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 With k-medoids algorithm, it often takes many iterations to cluster a large dataset, that is, 

the k-medoids algorithm cannot achieve the optimal performance. Based on cluster validity, 

this paper tries to optimize the clustering performance of k-medoids algorithm, using the 

purity algorithm. Specifically, the medoids value was determined by the purity value, and 

cluster validity was measured with the Davies Bouldin Index (DBI) on the Iris Dataset and 

the Death/Birth Rate Dataset. The results show that the cluster validity of the proposed 

purity k-medoids algorithm was better than the conventional k-medoids algorithm. The 

conventional k-medoids converged in an average of 8.7 iterations on the Death Birth Rate 

Dataset and 13.2 on the Iris Dataset. By contrast, the purity k-medoids algorithm only 

needed 2 iterations on either dataset. Therefore, the purity k-medoids algorithm can 

effectively minimize the number of iterations in the clustering of large datasets. 
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1. INTRODUCTION 

 

Machine learning is the study of computer algorithms and 

statistical models that execute tasks without explicit 

instructions [1]. K-medoids, a.k.a. partitioning around 

medoids (PAM), is one of the machine learning algorithms 

relying on unsupervised learning. As a variant of the k-means 

algorithm, k-medoids provides a non-hierarchical clustering 

tool. In essence, data clustering is to divide data into several 

clusters (groups), trying to achieve the maximum intra-cluster 

similarity and minimum inter-cluster similarity [2, 3]. During 

the clustering tasks, k-medoids algorithm faces a serious 

problem: the number of iterations is unpredictable and instable 

[4]. If a large volume of data needs to be processed, the 

algorithm could hardly achieve the optimal performance. 

Some scholars have studied the performance of k-medoids 

in data clustering. Arora and Varshney [5] clustered the big 

data separately with k-means and k-medoids, and found that 

k-medoids was superior in terms of execution time, 

insensitivity to outliers, and noise suppression. Gulo et al. [6] 

introduced k-medoids to the clustering of uncertain data, and 

demonstrated the high accuracy and efficiency of the 

algorithm. Tiwari et al. [7] proposed the k-medoids with multi-

armed bandits (banditPAM), learned that banditPAM could 

produce high-quality medoids on huge data, and applied k-

medoids to improve the quality of online learning for students 

around the world. Schubert and Rousseeuw [8] analyzed fast 

and eager k-medoids clustering, observed that clustering large 

applications (CLARA) achieved better quality than random 

medoids, and proved that FasterPAM worked faster and 

yielded better results than conventional k-medoids. 

Velmurugan and Santhanam [9] proved that k-means 

algorithm consumed a longer mean computing time than k-

medoids on data obeying normal or uniform distribution. In 

addition, a few researchers tried to optimize k-medoids with 

purity algorithm, which determines the medoids values for 

data clustering. 

This paper mainly attempts to reduce the number of 

iterations required by conventional k-medoids with purity 

algorithm. One of the key defects of k-medoids is the random 

selection of medoids, which makes the number of iterations 

unpredictable. If the clustering takes many iterations, the 

execution time of the algorithm will be excessively long. To 

minimize the number of iterations, purity algorithm was 

introduced to determine the cluster medoids based on the 

purity values. Then, the authors conducted a test with three 

different k values to analyze how purity affects the number of 

iterations in different clusters. In addition, the results of our 

purity k-medoids were compared with those of conventional 

k-medoids. The clustering performance of the proposed 

algorithm was evaluated with the Davies-Bouldin Index (DBI), 

which measures the clustering effect with cohesion and 

separation. The DBI value is negatively correlated with the 

clustering effect [10]. The datasets adopted for this study 

include the Iris Dataset from the UCI Machine Learning 

Repository and the Death Birth Rate Dataset from the John 

Burkardt Repository. 

 

 

2. K-MEDOIDS CLUSTERING 

 

K-Medoids is a non-hierarchical clustering algorithm K-

medoids is a non-hierarchical clustering algorithm derived 

from the k-means algorithm. Through partition clustering, the 

algorithm groups x objects into k clusters. At the center of each 

cluster, the objects that are robust against outliers are called 

medoids. The clusters are formed by computing the distance 

between medoids and non-medoids objects [11]. 

As shown in Figure 1, k-medoids algorithm works in the 

following steps [12]:  

Step 1. Determine the k value (number of clusters); 

Step 2. Initialize k random medoids in n data; 
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Step 3. Compute the Euclidean distance d(xi, µj) of each 

object xi to each medoid µj: 

 

𝑑(𝑥𝑖, µ𝑗) = ∑(𝑥𝑖 −  µ𝑗)2

𝑛

𝑖=1

 (1) 

 

where, µj is the value of the medoid (center) the j-th cluster. 
 

