scholars have studied the performance of k-medoids

in data clustering. Arora and Varshney [5] clustered the big

data separately with k-means and k-medoids, and found that

k-medoids was superior in terms of execution time,

insensitivity to outliers, and noise suppression. Gulo et al. [6]

introduced k-medoids to the clustering of uncertain data, and

demonstrated the high accuracy and efficiency of the

algorithm. Tiwari et al. [7] proposed the k-medoids with multi-

armed bandits (banditPAM), learned that banditPAM could

produce high-quality medoids on huge data, and applied k-

medoids to improve the quality of online learning for students

around the world. Schubert and Rousseeuw [8] analyzed fast

and eager k-medoids clustering, observed that clustering large

applications (CLARA) achieved better quality than random

medoids, and proved that FasterPAM worked faster and

yielded better results than conventional k-medoids.

Velmurugan and Santhanam [9] proved that k-means

algorithm consumed a longer mean computing time than k-

medoids on data obeying normal or uniform distribution. In

addition, a few researchers tried to optimize k-medoids with

purity algorithm, which determines the medoids values for

data clustering.

This paper mainly attempts to reduce the number of

iterations required by conventional k-medoids with purity

algorithm. One of the key defects of k-medoids is the random

selection of medoids, which makes the number of iterations

unpredictable. If the clustering takes many iterations, the

execution time of the algorithm will be excessively long. To

minimize the number of iterations, purity algorithm was

introduced to determine the cluster medoids based on the

purity values. Then, the authors conducted a test with three

different k values to analyze how purity affects the number of

iterations in different clusters. In addition, the results of our

purity k-medoids were compared with those of conventional

k-medoids. The clustering performance of the proposed

algorithm was evaluated with the Davies-Bouldin Index (DBI),

which measures the clustering effect with cohesion and

separation. The DBI value is negatively correlated with the

clustering effect [10]. The datasets adopted for this study

include the Iris Dataset from the UCI Machine Learning

Repository and the Death Birth Rate Dataset from the John

Burkardt Repository.

2. K-MEDOIDS CLUSTERING

K-Medoids is a non-hierarchical clustering algorithm K-

medoids is a non-hierarchical clustering algorithm derived

from the k-means algorithm. Through partition clustering, the

algorithm groups x objects into k clusters. At the center of each

cluster, the objects that are robust against outliers are called

medoids. The clusters are formed by computing the distance

between medoids and non-medoids objects [11].

As shown in Figure 1, k-medoids algorithm works in the

following steps [12]:

Step 1. Determine the k value (number of clusters);

Step 2. Initialize k random medoids in n data;

Revue d'Intelligence Artificielle
Vol. 35, No. 3, June, 2021, pp. 193-199

Journal homepage: http://iieta.org/journals/ria

193

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.350302&domain=pdf

Step 3. Compute the Euclidean distance d(xi, µj) of each

object xi to each medoid µj:

𝑑(𝑥𝑖, µ𝑗) = ∑(𝑥𝑖 − µ𝑗)2

𝑛

𝑖=1

 (1)

where, µj is the value of the medoid (center) the j-th cluster.

Figure 1. Framework of K-medoids clustering

Step 4. Assign the object to the cluster of the closest medoid;

Step 5. Repeat the above steps, and calculate the total

deviation (S):

S = b – a (2)

where, a is the sum of the closest distances between the object

and the initial medoid; b is the sum of the closest distances

between the object to the new medoid.

If S <0, then swap the object with the other data to form a

new k as a medoid.

Step 6. Repeat Steps 3-5, and terminate the algorithm if the

medoids change no more.

2.1 Purity algorithm

Purity algorithm aims to find the purity value of each cluster,

i.e., the most suitable member in the cluster. The purity value

can be calculated by [13]:

𝑃𝑢𝑟𝑖𝑡𝑦(𝑦) =
1

𝑁𝑦

 𝑚𝑎𝑥 (𝑛𝑥𝑦) (3)

where, purity (y) is the purity value of the y-th variable; Ny is

the amount of data belonging to the y-th cluster; y is the index

of the cluster.

