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Epilepsy is one of the most common chronic disorder which negatively affects the patients' 

life. The functionality of the brain can be obtained from brain signals and it is vital to analyze 

and examine the brain signals in seizure detection processes. In this study, we performed 

machine learning-based and signal processing methods to detect epileptic signals. To do 

that, we examined three different EEG signals (healthy, ictal, and interictal) with two 

different classes (healthy ones and epileptic ones). Our proposed method consists of three 

stages which are preprocessing, feature extraction, and classification. In the preprocessing 

phase, EEG signals normalized to scale all samples into [0,1] range. After Stockwell 

Transform was applied and chaotic features and Parseval's Energy collected from each EEG 

signal. In the last part, EEG signals were classified with ELM (Extreme Learning Machines) 

with different parameters. Our study shows the best classification accuracy obtained from 

the Sigmoid activation function with the number of 100 hidden neurons. The highlights of 

this study are: Stockwell Transform is used; Entropy values are selected based on the 

adaptive process. Threshold values are determined according to the error rates; ELM 

classifier algorithm is applied.  
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1. INTRODUCTION

Epilepsy is a chronic disorder and occurs in the brain which 

affects people of all ages. Nearly 50 million people all around 

the suffer from that disease [1]. Epilepsy can be defined as 

improbable, recurrent, and abnormal neural activity that arises 

in the cortex [2]. During epileptic seizures, normal brain 

signals become more unstable and negatively cause patient life. 

It can be seen in two ways: partial which affects the only part 

of a body or generalized which influences the entire body [3]. 

People who have epileptic diseases generally suffer from 

not only physical conditions but also from psychological 

statuses comprising depression and anxiety [2]. Epilepsy can 

be treated in different ways including, operation, anti-epileptic 

drugs (AED), and Vargus Nerve Stimulator (VNS). AED 

treatment is affordable and easy since drugs are inexpensive 

and can be applied in daily medication. It is typically applied 

in low and middle-income countries and nearly 70% of 

patients are treated this way [4]. Yet, almost 25% of patients 

do not respond well to any treatment and seizures cannot be 

controlled [5]. Because of that developing a better way to 

analyze the brain signals and treatment is essential. 

Electroencephalography (EEG) is generally used to monitor 

and track brain activity which includes much valuable 

information about epilepsy. To predict epileptic seizures 

before and diagnose EEG is a vital procedure [6, 7]. EEG is 

painless, noninvasive, and cost-efficient and nowadays it can 

be collected with wearable and portable devices.  

EEG signals collected from epileptic patients include two 

states of abnormal activities called interictal (signals between 

epileptic seizure) and ictal (epileptic seizure). Figure 1 

represents the two states of these signals, where, Ictal signals 

are the signals that express the onset of epilepsy. At this stage, 

the epileptic seizure started and continues. Interictal signals 

are the state before the epileptic seizure begins. At this stage, 

the epileptic seizure has not yet begun, but the onset of the 

seizure will occur soon. To detect and predict epilepsy earlier, 

it is essential to classify the ictal, interictal, and normal signals. 

EEG signals can be inspected with different techniques. It can 

be analyzed and examined by experienced neuroscientists to 

detect epileptic parts of the brain and its type. Although 

epilepsy can be predicted with this method yet, examining the 

signal manually is expensive and time-consuming [7, 8]. 

Besides neuroscientists have different ways to examine thus 

signals can be evaluated with different inferences. As a result, 

a computer-based application is needed.  

In any other pattern recognition applications selecting and 

performing feature extraction methods is important for 

epilepsy detection. There are many ways to create feature 

vectors including time domain [9], frequency domain [10, 11], 

energy distribution [12], wavelet-based features [13], and 

information measurement and chaotic features like entropies 

[14]. In this study, we applied Norm Entropy, Shannon 

Entropy, Logarithmic Energy Entropy, Sure Entropy, 

Threshold Entropy, Multiscale Entropy, Sample Entropy, and 

Parseval’s Energy to extract features and determine epilepsy 

earlier including normal, interictal, and ictal signals. We 

selected these methods to extract features from EEG signals, 

for one reason that these methods differ from the methods 

applied to the Bonn data set in the literature.
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Figure 1. Ictal and interictal EEG sample 

 

The novelties of this study are ordered as below. 

 

(1) Entropy thresholds are defined by an adaptive approach. 

Threshold values are incremented by 0,1 until the 

minimum error rates are obtained. 