 
Figure 1. Framework of K-medoids clustering 

 

Step 4. Assign the object to the cluster of the closest medoid; 

Step 5. Repeat the above steps, and calculate the total 

deviation (S): 

 

S = b – a (2) 

 

where, a is the sum of the closest distances between the object 

and the initial medoid; b is the sum of the closest distances 

between the object to the new medoid. 

If S <0, then swap the object with the other data to form a 

new k as a medoid.  

Step 6. Repeat Steps 3-5, and terminate the algorithm if the 

medoids change no more. 

 

2.1 Purity algorithm 

 

Purity algorithm aims to find the purity value of each cluster, 

i.e., the most suitable member in the cluster. The purity value 

can be calculated by [13]: 

 

𝑃𝑢𝑟𝑖𝑡𝑦(𝑦) =
1

𝑁𝑦

 𝑚𝑎𝑥 (𝑛𝑥𝑦) (3) 

where, purity (y) is the purity value of the y-th variable; Ny is 

the amount of data belonging to the y-th cluster; y is the index 

of the cluster. 

 

2.2 DBI 

 

This paper uses the DBI to analyze the clustering results of 

machine learning algorithms. This index measures clustering 

effect with cohesion and separation. The former is defined as 

the amount of data close to the centroid in each cluster, and the 

latter as the proximity between centroids in the cluster. The 

DBI can be computed in the following steps [14]: 

Step 1. Compute the sum of squares within cluster (SSW), 

i.e., cohesion, in a cluster by [15]: 

 

𝑆𝑆𝑊𝑖 =
1

𝑚𝑖
∑ 𝑑(𝑥𝑗, 𝑐𝑖)

𝑚𝑖

𝑗=𝑖

 (4) 

 

Step 2. Compute the sum of squares between clusters (SSB), 

i.e., separation, between clusters by [16]: 

 

𝑆𝑆𝐵𝑖, 𝑗 = 𝑑(𝑐𝑖, 𝑐𝑗) (5) 

 

Step 3. Compute the ratio that compares the i-th cluster with 

the j-th cluster [17]: 

 

𝑅𝑖𝑗 =
𝑆𝑆𝑊𝑖 + 𝑆𝑆𝑊𝑗

𝑆𝑆𝐵𝑖𝑗
 (6) 

 

Step 4. Compute the DBI based on the ratio by [18]: 

 

𝐷𝐵𝐼 =
1

𝑘
∑ 𝑚𝑎𝑥𝑖≠𝑗(

𝑘

𝑖=1

𝑅𝑖,𝑗) (7) 

 

The smaller the DBI value, the better the clustering effect 

[19]. 

 

 

3. PURITY K-MEDOIDS 

 

To improve the clustering quality, it is necessary to 

determine the medoids in k-medoids algorithm. This paper 

decides to determine them in the following procedure: First, 

the purity value is calculated for the entire dataset. Then, the 

highest and lowest purity values are taken as the medoids for 

k-medoids algorithm. Figure 2 shows the architecture of the k-

medoids algorithm with the medoids selected by our approach. 

The workflow of our research can be summarized as follows 

(Figure 3): 

Step 1. Import the Iris Dataset and Death Birth Rate Dataset. 

Step 2. Initialize the k value. 

Step 3. Compute the purity value of each data by formula 

(3). If k value is even, then use the minimum purity value for 

the first iteration; if k value is odd, then use the maximum 

purity value for the first iteration. 

Step 4. Compute the distance of each data to each medoid, 

and classify the data by formula (1). 

Step 5. Compute the deviation S. 

Step 6. Compute the DBI value, and analyze the results by 

formulas (4)-(7). 

Step 7. Compare purity k-medoids with conventional k-

medoids by analyzing the number of iterations and the DBI 
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value (a metric of cluster validity). 

 
 

Figure 2. Purity K-medoids 

 

 
 

Figure 3. Research framework 

4. RESULTS AND DISCUSSION 

 

This research uses two different datasets, namely, the Iris 

Dataset from UCI Machine Learning Repository and the Death 

Birth Rate Dataset from John Burkardt Repository. The 

datasets are described in Table 1.  
 