2.2 DBI

This paper uses the DBI to analyze the clustering results of

machine learning algorithms. This index measures clustering

effect with cohesion and separation. The former is defined as

the amount of data close to the centroid in each cluster, and the

latter as the proximity between centroids in the cluster. The

DBI can be computed in the following steps [14]:

Step 1. Compute the sum of squares within cluster (SSW),

i.e., cohesion, in a cluster by [15]:

𝑆𝑆𝑊𝑖 =
1

𝑚𝑖
∑ 𝑑(𝑥𝑗, 𝑐𝑖)

𝑚𝑖

𝑗=𝑖

 (4)

Step 2. Compute the sum of squares between clusters (SSB),

i.e., separation, between clusters by [16]:

𝑆𝑆𝐵𝑖, 𝑗 = 𝑑(𝑐𝑖, 𝑐𝑗) (5)

Step 3. Compute the ratio that compares the i-th cluster with

the j-th cluster [17]:

𝑅𝑖𝑗 =
𝑆𝑆𝑊𝑖 + 𝑆𝑆𝑊𝑗

𝑆𝑆𝐵𝑖𝑗
 (6)

Step 4. Compute the DBI based on the ratio by [18]:

𝐷𝐵𝐼 =
1

𝑘
∑ 𝑚𝑎𝑥𝑖≠𝑗(

𝑘

𝑖=1

𝑅𝑖,𝑗) (7)

The smaller the DBI value, the better the clustering effect

[19].

3. PURITY K-MEDOIDS

To improve the clustering quality, it is necessary to

determine the medoids in k-medoids algorithm. This paper

decides to determine them in the following procedure: First,

the purity value is calculated for the entire dataset. Then, the

highest and lowest purity values are taken as the medoids for

k-medoids algorithm. Figure 2 shows the architecture of the k-

medoids algorithm with the medoids selected by our approach.

The workflow of our research can be summarized as follows

(Figure 3):

Step 1. Import the Iris Dataset and Death Birth Rate Dataset.

Step 2. Initialize the k value.

Step 3. Compute the purity value of each data by formula

(3). If k value is even, then use the minimum purity value for

the first iteration; if k value is odd, then use the maximum

purity value for the first iteration.

Step 4. Compute the distance of each data to each medoid,

and classify the data by formula (1).

Step 5. Compute the deviation S.

Step 6. Compute the DBI value, and analyze the results by

formulas (4)-(7).

Step 7. Compare purity k-medoids with conventional k-

medoids by analyzing the number of iterations and the DBI

194

value (a metric of cluster validity).

Figure 2. Purity K-medoids

Figure 3. Research framework

4. RESULTS AND DISCUSSION

This research uses two different datasets, namely, the Iris

Dataset from UCI Machine Learning Repository and the Death

Birth Rate Dataset from John Burkardt Repository. The

datasets are described in Table 1.

Table 1. The description of the dataset

Dataset Number of

Attributes

Number of

Instances

DeathBirth Rates

dataset
2 70

Iris dataset 4 150

4.1 Purity value on the two datasets

The purity value was computed with the above-mentioned

purity value formula. The purity value of each data in the

Death Birth Rate Dataset can be calculated by:

1. 𝑃𝑢𝑟𝑖𝑡𝑦 (𝑑1) =
1

(51)
(36,4)

 = 0.713725

2. 𝑃𝑢𝑟𝑖𝑡𝑦 (𝑑2) =
1

(45,3)
(37,3)

 = 0.8234

3. 𝑃𝑢𝑟𝑖𝑡𝑦 (𝑑3) =
1

(57,4)
(42,1)

 = 0.733449

Tables 2 and 3 present the purity values on the Death Birth

Rate Dataset and the Iris Dataset, respectively.

Table 2. Purity values on the Death Birth Rate dataset

Data No-
Attribute 1

(x1)

Attribute 2

(x2)
Purity Value

1 36.4 14.6 0.713725

2 37.3 8 0.8234

3 42.1 15.3 0.733449

4 55.8 25.6 0.685504

...

...

...

...

19 46.3 6.4 0.878558

...

...

...

...

50 17.6 19.8 0.529412

...

...

...

...

