

Test Scheduling and Test Time Reduction for SoC by Using Enhanced Firefly Algorithm

Gokul Chandrasekaran1*, Gopinath Singaram2, Rajkumar Duraisamy1, Akash Sanjay Ghodake2, Parthiban Kunnathur

Ganesan3

1 Department of EEE, Velalar College of Engineering and Technology, Affiliated to Anna University, Erode 638012, India
2 Department of Electrical Engineering, Annasaheb Dange College of Engineering and Technology, Ashta 416301, India
3 Department of ECE, Dhaanish Ahmed Institute of Technology, Affiliated to Anna University, Chennai 641105, India

Corresponding Author Email: gokul@velalarengg.ac.in

https://doi.org/10.18280/ria.350310

ABSTRACT

Received: 26 January 2020

Accepted: 5 June 2021

 System-on-Chip (SoC) is an integration of electronic components and billions of transistors.

Defects due to the base material is caused during the manufacturing of components. To

overcome these issues testing of chips is necessary but total cost increases because of

increasing test time. The main issues to be considered during testing of SoC are the time

taken for testing and accessibility of core. Effective test scheduling should be done to

minimize testing time. In this paper, an effective test scheduling mechanism to minimize

testing time is proposed. The test time reduction causes test cost reduction. The Enhanced

Firefly algorithm is used in this paper to minimize test time. Enhanced Firefly algorithm

gives a better result than Ant colony and Firefly algorithms in terms of test time reduction

thereby reduction test cost takes place.

Keywords:

System-on-Chip, ant colony optimization,

modified ant colony optimization, firefly

algorithm, modified firefly algorithm

1. INTRODUCTION

The foundation of modern world electronic products is the

Semiconductor ICs. Almost all products and systems consist

of IC. Complex ICs are introduced due to the development of

semiconductor technology which is referred to as System-on-

Chip (SoC). SoC consists of a large number of transistors

integrated into IC. The complexity of IC is the major issue

while designing SoC. To avoid this problem an IC with

reusable cores is designed and verified. These cores may be

designed inside or supplied from outside through core vendors.

The cores are integrated into a system with the help of a system

integrator. Extra defects need to be tested when the system

becomes more complex. The increase in test cost also occurs

due to this complexity. At the system level, individual cores

are to be tested using the Test Access Mechanism (TAM) [1].

Individual cores and interconnections are also tested. For

this purpose, the SoC test model is used. The major parts of

the SoC test model are test scheduling, wrapper, and TAM.

The thin shell surrounding the core is a wrapper acting as an

interface between TAM and core. Wrappers are applied using

TAM wires to test vectors. Automatic Test Equipment (ATE)

stores the test vectors and these test vectors are connected to

SoC via TAM wires. Test data in SoC are transported through

TAM. Core and interconnections are tested in internal and

external mode respectively. Three modes of SoC testing are a

bypass, soft and low power mode. Test scheduling should be

done effectively to reduce test time. During the core testing,

the actual response is compared to the expected one and their

difference gives the error. In the testing of interconnects, the

on-chip engine generated test stimulus and its response could

be observed. Hard cores, form cores and soft cores can be

tested in three modes of testing. In the end, each individual

cores need to be completed its testing [2].

ITC'02 benchmark circuits were presented at the IEEE

International Test Conference (ITC). Table 1 provides

information about the ITC'02 benchmark circuits. Tables 2 and

3 include information on the d695 and p22810 ITC’02

benchmark circuits.