(2) Stockwell Transform was applied to collect different 

frequency bands of a signal. 

(3) ELM classifier algorithm used as a classifier with 

different parameters to observed each parameter's 

effects on classification. 

 

The rest of the paper organizes as follows. In Section 2, we 

mentioned EEG-based epileptic studies including feature 

extraction and classifying techniques. Also, we provided the 

performance and accuracies of discrimination as possible. In 

Section 3, the dataset used in this study is explained. Their 

technical information is also given. After we explained the 

feature extraction methods detailed and classification 

algorithm which is the Extreme Learning Machine (ELM). In 

Section 4, we provided the application performed in this study. 

In the last section, the classification accuracies were given 

with a different number of parameters and the results were 

compared with other studies. The performance of the system 

is designed based on accuracy, specificity, and sensitivity. 

 

 

2. RELATED WORKS  

 

In the study [15], a new approach was proposed to extract 

features from symplectic geometry decomposition-based 

features, to detect epileptic seizures from EEG signals. The 

team adopted simplified eigenvalues obtained from symplectic 

geometry decomposition as inputs for the Support Vector 

Machine (SVM) algorithm. These approaches were applied to 

two reliable EEG datasets (CHB-MIT, and Bonn). The study 

achieved more than 99.17% performance accuracy for the 

Bonn data set and 99.620% for the CHB-MIT data set. The 

study of Akyol [16] proposed a model based on a stacking 

ensemble approach to detect epileptic seizures, in addition to 

the DNN model. The Bonn data set was used to measure the 

efficiency of the proposed model and the deep neural networks 

model. The proposed model had an average accuracy of 

97.17%, and a mean sensitivity of 93.11%, surpassed by the 

DNN model, which achieved a mean accuracy of 93.25% and 

a sensitivity of 76.71%. The study of Zhao et al. [17] proposed 

a one-dimensional deep neural network consisting of three 

convolutional blocks and three interconnected layers to detect 

epileptic seizures. This method was tested on the Bonn data 

set. The proposed method achieved a classification accuracy 

of 97.63% ∼ 99.52% in binary classification, 96.73% ∼ 

98.06% in triple classification, and 93.55% in complex 

classification. The study of Liu et al. [18] suggested a new 

approach to detecting epileptic seizures. This approach is 

based on a combination of Stockwell transform and deep 

convolutional neural networks (CNN). Initially, they filtered 

the EEG data obtained from the Epilepsy Center at the 

University Hospital of Freiburg, Germany, using Discrete 

wavelet transform with a Db4 wavelet. Then, they applied the 

Stockwell transform method to obtain a temporal frequency 

representation of each EEG. Then they used 15 hidden layers 

of deep convolutional neural networks (CNNs) with false 

detection rate (FDR) and receiver operating characteristic 

(ROC) curves. The study had a sensitivity for each section of 

97.01%. The study of Geng et al. [19] provided a good method 

for detecting epileptic seizures, by combining the Stockwell 

transform with bidirectional long short-term memory 

(BiLSTM), applied to an EEG dataset collected at the Epilepsy 

Center at the University Hospital Freiburg, Germany. The 

study was carried out in three stages: in the first stage, S-

convert was applied to the EEG signals, to obtain time-

frequency blocks that would be used as inputs in the second 

stage. In the second stage, time-frequency blocks were 

introduced into BiLSTM to obtain and classify the feature. In 

the third stage a moving average filter, threshold judgment, 

multichannel fusion, and collar technique were used to 

improve the results obtained. The study had a sensitivity of 

98.09% and a specificity of 98.69%. The study of Tzimourta 

et al. [20] presented a methodology for detecting epileptic 

seizures based on a discrete wavelet transform (DWT) of five 

levels and a random forest classifier. Five features using DWT 

were extracted from each dataset from the University of Bonn 

dataset and the University Hospital Freiburg database. Then, 

they applied the random forest classifier to classify the data 

into ictal and interictal data. The presented methodology had 

an accuracy of over 95% for both datasets. In the study of Fan 

et al. [21], an algorithm was proposed to detect epileptic 

seizures early based on automatic estimation of average 

synaptic gains, by combining clinical data with a neural mass 

model. In this study, three indicators associated with 

excitation/inhibition balance were counted as indicators for 