70 25.5 8.8 0.74344

Table 3. Purity values on the Iris dataset

Data

No-
 (x1) (x2) (x3) (x4)

Purity

Value

1 5.1 3.5 1.4 0.2 0.5

2 4.9 3 1.4 0.2 0.515789

3 4.7 3.2 1.3 0.2 0.5

4 4.6 3.1 1.5 0.2 0.489362

...

...

... ...

42 4.5 2.3 1.3 0.3 0.535714

...

...

... ...

101 6.3 3.3 6 2.5 0.348066

...

...

... ...

150 5.9 3 5.1 1.8 0.373418

195

On the Death Birth Rate Dataset, the minimum purity value

was 0.529412 on the 50th data, while the maximum purity

value was 0.878558 on the 19th data. On the Iris Dataset, the

minimum purity value was 0.348066 on the 101st data, while

the maximum purity value was 0.535714 on the 42nd data.

In this research, the data with the minimum purity value is

taken as the initial medoid, and that with the maximum purity

value as the new medoid. Then, the clustering was initiated

with different initial k values: 2, 3, and 4. After that, the

clustering results were analyzed by comparing the DBI values

4.2 Clustering with K-Medoids

Ten tests were carried out to cluster the datasets with purity

k-medoids, using the initial k value of 2. The Euclidean

distance of each data to the initial medoid in the first iteration

was computed.

1. d1, d1 = √(36,4 − 17,6)2 + (14,6 − 19,8)2

 = 19,5059

2. d2, d1 = √(36,4 − 17,5)2 + (14,6 − 13,7)2

 = 18,92142

3. d1, d2 = √(37,3 − 17,5)2 + (8 − 19,8)2

 = 22,96367

4. d2, d2 = √(36,4 − 17,5)2 + (14,6 − 13,7)2

 = 20,60413

5. d1, d3 = √(42,1 − 17,6)2 + (15,3 − 19,8)2

 = 24,90984

6. d2, d3 = √(36,4 − 17,5)2 + (14,6 − 13,7)2

 = 24,65198

The following are the computed results (Table 4):

Table 4. Euclidean Distance of each data

Data No-
Distance Value

dx,dx dx,dy

1 19,5059 18,92142

2 22,96367 20,60413

3 24,90984 24,65198

4 38,63781 40,10611

5 40,73254 43,20093

6 24,52835 24,39057

7 28,52122 29,03377

8 25,97884 24,4663

… … …

70 13,54289 9,381365

Next, the distance of each data to a new medoid was

computed, and the total deviation (S) was derived by formula

(2):

S = 𝑏 − 𝑎
 = 564,1132 − 947,1384

 = −383,0252

On this basis, the distance in that iteration was re-calculated

until the medoids change no more. The clustering results of the

conventional k-medoids and the purity k-medoids on Death

Birth Rate Dataset with k=2 are contrasted in Table 5.

As shown in Table 5 and Figure 4, the conventional k-

medoids required different number of iterations from test to

test on Death Birth Rate Dataset. The highest number of

iterations was 7 during the 7th and 8th tests, while the lowest

was 3 during the 5th test. By contrast, the purity k-medoids

algorithm took 2 iterations to complete the clustering. On

average, the conventional k-medoids needed 5 iterations

during the 10 tests, while the purity k-medoids needed 2

iterations.

Table 5. Clustering results of the conventional k-medoids

and the Purity K-medoids on Death Birth Rate Dataset with

k=2

Test No
Number of Iterations

Conventional K-Medoids Purity K-Medoids

1 4 2

2 6 2

3 4 2

4 6 2

5 3 2

6 4 2

7 7 2

8 7 2

9 5 2

10 4 2

Average 5 2

Figure 4. Number of iterations of k-medoids clustering with

k= 2 on Death Birth Rate Dataset

Next, the authors compared the clustering results of

conventional k-medoids and purity k-medoids on the Iris

Dataset with k=2.