Table 1. Benchmark circuit details

SOC d695 p22810

Number of Tests 10 30

Number of Modules 11 29

Number of I/Os 1845 4283

Number of Levels 2 3

Number of Scan Chain Length 137 196

Number of SFFs 6384 24723

Pattern Count

Maximum 234 12324

Minimum 12 1

Average 88 830

Contributor
Duke

University

Philips

Semiconductors

Scan Chain

Length

Maximum 55 400

Minimum 46 1

Average 32 126

Table 2. SoC d695 benchmark details

Core
No. of

Outputs

No. of

inputs

No. of Tests

Patterns

Min

Chain

Length

Internal

Scan

Chains

Max

Chain

Length

#1 32 32 12 0 0 0

#2 108 207 73 0 0 0

#3 11 34 75 32 1 32

#4 39 36 105 52 4 54

#5 304 38 110 44 32 45

#6 152 62 234 39 16 41

#7 150 77 95 33 16 34

#8 48 35 97 44 4 46

#9 320 35 12 54 32 54

#10 106 28 68 51 32 55

Revue d'Intelligence Artificielle
Vol. 35, No. 3, June, 2021, pp. 265-271

Journal homepage: http://iieta.org/journals/ria

265

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.350310&domain=pdf

Table 3. SoC p22810 benchmark details

Core
No. of

Outputs

No. of

Inputs

No. of Tests

Patterns

Min

Chain

Length

Internal

Scan

Chains

Max

Chain

Length

#1 67 10 10 0 0 0

#2 67 10 89 0 0 0

#3 56 28 785 14 10 15

#4 33 47 12324 0 0 0

#5 26 38 3108 0 0 0

#6 64 48 222 0 0 0

#7 112 90 202 39 29 41

#8 64 80 712 0 0 0

#9 64 84 2632 0 0 0

#10 16 36 2608 0 0 0

#11 123 116 175 51 24 55

#12 30 50 38 13 4 15

#13 23 56 94 16 8 18

#14 23 40 93 21 11 23

#15 149 68 1 12 4 12

#16 15 22 108 26 3 31

#17 42 84 37 21 6 23

#18 43 13 8 23 1 31

#19 69 223 25 12 4 21

#20 11 53 644 26 5 28

#21 29 38 58 9 3 9

#22 40 45 124 12 4 14

#23 76 115 465 16 10 17

#24 40 54 59 7 3 8

#25 8 31 40 14 7 14

#26 23 73 27 18 5 19

#27 46 58 215 23 18 24

#28 33 66 181 34 31 35

#29 94 285 2 4 1 6

#30 43 48 26 9 5 10

The goal of the optimization methodology is to reduce the

test time defined as the objective function shown in the given

Eq. (1).

() (1 max(,). min(,)iT W Si So tpi Si So= + + (1)

where, So and Si are the length of the output and input scan

chain and tpi is the test pattern for core i.

Test scheduling is an important concern in SoC test

automation. Efficient test scheduling reduces the chip

marketing time and cost. The advantage of the proposed

approaches is that it reduces the test time, which on the other

hand reduces the test cost. In this paper, to reduce cost and

time test scheduling using evolutionary approaches are

proposed. The contributions of this paper are as below:

1) Enhanced Firefly algorithm used in the test scheduling

gives a better test time than the other heuristic methods.

2) The performance of heuristic algorithm for various TAM

widths is computed to test its efficiency on two benchmark

circuits.

2. LITERATURE REVIEW

The previous works mainly focused on optimization of the

TAM and wrapper design in order to reduce the testing time in

core-based systems. Test time was computed using

distribution and multiplexing architecture to analyze test time.

Test scheduling techniques are divided as pre-emptive testing,

non-partitioned and partitioned. Partitioned test scheduling is

one in which scheduling is done as soon as possible for

reducing the test time. Non-partitioned scheduling does not

start any new test until tests are completed hence test time

increases. In pre-emptive type, cores can be tested by

interrupting and resuming after some time. During the end of

the testing, all the cores must be completed. In pre-emptive test

scheduling, idle time is minimized. ATE and BIST are used in

external testing and internal testing respectively.

The three parts in SoC testing are tested scheduling, test

access mechanism design, and core wrapper design [3]. The

test shell with three layers of the hierarchy for the reduction of

test access and test isolation problems of SoC is proposed. Test

shell serves as an interface between host and core with three

input/output terminal types namely test rail input/ output,

function input/output, and direct test input/ output. Bypass

feature is not used to test the wrapper approach allowing each

core to serve at a time. The shortest job schedule is combined

with round-robin in Improved Round Robin algorithm and it

is proposed to improve utilization and testing time. Integer

Linear programming (ILP) was developed for test bus

assignment problem by the optimum distribution of test buses.

Simulated annealing algorithm minimizes test time for two-

dimensional bin packing problem. Using TAM and wrapper

optimization, test scheduling, an NP hard problem was

explained. A multilevel TAM architecture for multilevel

optimization of TAM through flattened SoCs was proposed [4].

Kennedy developed an optimization technique based on the

birds flocking behavior named Particle Swarm optimization in

which Particle refers to each individual and dimensions refers

to the particle count [5].

Table 4. Pros and Cons of existing methods

Reference Pros and Cons

[3]

Test architecture consisting of module test

wrappers and TAMs. Preemptive test scheduling

algorithm is used. Testing cost is high by using this

type of test scheduling.

[4]
Efficient testing of SoCs, testing time is reduced.

But this type of testing is applicable to limited SoC

circuits

[5]
PSO Algorithm minimizes the testing time.

But it is unsuitable for many optimization problems

in SoC benchmarks.

[6]
Ant Colony Optimization is used for test

scheduling.

But it requires additional cost for the design.