early seizure detection: AE / B, A / G, and AE / (B + G). This 

study was applied to samples of 23 patients suffering from 

different epileptic seizures (Frontal Lobe Epilepsy (FLE), 

Temporal Lobe Epilepsy (TLE), and Fronto-Temporal Lobe 

Epilepsy (FTLE)). This study achieved the best sensitivity 

performance using the AE / (B + G) index applied to the data 

of Temporal Lobe Epilepsy patients, where they obtained a 

sensitivity rate of 92.92%. Time-frequency analysis methods 

are provided to classify the EEG signals for seizure detection 

and prediction in the study of Alickovic et al. [22]. EEG 

databased were obtained from the Epilepsy Center of the 

University Hospital of Freiburg and Physionet CHB-MIT to 

compare their method in other databases. They evaluated two 

classes to estimate called interictal and pre-ictal signals. Their 

study includes 4 different parts. In the first part, Multiscale 

Principal Component Analysis (MPCA) was applied to 

denoise the signals and remove the artifacts. After that, 

Empirical Mode Decomposition (EMD), Discrete Wavelet 

Transform (DWT), and Wavelet Packet Decomposition 

(WPD) were applied into 4 levels to collect sub-signals. After 

the feature extraction phase, statistical methods were 

evaluated including, the mean value of coefficients, the 
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average power of coefficients, the standard deviation of 

coefficients, the ratio of absolute mean values of coefficients, 

skewness, and kurtosis of each coefficient. In the last part, they 

used Random Forest (RF), Support Vector Machine (SVM), 

Multilayer Perceptron (MLP), and K-Nearest Neighbor (k-

NN) algorithms to classify the signals based on their states. 

They compared both databases based on their time-frequency 

analysis and classification algorithms. At the end of the study, 

they observed the accuracy at 100% for both EEG databases. 

 

3. MATERIAL AND METHODS  

 

3.1 EEG database 

 

In this study, we applied a publicly available EEG database 

[23]. The database contains five various datasets which 

include 2 healthy EEG datasets, 2 interictal EEG datasets, and 

1 ictal EEG dataset and indicated as Z, O, N, F, and S. Table 

1 shows the information about the datasets. 

Table 1. Information about EEG dataset used in this work 
 

EEG Dataset Name Containing Signals Phase  Number of Signals 

Z Healthy Signals (Eyes-Open) Eyes-Open 100 

O Healthy Signals (Eyes-Closed) Eyes-Closed 100 

N Seizure Free Signals (Hippocampal Zone) Hippocampal Zone 100 

F Seizure Free Signals (Epileptic Zone) Epileptic Zone 100 

S Epileptic Signals Seizure 100 
 

 
 

Figure 2. Each type of EEG signal 
 

 
 

Figure 3. Block diagram of the proposed method 
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As shown in Table 1, the dataset is consists of five groups, 

each dataset contains 100 single-channel EEG signals of 23.6 

seconds duration, each of these segments was selected and 

cropped from multi-channel EEG signals after visual 

inspection of the artifacts, for example, the data sets Z, and O, 

are taken from EEG signals performed on five healthy 

volunteers (seizures-free), the data set Z consists of signals 

with eyes open, and the data set O is consists of signals with 

eyes closed. The other three datasets originated from the EEG 

archive for preoperative diagnosis, as the N and F data sets 

consist of seizure-free signals collected from the hippocampus 

and epileptic regions respectively. The last dataset includes 

epilepsy signals called the S data set. Each signal contains 

4,097 samples and the sampling frequency is 173.6. In Figure 

2, each type of EEG signaling from this database was shown 

[24, 25]. 

 

3.2 Feature extraction process 

 

In this study, we applied the Stockwell Transform to collect 

key features from EEG signals. After transforming Parseval’s 

Energy and chaotic features were performed which are the 

norm, threshold, Shannon, logarithmic energy, sure, 

multiscale, and sample entropy. In this section, we explained 

the feature extraction methods and their parameters if any. 

Figure 3 shows the workflow of this study. 

 

3.2.1 Stockwell transform 

S-Transform is considered as a time-frequency 

decomposition, and it is closely related to the continuous 

wavelet transform using the mother wave. This method has 

been used with success in many applications such as seismic 

recordings, ground vibrations, gravitational waves, and 

medical signals, such as EEG, and laser Doppler flow 

measurement [26]. S-Transform is calculated using Equations 

shown below [27]: 

 

 (1) 

 

where, d shows the width of the wavelet which is used to 

calculate resolution. Also, 𝑊(𝜏, 𝑑)  represents the mother 

wavelet in Eq. (1). 