Table 6. Clustering results of conventional k-medoids and

Purity K-medoids on Iris Dataset with k=2

Test No
Number of Iterations

Conventional K-Medoids PurityK-Medoids

1 7 2

2 10 2

3 4 2

4 6 2

5 3 2

6 10 2

7 7 2

8 7 2

9 5 2

10 10 2

Average 6.9 2

As shown in Table 6 and Figure 5, the conventional k-

medoids required different number of iterations from test to

test on Iris Dataset. The highest number of iterations was 10

during the 2nd, 6th, and 10th tests, while the lowest was 3 during

the 3rd test. By contrast, the purity k-medoids algorithm took 2

196

iterations to complete the clustering. On average, the

conventional k-medoids needed 6.9 iterations during the 10

tests, while the purity k-medoids needed 2 iterations.

Figure 5. Number of iterations of k-medoids clustering with

k= 2 on Iris Dataset

After that, conventional k-medoids algorithm and purity k-

medoids algorithm were applied separately to cluster Death

Birth Rate Dataset with k=3.

Table 7. Clustering results of the conventional k-medoids

and the purity k-medoids on Death Birth Rate Dataset with

k=3

Test No
Number of Iterations

Conventional K-Medoids Purity K-Medoids

1 7 2

2 7 2

3 5 2

4 9 2

5 7 2

6 5 2

7 5 2

8 7 2

9 5 2

10 9 2

Average 6.6 2

Figure 6. Number of iterations of k-medoids clustering with

k= 3 on Death Birth Rate Dataset

As shown in Table 7 and Figure 6, the conventional k-

medoids required different number of iterations from test to

test on Death Birth Rate Dataset. The highest number of

iterations was 9 during the 4th, and 10th tests, while the lowest

was 5 during the 3rd, 6th, 7th, and 9th test. By contrast, the purity

k-medoids algorithm took 2 iterations to complete the

clustering. On average, the conventional k-medoids needed

6.6 iterations during the 10 tests, while the purity k-medoids

needed 2 iterations.

Next, the authors compared the clustering results of

conventional k-medoids and purity k-medoids on the Iris

Dataset with k=3.

Table 8. Clustering results of conventional k-medoids and

purity k-medoids on Iris Dataset with k=3

Test No

Number of Iterations

Conventional K-

Medoids
Purity K-Medoids

1 13 2

2 17 2

3 10 2

4 13 2

5 16 2

6 9 2

7 17 2

8 10 2

9 16 2

10 13 2

Average 13.4 2

As shown in Table 8 and Figure 7, the conventional k-

medoids required different number of iterations from test to

test on Iris Dataset. The highest number of iterations was 17

during the 2nd, and 7th tests, while the lowest was 9 during the

6th test. By contrast, the purity k-medoids algorithm took 2

iterations to complete the clustering. On average, the

conventional k-medoids needed 13.4 iterations during the 10

tests, while the purity k-medoids needed 2 iterations.

Figure 7. Number of iterations of k-medoids clustering with

k= 3 on Iris Dataset

Table 9. Clustering results of the conventional k-medoids

and the purity k-medoids on Death Birth Rate Dataset with

k=4

Test No
Number of Iterations

Conventional K-Medoids Purity K-Medoids

1 15 2

2 18 2

3 14 2

4 13 2

5 17 2

6 15 2

7 11 2

8 13 2

9 14 2

10 17 2

Average 14.7 2

197

Furthermore, conventional k-medoids algorithm and purity

k-medoids algorithm were applied separately to cluster Death

Birth Rate Dataset with k=4.

As shown in Table 9 and Figure 8, the conventional k-

medoids required different number of iterations from test to

test on Death Birth Rate Dataset. The highest number of

iterations was 18 during the 2nd test, while the lowest was 11

during the 7th test. By contrast, the purity k-medoids algorithm

took 2 iterations to complete the clustering. On average, the

conventional k-medoids needed 14.7 iterations during the 10

tests, while the purity k-medoids needed 2 iterations.

Figure 8. Number of iterations of k-medoids clustering with

k= 4 on Death Birth Rate Dataset

Next, the authors compared the clustering results of

conventional k-medoids and purity k-medoids on the Iris

Dataset with k=4.