[7, 8]

The various optimization techniques are used for

large SoC benchmark circuits. Testing time is

reduced but this technique is not flexible for all

SoC design.

[9]
Genetic Algorithm is used for test scheduling.

Additional cost required for dual speed TAM

design. Overall testing cost is high.

Ant Colony Optimization is focused on the activity of real

ant based on ant search of the shortest route for the food. An

artificial bee colony is explained in the studies [6-8] on the

basis of the behavior of honey bees, and the growth of

numerical problems is performed based on employed,

unemployed foraging bees and food source. The wrapper

architecture was developed to test child and parent cores. All

the cores are tested at the same time by using a core clustering

technique to solve 2D rectangular packing problem. Based on

the deadline, high priority is assigned to the task in Earliest

Deadline First algorithm. The testing time is reduced by

evaluation and mutation operation through Genetic Algorithm,

266

it was proposed. Genetic Algorithm [9] was used to generate a

rectangular sequence in the wrapper design method where one

rectangle is selected from a set to reduce the test time.

SoC is designed in such a way that it tries to minimize the

test access mechanism (TAM) design and schedules the test

using reconfigurable core wrappers. Further, it also tries to

minimize by extended core design and hierarchical way is used

to extract the properties. The next research study employs

genetic algorithm to reduce TAM but the hierarchical core

process is followed. In these studies, the TAM reduction ways

are traditional and modified, but it still requires improvement

as mentioned by researchers for future work. The pros and

cons of existing methods are indicated in Table 4.

3. PROPOSED WORK

3.1 Firefly algorithm

Yang proposed a metaheuristic technique called the Firefly

Algorithm based on firefly flashing behavior [10]. Figure 1

displays the flow chart of the Firefly algorithm.

The firefly algorithm is based on the attraction of the

fireflies during the mating behaviour which depends on the

brightness of the firefly. Short flashes are produced by fireflies

and the flash pattern is unique for a specific species. Flashing

light is formed by the Bioluminescence method. Flashes help

to attract prey as well as a mating partner. Flashing also acts

as a protection mechanism.

In the same species, female response to the unique method

of male flashing but in postures species, female firefly mimics

the flashing pattern of male fireflies. One firefly is attracted to

another firefly regardless of sex. Attractiveness is proportional

to its brightness and it increases in distance, decreases both

attractiveness and brightness.

The attractive value of firefly β is shown by the given Eq.

(2):

0 (1)
mre m −= (2)

where, g is a fixed coefficient of absorption of light and r is

the distance between the fireflies. The distance between

fireflies i (at Xi) and j (at Xj) is rij.

2

, ,

1

()
d

ij i j i k j k

k

r X X x x
=

= − = − (3)

where, Xi,k is the kth element of Xi coordinate of ith firefly, d-

dimension

Firefly ‘i’ to another firefly ‘j’ whose movement is given in

the below equation:

() (0.5)i i j iX X X X rand = + − + − (4)

Figure 1. Flowchart of firefly algorithm

Yes

No

No

Rank fireflies based on fitness & Calculate best fitness

Estimate fitness value f (X)

Create Fireflies initial population Xi, Where i =1, 2…n

Gen = Gen+1

For i = 1: n

For i = 1: n

f (Xj) > f (Xi)

Firefly i move towards firefly j

Compute new solution & Update ranking, fitness

Best result achieved

Process Terminated

Gen >

Max.

Gen

Yes

267

3.2 Enhanced firefly algorithm

Enhanced Firefly algorithm [11, 12] eliminates the

limitation of the firefly algorithm. It improves the movement

of Firefly and reduces the randomness of the algorithm to

enhance the exploitation and exploration ability. In Figure 2

flowchart of Enhanced Firefly algorithm with the steps

through which the algorithm works is shown.

In Enhanced Firefly algorithm, α which is the

randomization parameter and it was linearly decreased from α0

to α∞. Where α0 and α∞ the initial and final value when iteration

occurs. Exploitation and exploration capabilities are

maintained in a balanced state. A larger value of α initially

provides better convergence.

Distance function ri is shown by Eq. (5).

2 2

, () ()i best i gbest i gbestr x x y y= − + − (5)

Movement of ith firefly is given by the Eq. (6).

2

,

2

,

0

0

()

()

()

i j

i best

r

i i j i

r

gbest i

i

x x e x x

e x x

x gbest

−

−

= + −

+ −

+ + −

(6)

where, ε=random number, gbest – global best.

When there is no local best solution in the neighborhood,

the best solution attracts the ith firefly. To minimize the

probability to move into several local optima, the Enhanced

Firefly algorithm eliminates randomness in such a way that it

rapidly converges and fireflies move towards its global

optimum.