 

 
(2) 

 

In Eq. (2), 𝑒𝑖2𝜋𝑓𝜏 identifies the phase factor to calculate the 

function of the S-Transform by multiplying the mother 

wavelet.  

The width of the wavelet (d) needs to be transformed into a 

frequency and the S-Transform can be calculated in Eq. (3). 

 

 

(3) 

 

(H) represents the Fourier transform while (f) shows the 

frequency of a signal, and 𝑓 ≠ 0. Detailed information about 

S-Transform can be found [27]. 

 

3.2.2 Wavelet entropies 

Wavelet-based entropies give information-related attributes 

of a signal. Entropy is generally applied in non-stationary 

signals to measure the layout of the signals. In our work, we 

performed norm entropy, sure entropy, threshold entropy, 

Shannon entropy, and logarithmic entropy as wavelet 

entropies and their equations were given below: 

a) Norm Entropy (NE) 

 

 
(4) 

 

𝑝 is the power of entropy and generally 𝑝 ≥ 1. 

b) Sure Entropy (SE) 

The sure entropy is a form of a wave that is obtained from 

Discrete wavelet transform (DWT). It is calculated using Eq. 

(5) [28]: 

 

 
(5) 

 

where, the E is a real number, p is the threshold value, and 

generally p≥0 and (𝑥𝑖
2) is the waveform for the terminal node 

signals. E is a positive threshold value and must be ≥ 2 [28]. 

c) Threshold Entropy (ThE) 

Threshold Entropy is a method for calculating the number 

of moments in time when the signal is greater than the p 

threshold. This method is calculated using Eq. (6) [29]. 

 

 
(6) 

 

𝑝 is the threshold value and generally 𝑝 ≥ 0. 

d) Shannon Entropy (SHE) 

Shannon entropy is an official measure of entropy 

determined by Claude Shannon. This scale is calculated with 

Eq. (7) [30]: 

 

 
(7) 

 

where, 𝑥𝑖
2 is the probability of occurrence of an event. X that 

can take values {x1...xn} [30]. 

e) Logarithmic Energy Entropy (LogE) 

To compute logarithmic energy entropy, the entropy-based 

wavelet decomposition provided by Coifman and 

Wickerhauser is used, where the entropy tells us how much 

information the signal carries and how random it is. The 

logarithmic energy entropy can be calculated using Eq. (8) 

[31]: 

 

 
(8) 

 

f) Multiscale Entropy (MSE) 

Since there is a reciprocal relationship between entropy and 

scale, the multiscale entropy (MSE) method applies to both 

physiological and physical signals of finite length. If we had a 

discrete one-dimensional time series (X1, ......, XN), then we 

would create a consecutive time series (y^((r))), corresponding 

to the scale factor r. Eq. (9) is applied to calculate each element 

in the time-scaled series [32]: 

 

 

(9) 

 

According to Eq. (9), 𝑥𝑖 represents the time series which is 

transformed into large-scaled time series 𝑦𝑗
(𝑟)
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scale factor 𝑟 [32]. 

g) Sample Entropy (SampE) 

Sample entropy calculation requires five different steps [33]: 

 

𝑡𝑚(𝑖) = {𝑡𝑖+1, 𝑡𝑖+2, 𝑡𝑖+3, . . . . . . , 𝑡𝑖+𝑚+−1}, 1
≤ 𝑁 − 𝑚 + 1 

(10) 

 

The m value represents the dimension. In the first step of 

Sample entropy calculation, time-series t(i) is rearranged by 

the formula given in Eq. (10). 

In the second step, maximum distance is found between two 

dimensions and the calculation process has given in Eq. (11). 

 

 
(11) 

 

𝐷  shows the distance between two different time series 

(𝑡𝑚(𝑖), 𝑡𝑚(𝑘)) with dimension 𝑚. 

A new time-series 𝐵𝑚(𝑟) is calculated based on Eq. (11) 

since 𝑡𝑚(𝑖), 𝑡𝑚(𝑘)  are used as a summation vector and 

tolerance respectively for new time series. Eq. (12) and Eq. (13) 

show the formula. 

 

 
(12) 

 

 
(13) 

 

The new dimension is calculated as 𝑚 = 𝑚 + 1 and all the 

process repeated from Equation 10 to Eq. (13) for a new time 

series 𝑍𝑚(𝑟).  