Table 10. Clustering results of conventional k-medoids and

purity k-medoids on Iris Dataset with k=4

Test No
Number of Iterations

Conventional K-Medoids Purity K-Medoids

1 23 2

2 18 2

3 15 2

4 19 2

5 19 2

6 21 2

7 17 2

8 26 2

9 20 2

10 17 2

Average 19.5 2

Figure 9. Number of iterations of k-medoids clustering with

k= 4 on Iris Dataset

As shown in Table 10 and Figure 9, the conventional k-

medoids required different number of iterations from test to

test on Iris Dataset. The highest number of iterations was 26

during the 8th test, while the lowest was 15 during the 3rd test.

By contrast, the purity k-medoids algorithm took 2 iterations

to complete the clustering. On average, the conventional k-

medoids needed 19.5 iterations during the 10 tests, while the

purity k-medoids needed 2 iterations.

4.3 Results of DBI

Table 11 show the validation results of the DBI values for

the clustering by conventional k-medoids and purity k-

medoids, respectively.

Table 11. Validation results for the DBI values

No Dataset
Number

of K

Davies-Bouldin Index

(DBI) Value

Conventional

K-Medoids

Purity K-

Medoids

1
DeathBirth

Rates Dataset

2 0.8821 0.6719

3 1.5128 0.7847

4 1.9275 0.9015

2 Iris Dataset

2 1.1079 0.6612

3 1.8771 0.8103

4 2.4799 0.9571

Figure 10. DBI values on Death Birth Rate Dataset

Figure 11. DBI values on Iris Dataset

As shown in Table 11, the DBI values obtained from the

two datasets were tested by conventional and purity k-medoids

algorithms for different k values: 2, 3, and 4. The DBI value

on Death Birth Rate Dataset using conventional k-medoids

198

were sequentially 0.8821, 1.5128, and 1.9275. Meanwhile, the

DBI value on Death Birth Rate Dataset using purity k-medoids

were sequentially 0.6719, 0.7847, and 0.9015. More details are

provided in Figure 10.

On Iris Dataset, the DBI values obtained by conventional k-

medoids were 1.1079, 1.8771, and 2.4799 sequentially. Those

obtained by purity k-medoids were 0.6612, 0.8103, and 0.9571

sequentially. More details are provided in Figure 11.

5. CONCLUSIONS

This paper uses the purity algorithm to determine the

medoids. In this way, the number of iterations in k-medoids

clustering was minimized. Our results show that the

conventional k-medoids algorithm took an average of 8.7

iterations to cluster Death Birth Rate Dataset, while that of the

proposed purity k-medoids was only 2 iterations. On Iris

Dataset, the average number of iterations of conventional k-

medoids was 13.2, while that of purity k-medoids was 2.

Hence, purity algorithm can greatly reduce the number of

iterations of k-medoids clustering. In addition, DBI validation

shows that purity k-medoids achieved better clustering effect

on both datasets: the lowest DBI of purity k-medoids on Death

Birth Rate Dataset was 0.6719, and that on Iris Dataset was

0.6612; the lowest DBI of conventional k-medoids on Death

Birth Rate Dataset was 0.8821, and that on Iris Dataset was

1.1079.

REFERENCES

[1] Hasdyna, N., Sianipar, B., Zamzami, E.M. (2020).

Improving the performance of K-nearest neighbor

algorithm by reducing the attributes of dataset using gain

ratio. Journal of Physics: Conference Series, 1566(1):

012090.

[2] Martanto, Anwar, S., Rohmat, C.L., Basysyar, F.M.,

Wijaya, Y.A. (2021). Clustering of internet network

usage using the K-Medoid method. IOP Conference

Series: Materials Science and Engineering, 1088(1):

012036.

[3] Johnson, M.G., Pokorny, L., Dodsworth, S., Botigué,

L.R., Cowan, R.S., Devault, A., Eiserhardt, W.L.,

Epitawalage, N., Forest, F., Kim, J.T., Leebens-Mack,

J.H., Leitch, I.J., Maurin, O., Soltis, D.E., Soltis, P.S.,

Wong, G.K., Baker, W.J., Wickett, N.J. (2019). A

universal probe set for targeted sequencing of 353

nuclear genes from any flowering plant designed using

K-medoids clustering. Systematic Biology, 68(4): 594-

606. https://doi.org/10.1093/sysbio/syy086

[4] Song, H., Lee, J.G., Han, W.S. (2017). PAMAE: Parallel

k-medoids clustering with high accuracy and efficiency.