Figure 2. Flowchart of enhanced firefly algorithm

Yes

No

No

Rank fireflies based on fitness & Calculate best fitness

Estimate fitness value f (X)

Create Fireflies initial population Xi, Where i =1, 2…n

Adding Gen=Gen+1

For i = 1: n

For j = 1: n

f (Xj) > f (Xi)
Move firefly i to firefly j

Compute new solution & Update ranking, fitness

Best solution achieved

Terminate the Process

Gen >

maxGen

Yes

Update the Distance & Movement using Equations 4 & 5

268

4. RESULTS AND DISCUSSIONS

The results obtained with software C # and the analysis of

the test time with different algorithms are performed. All the

results were obtained on an Intel(R) Core (TM) i3 machine

with a processor speed of 1.20GHz and a 4GB RAM. The

algorithm is evaluated, which gives the optimum testing time.

Figures 3 and 4 show the initialization of the d695 and

p22810 benchmark circuits by using the Enhanced Firefly

algorithm. Figures 3 and 4 show that for core initialization,

various input parameters are taken and are initialized with a

particular value. The figures show that the parameters are

initialized, and the optimal test time can be calculated for the

TAM width 16 for both benchmark circuits.

Figure 3. Initialization of D695 benchmark circuit using enhanced firefly algorithm (W=16)

Figure 4. Initialization of P22810 benchmark circuit using enhanced firefly algorithm (W=16)

269

Table 5. Input parameters for benchmark circuits

Number of Cores
30 for p22810 SoC

10 for d695 SoC

Ant Count

Twice the core count

60 for p22810 SoC

20 for d695 SoC

Number of Iterations 100

TAM width Between 16 to 64

Alpha α 0.3

Beta β 1

rand 0.2

Table 5 shows the input parameters and their corresponding

value. These parameters are used in the core initialization of

d695 and p22810 SoC benchmark circuits for various TAM

widths.

Figures 5 and 6 are the graphs show the best value of result

point achieved at different iterations for d695 and p22810

SoCs of TAM width 16 by applying Enhanced Firefly

algorithm.

From Table 6 it is noted that Enhanced Firefly algorithm

minimizes the time for testing to 13% and 75% than Firefly

and ACO algorithms for d695 SoC and 9%, 90.6% for p22810

SoC benchmark circuits respectively.

Table 6. Comparison of testing time for various TAM width for SoC d695 and p22810

SoC

Benchmarks

TAM Width

(W)

Testing Time

Firefly Enhanced Firefly ACO [8] Modified ACO [7]

d695

SoC Benchmark

64 0.0330102 0.0285102 0.1151878 0.0304913

56 0.0330501 0.0288481 0.1157389 0.0305503

48 0.0331279 0.0287291 0.1163927 0.0307298

40 0.0331698 0.0290691 0.1168048 0.0308703

32 0.0332801 0.0286736 0.1172215 0.0309255

24 0.0333710 0.0286688 0.1181152 0.0311497

16 0.0337692 0.0298712 0.1202580 0.0317982

p22810

SoC Benchmark

64 0.0451017 0.0413002 0.9488492 0.0428791

56 0.0451199 0.0410234 0.9508749 0.0429298

48 0.0452398 0.0409430 0.9588319 0.0430296

40 0.0453112 0.0409091 0.9731043 0.0432992

32 0.0455398 0.0418401 0.9763749 0.0438771

24 0.0458801 0.0414766 0.9925879 0.0435126

16 0.0460611 0.0420631 1.0105687 0.0430481

Figure 5. Best result point value for d695 SoC Figure 6. Best result point value for p22810 SoC

Figure 7. Comparison of test time using ACO, modified

ACO, firefly and enhanced firefly for d695 SoC

Figure 8. Comparison of test time using ACO, modified

ACO, firefly and enhanced firefly for p22810 SoC

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

W= 64 W= 56 W= 48 W= 40 W= 32 W= 24 W= 16

Testing time comparision d695 SoC

benchmark

Firefly Enhanced Firefly ACO Modified ACO

0

0.2

0.4

0.6

0.8

1

1.2

W= 64 W= 56 W= 48 W= 40 W= 32 W= 24 W= 16

Testing time comparision p22810 SoC

benchmark

Firefly Enhanced Firefly ACO Modified ACO

270

The test time of Enhanced Firefly algorithm for SoCs d695

and p22810 is computed. For various TAM widths process is

repeated. The result given in Table 1 explains that testing time

is minimized using the Enhanced Firefly algorithm.

