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The paper considers a problem of a motion of a flat ring of a viscous capillary fluid 

with free boundaries rotating by inertia. Transformations of system of Navier-Stokes 

equations to dimensionless variables are described. Numerical method for system 

«gas-liquid-gas» analysis is applied. Motion mode of studied system whereby ring 

sizes periodic oscillations were observed was found. Ring size oscillates around fixed 

point. The fixed point coordinates in case when initial angular velocity is equal to 

constant was found. It is shown that new dimensionless equations can be presented 

as equation similar to equation of harmonic dumped oscillator. Such view allows to 

obtain formula for ring size oscillation frequency. 
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1. INTRODUCTION

The paper considers a problem of a motion of a flat ring of 

a viscous capillary fluid with free boundaries rotating by 

inertia. Suchlike motion corresponds to the rotation of infinite 

cylinder of a fluid in an environment without gravity. An 

analog of studied object is a cross section of vortex rings in 

case of some restrictions. In example, vortex rings may be 

observed in a turbulent flow over a plane's wing or when fluid 

flow out a nozzle. Tornadoes, whirlpools, ring galaxies in a 

cross section is also similar to studied object. Therefore, the 

research does not lose its relevance. 

The research mainly focuses on periodic mode of movement 

of studied object. 

2. PLANE PROBLEM STATEMENT

Plane problem statement consists of Navier-Stokes 

equations and has the next form: 

{
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(1) 

The stress tensor for classical Stokes fluid is 

𝑇 = −𝑝𝐼 + 2𝜇𝐷 (2) 

The strain rate tensor is 

𝐷𝑖𝑗 = (𝜕𝑢𝑖 𝜕𝑥𝑗⁄ + 𝜕𝑢𝑗 𝜕𝑥𝑖⁄ ) (3) 

The stress tensor for gas at boundaries is: 

𝑇𝑖Г = (
−𝑝𝑖𝑔(𝑡) 0

0 −𝑝𝑖𝑔(𝑡)
) (4) 

Geometric problem statement.: Let ( )
1

r R t= , ( )
2

r R t=

be the outer and inner ring boundaries. 

Figure 1. The geometry of the liquid ring (𝑅10, 𝑅20 > 0)

The problem has axial symmetry thus let equations (1) be 

written in polar coordinates. The 𝑢(𝑟)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (𝑢𝑟(𝑟);  𝑢𝜑(𝑟));  𝑟 ∈

[𝑅2(𝑡);  𝑅1(𝑡)] is new sought velocity vector. Let us also apply

next dimensionless transformation: 

{

𝜉(𝑡) = 𝑅2
2(𝑡)/𝑅20

2

𝜂(𝑡) = (𝑟2 − 𝑅2
2(𝑡)) 𝑅20

2⁄ = −𝜉 + 𝑟2 𝑅20
2⁄

𝜂(𝑡)𝜖[0, 𝑎], 𝑎 = 𝑅10
2 𝑅20

2 − 1⁄

(5) 

𝜂(𝑡) value range is time invariant. 𝜂 = 𝑎  corresponds to 

point on external border, 𝜂 = 0 on internal. 

Then let us use next dimensionless substitutions: 

{

𝜏 = 𝜈𝑡 𝑅20
2⁄

Ψ = 𝑢𝑟𝑟 𝜈⁄

𝜔 = 𝑢𝜙𝑅20 𝜈√𝜉 + 𝜂⁄

(6) 
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Equations (1) transforms to the next form after applying (5) 

and (6). 

 

{
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|
𝜂=0,𝑎

= 0

                        (7) 

 

where 𝛿1 = 2𝑅20𝑘𝜎𝜎𝜈
−2𝜌−1  and 𝛿2 = 2𝑅20

2 𝜌−1𝜈−2  are 

multipliers that introduced for simplification. 

The problem (7) is well-known and were previously 

investigated [1-2]. There were founded that ring can be in one 

of three motion modes: infinite expansion, collapse and 

stationary motion. System of equations (7) has no common 

analytical solution at the current moment so numerical 

methods were used for ring behavior analysis. Numerical 

methods were tested on single known solution [3]. 

Numerical methods are widespread [4] and have proven 

themselves well. 

  

 

3. RESULTS 

 

Geometrical and physical characteristics were varied during 

the numerical experiments. [5] Existence of previously 

discovered motion modes were confirmed. Except it dumped 

periodic oscillations of gas-liquid-gas system were found.  

Figure 2 illustrates numerical experiment for following 

inputs: 

1. the physical characteristics of the water at room 

temperature for the liquid ring in air;  

2. ring sizes are measured in centimeters - ℎ = 10−2𝑚; 

3. initial dimensionless angular velocity 𝜔0 = 𝐶0 , the 

initial dimensionless radial velocity Ψ (0) = 10. 

Quality factor of oscillation system reduce as 8 times as 

increasing viscosity as twice as high, thus energy lost as a 

result of dissipation reduced as 8 times as less. 

 

 
 

Figure 2. Oscillation frequency dependence on surface 

tension value 
Straight lines are analytical result, dots are results of numerical 

simulation. 

 

According to experiments we can conclude that oscillations 

are observed for all functions Ψ, ξ, ω. Their period of 

oscillations is the same. Thus, let us select only one function 

for further analysis [6-7]. Function ξ is the most illustrative in 

our opinion because it directly depends on ring sizes. 