In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining,

pp. 1087-1096.

[5] Arora, P., Varshney, S. (2016). Analysis of K-means and

K-medoids algorithm for big data. Procedia Computer

Science, 78: 507-512.

https://doi.org/10.1016/j.procs.2016.02.095

[6] Gullo, F., Ponti, G., Tagarelli, A. (2008). Clustering

uncertain data via K-medoids. In: Greco S., Lukasiewicz

T. (eds) Scalable Uncertainty Management. SUM 2008.

Lecture Notes in Computer Science, vol 5291. Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-

87993-0_19

[7] Tiwari, M., Zhang, M.J., Mayclin, J., Thrun, S., Piech, C.,

Shomorony, I. (2020). Bandit-PAM: Almost linear time

k-medoids clustering via multi-armed bandits. arXiv

preprint arXiv:2006.06856.

[8] Schubert, E., Rousseeuw, P.J. (2020). Fast and eager k-

medoids clustering: O(k) runtime improvement of the

PAM, CLARA, and CLARANS algorithms. arXiv

preprint arXiv:2008.05171.

[9] Velmurugan, T., Santhanam, T. (2010). Computational

complexity between K-means and K-medoids clustering

algorithms for normal and uniform distributions of data

points. Journal of Computer Science, 6(3): 363-368.

https://doi.org/10.3844/jcssp.2010.363.368

[10] Candoré, J.C., Bodnar, J.L., Detalle, V., Grossel, P.

(2010). Non destructive testing in situ, of works of art by

stimulated infra-red thermography. Journal of Physics:

Conference Series, 214(1): 012068.

[11] Tempola, F., Assagaf, A.F. (2018). Clustering of potency

of shrimp in Indonesia with k-means algorithm and

validation of Davies-Bouldin index. In International

Conference on Science and Technology (ICST 2018).

Atlantis Press.

[12] Wu, L., Liang, J., Li, B. (2019). Large-scale agent data

partitioning based on DensityRepel K_medoids. In

Journal of Physics: Conference Series, 1284(1): 012046.

[13] Xiao, J., Lu, J., Li, X. (2017). Davies Bouldin Index

based hierarchical initialization K-means. Intelligent

Data Analysis, 21(6): 1327-1338.

https://doi.org/10.3233/IDA-163129

[14] Praveena, S. (2018). Reduction of Davies Bouldin index

using hybrid clustering algorithm and Naive Bayes

Classifier. International Journal of Engineering, Science

and Mathematics, 7(3): 327-329.

[15] Mughnyanti, M., Efendi, S., Zarlis, M. (2020). Analysis

of determining centroid clustering x-means algorithm

with Davies-Bouldin index evaluation. In IOP

Conference Series: Materials Science and Engineering,

725(1): 012128.

[16] Ghufron, G., Surarso, B., Gernowo, R. (2020). The

implementations of K-medoids clustering for higher

education accreditation by evaluation of Davies Bouldin

index clustering. Jurnal Ilmiah KURSOR, 10(3).

https://doi.org/10.21107/kursor.v10i3.232

[17] Tsoi, K.K., Chan, N.B., Yiu, K.K., Poon, S.K., Lin, B.,

Ho, K. (2020). Machine learning clustering for blood

pressure variability applied to Systolic Blood Pressure

Intervention Trial (SPRINT) and the Hong Kong

Community Cohort. Hypertension, 76(2): 569-576.

https://doi.org/10.1161/HYPERTENSIONAHA.119.14

213

[18] Gustriansyah, R., Suhandi, N., Antony, F. (2020).

Clustering optimization in RFM analysis based on k-

means. Indonesian Journal of Electrical Engineering and

Computer Science, 18(1): 470-477.

http://doi.org/10.11591/ijeecs.v18.i1.pp470-477

[19] Azhir, E., Navimipour, N.J., Hosseinzadeh, M., Sharifi,

A., Darwesh, A. (2021). An automatic clustering

technique for query plan recommendation. Information

Sciences, 545: 620-632.

https://doi.org/10.1016/j.ins.2020.09.037

199