 

 
(14) 

 

Lastly, sample entropy is calculated as follows: 

 

 
(15) 

 

3.2.3 Parseval’s Energy (PE) 

Parseval's theory is considered a useful theory for 

evaluating the energy of the signal without knowing its time 

domain, as this theory refers to the energy of the signal in 

terms of the Fourier transform. This theory can be calculated 

with Eq. (16) [34]: 

 

 

(16) 

 

(f) represents the Fourier Transform of a signal. 

In this study, different methods were used from the methods 

used in the literature, and the methods that were used in this 

study proved that they can be used with EEG signals that have 

the advantage of being unstable signals. Also, the classifier 

Extreme Learning Machines (ELM) that was used in this study 

is a fast-growing classifier of feedforward neural network with 

one hidden layer, which has the advantage of completing the 

training process once without the need for repetition 

(backpropagation). 

4. EPILEPSY DIAGNOSIS APPLICATION BY USING 

EXTREME LEARNING MACHINE CLASSIFIER  

 

In our study, we applied ELM (Extreme Learning Machines) 

to classify the healthy, interictal, and ictal signals. To do that, 

firstly we performed S-Transform for each epileptic data 

(healthy, ictal, and interictal) to collect frequency-based 

signals. Later, we collected 8 different features mentioned 

above from each frequency. We specified the threshold values 

for wavelet entropies by applying adaptive learning and 

determined the best p values based on errors. Lastly, in the 

feature extraction phase, features were normalized to scale 

variables within the range of [0,1] to prepare for the 

classification process. After the feature extraction process we 

collected, 86x8x400 feature vector for all signals from all 

datasets. 86 refers to the frequency values which were 

collected from S-Transform and 8 means feature extraction 

methods mentioned in the previous section and lastly, 400 

specifies the signals including healthy (O-Z), interictal (F), 

and epileptic (S) signals. We determined the training and 

testing data by randomly selecting the 100 signals from 

healthy ones (50 from healthy eyes closed (O) and 50 from 

healthy eyes opened (Z)) for training and testing and collected 

an 86x801 dimensional matrix. 86 refers to frequency values 

and 801 represents the features (100 signals * 8 features for 

each) and 1 means outputs (1 for healthy signals). The same 

approach was designed with epileptic and interictal signals 

also. 100 signals were collected randomly from interictal (F-

epileptic zone) and ictal (S) and 86x801 matrix obtained for 

testing and training. In that case, the output is determined as 

‘0’. To classify the EEG signals, we applied ELM and 

observed the results with different parameters. We used sinus, 

sigmoid, radial basis, and hardlim as an activation function 

with a different number of hidden neurons (10, 50, 100, 500, 

1000), and the best classification performance was measured 

with 10-fold cross-validation. Besides, we evaluated our study 

by finding Accuracy (AC), Sensitivity (SN), and Specificity 

(SP) values. The block diagram has given in Figure 3. 

 

 

5. OBTAINED RESULTS AND DISCUSSION  

 

EEG signals were classified with different parameters by 

ELM. Healthy, interictal, and ictal signals were applied, and 

their classification accuracy, sensitivity, and specificity were 

measured. Adaptive parameters were applied for entropies and 

parameters of ELM were compared. The classification 

procedure includes three parts: Firstly EEG signals were 

decomposed by the S-transform method. We applied the 

minimum frequency parameter as 1 and the maximum 

frequency parameter as 86 which is half of the sampling rate 

(173.6) of EEG signals. In this stage, we obtained five 

frequencies (5 Hz frequency, 10 Hz frequency, 21 Hz 

frequency, 43 Hz frequency, and 86 Hz frequency), as in 

Figures 4-7, where S-Transformed EEG signals based on 

different frequencies were given according to their datasets. 

After the decomposition process, we applied chaotic features 

and Parseval’s Energy features on each frequency of a signal. 

To determine the parameters for entropies (Norm, Sure, and 

Threshold Entropy) adaptive transaction applied and the best 

threshold parameters determined based on the error rates, 

where the best parameters for each entropy are 3.45, 0.84, and 

0.84 for Norm entropy, Sure entropy, and Threshold Entropy 

respectively. Lastly, collected features were fed to ELM 
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classifiers with different classification parameters and a 

different number of hidden neurons. In this stage, We used five 

different numbers of hidden neurons (10, 50, 100, 500, 1000 

hidden neurons), with four different activation function 

parameters (Sinus, Sigmoid, Radbasis, and Hardlim), And we 

used 10-fold cross-validation to obtain classification accuracy. 

Besides, sensitivity and specificity measures were obtained. 