Table 1. The description of the dataset 
 

Dataset Number of 

Attributes 

Number of 

Instances 

DeathBirth Rates 

dataset 
2 70 

Iris dataset 4 150 
 

4.1 Purity value on the two datasets 
 

The purity value was computed with the above-mentioned 

purity value formula. The purity value of each data in the 

Death Birth Rate Dataset can be calculated by: 

 

1. 𝑃𝑢𝑟𝑖𝑡𝑦 (𝑑1)    =  
1

(51)
(36,4) 

                            =  0.713725 

2. 𝑃𝑢𝑟𝑖𝑡𝑦 (𝑑2)    =  
1

(45,3)
(37,3) 

                                     =  0.8234 

3. 𝑃𝑢𝑟𝑖𝑡𝑦 (𝑑3)    =  
1

(57,4)
(42,1) 

                                      =  0.733449 
 

Tables 2 and 3 present the purity values on the Death Birth 

Rate Dataset and the Iris Dataset, respectively. 
 

Table 2. Purity values on the Death Birth Rate dataset 
 

Data No- 
Attribute 1 

(x1) 

Attribute 2 

(x2) 
Purity Value 

1 36.4 14.6 0.713725 

2 37.3 8 0.8234 

3 42.1 15.3 0.733449 

4 55.8 25.6 0.685504 

... 

... 

... 

... 

19 46.3 6.4 0.878558 

... 

... 

... 

... 

50 17.6 19.8 0.529412 

... 

... 

... 

... 

70 25.5 8.8 0.74344 

 

Table 3. Purity values on the Iris dataset 
 

Data 

No- 
 (x1)  (x2)  (x3)  (x4) 

Purity 

Value 

1 5.1 3.5 1.4 0.2 0.5 

2 4.9 3 1.4 0.2 0.515789 

3 4.7 3.2 1.3 0.2 0.5 

4 4.6 3.1 1.5 0.2 0.489362 

... 

... 

...   ... 

42 4.5 2.3 1.3 0.3 0.535714 

... 

... 

...   ... 

101 6.3 3.3 6 2.5 0.348066 

... 

... 

...   ... 

150 5.9 3 5.1 1.8 0.373418 
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On the Death Birth Rate Dataset, the minimum purity value 

was 0.529412 on the 50th data, while the maximum purity 

value was 0.878558 on the 19th data. On the Iris Dataset, the 

minimum purity value was 0.348066 on the 101st data, while 

the maximum purity value was 0.535714 on the 42nd data. 

In this research, the data with the minimum purity value is 

taken as the initial medoid, and that with the maximum purity 

value as the new medoid. Then, the clustering was initiated 

with different initial k values: 2, 3, and 4. After that, the 

clustering results were analyzed by comparing the DBI values 

 

4.2 Clustering with K-Medoids 

 

Ten tests were carried out to cluster the datasets with purity 

k-medoids, using the initial k value of 2. The Euclidean 

distance of each data to the initial medoid in the first iteration 

was computed. 

 

1. d1, d1 =  √(36,4 − 17,6)2 + (14,6 − 19,8)2 

    =  19,5059 

2. d2, d1 =  √(36,4 − 17,5)2 + (14,6 − 13,7)2 

    =  18,92142 

3. d1, d2 =  √(37,3 − 17,5)2 + (8 − 19,8)2 

    =  22,96367 

4. d2, d2 =  √(36,4 − 17,5)2 + (14,6 − 13,7)2 

    =  20,60413 

5. d1, d3 =  √(42,1 − 17,6)2 + (15,3 − 19,8)2 

    =  24,90984 

6. d2, d3 =  √(36,4 − 17,5)2 + (14,6 − 13,7)2 

    =  24,65198 

 

The following are the computed results (Table 4): 

 

Table 4. Euclidean Distance of each data 

 

Data No- 
Distance Value 

dx,dx dx,dy 

1 19,5059 18,92142 

2 22,96367 20,60413 

3 24,90984 24,65198 

4 38,63781 40,10611 

5 40,73254 43,20093 

6 24,52835 24,39057 

7 28,52122 29,03377 

8 25,97884 24,4663 

… … … 

70 13,54289 9,381365 

 

Next, the distance of each data to a new medoid was 

computed, and the total deviation (S) was derived by formula 

(2): 

 

S =  𝑏 − 𝑎 
                  =  564,1132 − 947,1384 

      =  −383,0252 
 

On this basis, the distance in that iteration was re-calculated 

until the medoids change no more. The clustering results of the 

conventional k-medoids and the purity k-medoids on Death 

Birth Rate Dataset with k=2 are contrasted in Table 5. 