Figures 7 and 8 show that the comparative graphs give the

testing time computed by using ACO, Modified ACO, Firefly

and Enhanced Firefly algorithm. The graph clearly explains

that the Enhanced Firefly algorithm shows the deduction of

test time compared to ACO, Modified ACO and Firefly

algorithms.

The result obtained using Enhanced Firefly algorithm is

compared with the ACO, MACO and Firefly techniques. The

proposed Enhanced Firefly algorithm reduces the testing time

to 13%, 75%, 7% for d695 SoC and 12%, 85%, 5% for p22810

SoC than ACO, MACO and Firefly algorithms.

5. CONCLUSIONS AND FUTURE SCOPE

The optimization of d695 and p22810 benchmark circuits of

System on Chip is performed and the test time is reduced by

using the proposed Enhanced Firefly optimization algorithm.

The bandwidths 16, 32, 24, 48, 56, and 64 are considered. The

results obtained in simulation clearly show that the Enhanced

Firefly algorithm is better than Firefly, ACO and modified

ACO algorithms since test time is reduced 13%, 75%, 7% for

d695 SoC and 12%, 85%, 5% for p22810 SoC respectively.

So, the Enhanced Firefly technique is a better algorithm for

solving the optimization problems. Therefore, it may be

concluded that the Enhanced Firefly algorithm can be used to

perform scheduling in SoCs. In the future, algorithms like

Random Forest Algorithm, Tree-Seed Optimization, and

Invasive Weed Algorithms could be tested to minimize the test

time.

REFERENCES

[1] Pouget, J., Larsson, E., Peng, Z. (2005). Multiple-

constraint driven system-on-chip test time optimization.

Journal of Electronic Testing, 21(6): 599-611.

https://doi.org/10.1007/s10836-005-2911-4

[2] Kang, W.J., Hwang, S.Y. (2014). A test wrapper design

to reduce test time for multi-core SoC. The Journal of

Korean Institute of Communications and Information

Sciences, 39(1): 1-7.

https://doi.org/10.7840/kics.2014.39B.1.1

[3] Iyengar, V., Chakrabarty, K. (2002). System-on-a-chip

test scheduling with precedence relationships,

preemption, and power constraints. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and

Systems, 21(9): 1088-1094.

https://doi.org/10.1109/TCAD.2002.801102

[4] Chakrabarty, K. (2000). Design of system-on-a-chip test

access architectures using integer linear programming. In

Proceedings 18th IEEE VLSI Test Symposium, pp. 127-

134. https://doi.org/ 10.1109/VTEST.2000.843836

[5] Sharafi, M., ELMekkawy, T.Y. (2014). Multi-objective

optimal design of hybrid renewable energy systems using

PSO-simulation based approach. Renewable Energy, 68:

67-79. https://doi.org/10.1016/j.renene.2014.01.011

[6] Dorigo, M., Blum, C. (2005). Ant colony optimization

theory: A survey. Theoretical Computer Science, 344(2-

3): 243-278. https://doi.org/10.1016/j.tcs.2005.05.020

[7] Chandrasekaran, G., Kumarasamy, V., Chinraj, G.

(2019). Test scheduling of core based system-on-chip

using modified ant colony optimization. Journal

Européen des Systèmes Automatisés, 52(6): 599-605.

https://doi.org/10.18280/jesa.520607

[8] Chandrasekaran, G., Periyasamy, S., Rajamanickam, K.P.

(2019). Minimization of test time in system on chip using

artificial intelligence-based test scheduling techniques.

Neural Computing and Applications, 1-10.

https://doi.org/10.1007/s00521-019-04039-6

[9] Chattopadhyay, S., Reddy, K.S. (2003). Genetic

algorithm based test scheduling and test access

mechanism design for system-on-chips. In 16th IEEE

International Conference on VLSI Design, 2003.

Proceedings, pp. 341-346.

https://doi.org/10.1109/ICVD.2003.1183160

[10] Yang, X.S. (2009). Firefly algorithms for multimodal

optimization. In International symposium on stochastic

algorithms (pp. 169-178). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-04944-6_14

[11] Baykasoğlu, A., Ozsoydan, F.B. (2014). An improved

firefly algorithm for solving dynamic multidimensional

knapsack problems. Expert Systems with Applications,

41(8): 3712-3725.

https://doi.org/10.1016/j.eswa.2013.11.040

[12] Wang, G.G., Guo, L., Duan, H., Wang, H. (2014). A new

improved firefly algorithm for global numerical

optimization. Journal of Computational and Theoretical

Nanoscience, 11(2): 477-485.

https://doi.org/10.1166/jctn.2014.3383

271