System of differential equations (7) has a fixed point with 

coordinates (Ψ = 0, 𝜉 = 𝜉∗, 𝜔 = 𝐶0 (𝑎 + 2) (𝑎 + 2𝜉∗)⁄ ) , 

where 𝜉∗ is a solution of nonlinear equation: 

 

𝛿1 (
1

√𝜉
+

1

√𝑎+𝜉∗
) = 𝛿2 (

𝑝20

𝜉∗
𝛾 − 𝑝10) +

𝑎С0(𝑎+2)
2

𝛿1(𝑎+2𝜉∗)
2         (8) 

 

Comparison of fixed points calculated by formula (8) and 

obtained from numerical simulation get us error about 1%. 

Thus, it can be concluded that numerical simulation and 

analytical solution have good consistency. 

Further analysis consists of obtaining oscillation 

characteristics. Assume that integrals of 𝜔 are insignificant. 

Then excluding Ψ from (7) we get second-order nonlinear 

ordinary differential equation for 𝜉: 

 

𝑑2𝜉

𝑑𝑡2
+

2

𝑙𝑛(1+
𝑎

𝜉
)
(𝛿1 (

1

√𝜉
+

1

√𝑎+𝜉
) −

𝑎(𝜉′2−8𝜉′)

𝑑𝜉(𝑎+𝜉)
− 𝛿2 (𝑝2𝑔(𝜏) −

𝑝1𝑔(𝜏))) = 0 (9) 

 

The second member in (9) is a nonlinear function of 𝜉 and 

𝜉′. So, calculating Taylor's series around fixed point for this 

member and taking into account only linear approximation we 

obtain harmonic damped oscillations equation. Formula for 

the oscillation frequency of the dimensionless inner radius is 

obtained from the multiplier in front of 𝜉:  

 

𝜔𝜉 = √
4𝜎

𝜌𝑅20
3
(−𝛼1𝛽2 + 𝛼2𝛽1) +

4

𝑅20
2 𝜌𝜉𝑠

𝛾(
𝛼1𝛾

𝜉𝑠
− 𝛼2(𝑝20 − 𝑝10𝜉𝑠

𝛾))        (10) 

 

where 𝛼1 = 1 𝑙𝑛(1 + 𝑎 𝜉
∗

⁄ )⁄ , 𝛼2 = 𝑎 𝜉
∗

2 𝑙𝑛(1 + 𝑎 𝜉
∗

⁄ )⁄⁄ , 𝛽1 =

1 √𝜉∗⁄ + 1 √𝑎 + 𝜉
∗

⁄ , 𝛽2 = 1 2 √𝜉∗
3⁄⁄ + 1 2 √(𝑎 + 𝜉

∗
)
3

⁄⁄ . 

 

Note that suchlike transformations can be also done for Ψ 

(τ) and ω (τ, η). 

It follows from (10) that oscillation frequency has the next 

properties in a first approximation: 

• Oscillation frequency does not depend on the 

coefficient of dynamic viscosity 𝜈 

• Oscillation frequency is in proportion to √𝜎 

• Oscillation frequency is in inverse proportion to 

and to √𝜌 and √𝑅20
3  

• Oscillation frequency is nonlinear function of 𝑎 

Obtained formula (10) has good consistency with the results 

of numerical simulation (Figure 2). 

Detailed research of Ψ and 𝜔 behavior is the same as for 𝜉 

and can be omitted without loss of generality. But taking into 

account form of the second equation in (7) we can conclude 

that the frequency of the periodic variations of these values 

coincide with 𝜉. 

Geometric and physics characteristics that were used in 

numerical experiments are matched to Reynolds numbers 

range [1. .1000]. 
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4. CONCLUSION 

 

Research shows that numerical simulation results are 

coincide with analytical and gives adequate information about 

studied object behavior. 

Using (7) we obtained nonlinear oscillation equation for 

relative ring sizes and approximation for frequency. 

Motion mode in which system comes to steady state through 

oscillation process were described. Suchlike motion mode is 

physically expected because system includes forces acting 

along different directions. Centrifugal force acting in direction 

out of ring center and surface forces acting in backward 

direction. Pressure difference on outer and inner borders can 

acting in both directions.  

Important detail is that the ring continues rotating with 

constant angular velocity after sizes oscillations are stopped. 

Assuming all the above, it becomes possible to estimate 

oscillation frequency of ring sizes depend on geometrical and 

physical characteristics. 
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NOMENCLATURE 

 

�⃗� = (𝑢𝑥 , 𝑢𝑦) vector velocity field 

∇ Hamiltonian 

t Time, s 

𝜌 Density, 𝑘𝑔/𝑚3 

𝑝 Pressure, Pa 

∆ Laplace operator 

𝜈 kinematic viscosity coefficient, 𝑚2/𝑠 

𝜎 surface tension coefficient, N/m 

𝑇𝑖𝐵|1 Cauchy stress tensor for liquid on i th 

border (𝑖 = 1. .2), Pa 

𝑇𝑖𝐵|2 Cauchy stress tensor for gas on 𝑖 -th border, 

Pa 

𝐻𝑖  mean curvature on 𝑖  -th border 𝑖 = 1. .2 , 

𝑚−1 

𝑛𝑖 normal on 𝑖 -th ring border 𝑖 = 1. .2 

𝐼 identity tensor 

𝜇 dynamic viscosity, 𝑃𝑎 𝑠 

𝐷𝑖𝑗  strain rate tensor, 𝑠−1 

𝑇𝑖Г stress tensor of environment which in 

contact with liquid on i -th border 𝑖 = 1. .2, 

Pa 

𝑝𝑖𝑔(𝑡) the variation law of gas pressure on 𝑖  -th 

border 𝑖 = 1. .2, Pa 

𝑅10 Outer ring border initial position, m 

𝑅20 Inner ring border initial position, m 

𝑘𝜎 Coefficient of presence or absence of 

surface tension. 𝑘𝜎 сan be equal to 0 or to 1 
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