As shown in Table 5 and Figure 4, the conventional k-

medoids required different number of iterations from test to 

test on Death Birth Rate Dataset. The highest number of 

iterations was 7 during the 7th and 8th tests, while the lowest 

was 3 during the 5th test. By contrast, the purity k-medoids 

algorithm took 2 iterations to complete the clustering. On 

average, the conventional k-medoids needed 5 iterations 

during the 10 tests, while the purity k-medoids needed 2 

iterations. 

 

Table 5. Clustering results of the conventional k-medoids 

and the Purity K-medoids on Death Birth Rate Dataset with 

k=2 

 

Test No 
Number of Iterations 

Conventional K-Medoids Purity K-Medoids 

1 4 2 

2 6 2 

3 4 2 

4 6 2 

5 3 2 

6 4 2 

7 7 2 

8 7 2 

9 5 2 

10 4 2 

Average 5 2 

 

 
 

Figure 4. Number of iterations of k-medoids clustering with 

k= 2 on Death Birth Rate Dataset 

 

Next, the authors compared the clustering results of 

conventional k-medoids and purity k-medoids on the Iris 

Dataset with k=2. 

 

Table 6. Clustering results of conventional k-medoids and 

Purity K-medoids on Iris Dataset with k=2 

 

Test No 
Number of Iterations 

Conventional K-Medoids PurityK-Medoids 

1 7 2 

2 10 2 

3 4 2 

4 6 2 

5 3 2 

6 10 2 

7 7 2 

8 7 2 

9 5 2 

10 10 2 

Average 6.9 2 

 

As shown in Table 6 and Figure 5, the conventional k-

medoids required different number of iterations from test to 

test on Iris Dataset. The highest number of iterations was 10 

during the 2nd, 6th, and 10th tests, while the lowest was 3 during 

the 3rd test. By contrast, the purity k-medoids algorithm took 2 
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iterations to complete the clustering. On average, the 

conventional k-medoids needed 6.9 iterations during the 10 

tests, while the purity k-medoids needed 2 iterations. 

 

 
 

Figure 5. Number of iterations of k-medoids clustering with 

k= 2 on Iris Dataset 

 

After that, conventional k-medoids algorithm and purity k-

medoids algorithm were applied separately to cluster Death 

Birth Rate Dataset with k=3. 

 

Table 7. Clustering results of the conventional k-medoids 

and the purity k-medoids on Death Birth Rate Dataset with 

k=3 

 

Test No 
Number of Iterations 

Conventional K-Medoids Purity K-Medoids 

1 7 2 

2 7 2 

3 5 2 

4 9 2 

5 7 2 

6 5 2 

7 5 2 

8 7 2 

9 5 2 

10 9 2 

Average 6.6 2 

 

 
 

Figure 6. Number of iterations of k-medoids clustering with 

k= 3 on Death Birth Rate Dataset 

 

As shown in Table 7 and Figure 6, the conventional k-

medoids required different number of iterations from test to 

test on Death Birth Rate Dataset. The highest number of 

iterations was 9 during the 4th, and 10th tests, while the lowest 

was 5 during the 3rd, 6th, 7th, and 9th test. By contrast, the purity 

k-medoids algorithm took 2 iterations to complete the 

clustering. On average, the conventional k-medoids needed 

6.6 iterations during the 10 tests, while the purity k-medoids 

needed 2 iterations. 

Next, the authors compared the clustering results of 

conventional k-medoids and purity k-medoids on the Iris 

Dataset with k=3. 

 

Table 8. Clustering results of conventional k-medoids and 

purity k-medoids on Iris Dataset with k=3 

 

Test No 

Number of Iterations 

Conventional K-

Medoids 
Purity K-Medoids 

1 13 2 

2 17 2 

3 10 2 

4 13 2 

5 16 2 

6 9 2 

7 17 2 

8 10 2 

9 16 2 

10 13 2 

Average 13.4 2 

 

As shown in Table 8 and Figure 7, the conventional k-

medoids required different number of iterations from test to 

test on Iris Dataset. The highest number of iterations was 17 

during the 2nd, and 7th tests, while the lowest was 9 during the 

6th test. By contrast, the purity k-medoids algorithm took 2 

iterations to complete the clustering. On average, the 

conventional k-medoids needed 13.4 iterations during the 10 

tests, while the purity k-medoids needed 2 iterations. 

 

 
 

Figure 7. Number of iterations of k-medoids clustering with 

k= 3 on Iris Dataset 
 

Table 9. Clustering results of the conventional k-medoids 

and the purity k-medoids on Death Birth Rate Dataset with 

k=4 
 

Test No 
Number of Iterations 

Conventional K-Medoids Purity K-Medoids 

1 15 2 

2 18 2 

3 14 2 

4 13 2 

5 17 2 

6 15 2 

7 11 2 

8 13 2 

9 14 2 

10 17 2 

Average 14.7 2 
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Furthermore, conventional k-medoids algorithm and purity 

k-medoids algorithm were applied separately to cluster Death 

Birth Rate Dataset with k=4. 

As shown in Table 9 and Figure 8, the conventional k-

medoids required different number of iterations from test to 

test on Death Birth Rate Dataset. The highest number of 

iterations was 18 during the 2nd test, while the lowest was 11 

during the 7th test. By contrast, the purity k-medoids algorithm 

took 2 iterations to complete the clustering. On average, the 

conventional k-medoids needed 14.7 iterations during the 10 

tests, while the purity k-medoids needed 2 iterations. 

 

 
 

Figure 8. Number of iterations of k-medoids clustering with 

k= 4 on Death Birth Rate Dataset 

 

Next, the authors compared the clustering results of 

conventional k-medoids and purity k-medoids on the Iris 

Dataset with k=4. 

 

Table 10. Clustering results of conventional k-medoids and 

purity k-medoids on Iris Dataset with k=4 

 

Test No 
Number of Iterations 

Conventional K-Medoids Purity K-Medoids 

1 23 2 

2 18 2 

3 15 2 

4 19 2 

5 19 2 

6 21 2 

7 17 2 

8 26 2 

9 20 2 

10 17 2 

Average 19.5 2 

 

 
 

Figure 9. Number of iterations of k-medoids clustering with 

k= 4 on Iris Dataset 

As shown in Table 10 and Figure 9, the conventional k-

medoids required different number of iterations from test to 

test on Iris Dataset. The highest number of iterations was 26 

during the 8th test, while the lowest was 15 during the 3rd test. 

By contrast, the purity k-medoids algorithm took 2 iterations 

to complete the clustering. On average, the conventional k-

medoids needed 19.5 iterations during the 10 tests, while the 

purity k-medoids needed 2 iterations. 

 

4.3 Results of DBI 

 

Table 11 show the validation results of the DBI values for 

the clustering by conventional k-medoids and purity k-

medoids, respectively. 

 

Table 11. Validation results for the DBI values 

 

No Dataset 
Number 

of K 

Davies-Bouldin Index 

(DBI) Value 

Conventional 

K-Medoids 

Purity K-

Medoids 

1 
DeathBirth 

Rates Dataset 

2 0.8821 0.6719 

3 1.5128 0.7847 

4 1.9275 0.9015 

2 Iris Dataset 

2 1.1079 0.6612 

3 1.8771 0.8103 

4 2.4799 0.9571 

 

 
 

Figure 10. DBI values on Death Birth Rate Dataset 

 

 
 

Figure 11. DBI values on Iris Dataset 

 

As shown in Table 11, the DBI values obtained from the 

two datasets were tested by conventional and purity k-medoids 

algorithms for different k values: 2, 3, and 4. The DBI value 

on Death Birth Rate Dataset using conventional k-medoids 
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were sequentially 0.8821, 1.5128, and 1.9275. Meanwhile, the 

DBI value on Death Birth Rate Dataset using purity k-medoids 

were sequentially 0.6719, 0.7847, and 0.9015. More details are 

provided in Figure 10. 

On Iris Dataset, the DBI values obtained by conventional k-

medoids were 1.1079, 1.8771, and 2.4799 sequentially. Those 

obtained by purity k-medoids were 0.6612, 0.8103, and 0.9571 

sequentially. More details are provided in Figure 11. 

5. CONCLUSIONS

This paper uses the purity algorithm to determine the 

medoids. In this way, the number of iterations in k-medoids 

clustering was minimized. Our results show that the 

conventional k-medoids algorithm took an average of 8.7 

iterations to cluster Death Birth Rate Dataset, while that of the 

proposed purity k-medoids was only 2 iterations. On Iris 

Dataset, the average number of iterations of conventional k-

medoids was 13.2, while that of purity k-medoids was 2. 

Hence, purity algorithm can greatly reduce the number of 

iterations of k-medoids clustering. In addition, DBI validation 

shows that purity k-medoids achieved better clustering effect 

on both datasets: the lowest DBI of purity k-medoids on Death 

Birth Rate Dataset was 0.6719, and that on Iris Dataset was 

0.6612; the lowest DBI of conventional k-medoids on Death 

Birth Rate Dataset was 0.8821, and that on Iris Dataset was 

1.1079. 
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