From the results shown in Table 2, it can be observed that 

the best classification performance (90%) was obtained from 

the Sigmoid activation function on 100 number hidden 

neurons, and the worst classification performance (50%) was 

obtained from the Sinus activation function on 100 number of 

hidden neurons. Also, we observed that the best activation 

function is Sigmoid, as it achieved performance accuracy 

between 65% and 90% with different numbers of hidden 

neurons. Table 3 shows the optimal threshold values for norm 

entropy, sure entropy, and threshold. 

 

Table 2. Classification results with different ELM 

parameters 

 

Classifier 
Number of Hidden Neurons 

10 50 100 500 1000 

ELM (Sinus) 53% 54% 50% 56% 50% 

ELM (Sigmoid) 67% 76% 90% 89% 65% 

ELM (Radbasis) 54% 64% 67% 66% 54% 

ELM (Hardlim) 62% 61% 76% 88% 87% 

 

 
 

Figure 4. S-transformed healthy (eyes-opened) EEG signals with different frequencies 
 

 
 

Figure 5. S-transformed healthy (eyes-closed) EEG signals with different frequencies 
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Figure 6. S-transformed interictal (epileptic zone) EEG signals with different frequencies 

 

 
 

Figure 7. S-transformed epileptic EEG signals with different frequencies 

 

Table 3. The optimal threshold values for norm entropy, sure entropy, and threshold entropy 

 
Classifier NE Optimal Threshold Value SE Optimal Threshold Value The Optimal Threshold Value 

ELM (Sinus) 3.45 0.84 0.84 

ELM (Sigmoid) 3.45 0.84 0.84 

ELM (Radbasis) 3.45 0.84 0.84 

ELM (Hardlim) 3.45 0.84 0.84 

 

As can be seen in Table 2, different activation functions 

gave different results. The average accuracy for the Sinus 

activation function was found as 53% which is the worst 

performance in the proposed method. Radial basis function 

increased the average classification accuracy a bit which has 

found 61%. Sigmoid and Hardlim functions performed nearly 

the same average accuracy which is 77% and 75% respectively. 

Best performance measured from Sigmoid function on 100 

number of hidden neurons thus we performed ROC curve for 

that parameter in Figure 8.
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Figure 8. ROC for the proposed classifier 

Besides, sensitivity and specificity values have been 

measured. Calculation of sensitivity and specificity has given 

below: 

Sensitivity (SN) = True Positive / (True Positive + False 

Negative)  

Specificity (SP) = True Negative / (True Negative + False 

Positive) 

The results were shown in Table 4. 

 

Table 4. Sensitivity, specificity, and accuracy results 

 
Sensitivity (SN) Specificity (SP) Accuracy (AC) 

95% 82% 90% 

 

There are many other feature extraction and classification 

methods were suggested for seizure detection. Table 5 shows 

the comparison of the studies mention earlier in this article 

between applied methods and their classification results 

including sensitivity and specificity if any. 

 

Table 5. A comparison of the feature extraction techniques and classification results applied by the proposed method and other 

methods 

 
Ref. Feature Extraction Method Classifier Dataset SN (%) SP (%) ACC (%) 

[15] symplectic geometry decomposition-based features SVM CHB-MIT 97.1 99.7 99.6 

[16] Min-max normalization 
DNN, SEA-

based DNN 
Interictal, and ictal 

SEA: 

93.1 

DNN: 

76.71 

SEA: 

98.18DNN: 

97.26 

SEA: 

97.2 

DNN: 

93.25 

[17] Tunable-Q wavelet transform, Kraskov entropy LS-SVM Interictal, and ictal 97 99 97.75 

[18] 
Multiscale principal component analysis, wavelet 

packet decomposition, statistical features 
SVM 

Healthy, Interictal, 

and Ictal 
99.6 99.8 99.7 

[20] 
Fractional linear prediction, error energy, signal 

energy 
RBF-SVM Interictal, and ictal 96 95 95.33 

[21] 
Multifractal detrended fluctuation analysis, 

multifractal spectral parameters 
SVM 

Healthy, Interictal, 

and Ictal 
- 99.7 99.6 

[35] 
Local neighbor descriptive pattern, one-

dimensional local gradient pattern 
ANN 

Healthy, Interictal, 

and Ictal 
- - 98.22 

[36] Weighted permutation entropy SVM 
Healthy, Interictal, 

and Ictal 
- - 97.5 

[37] Emprical mode decomposition, statistical features ANN 
Healthy, Interictal, 

and Ictal 
90 93 97.7 

[38] CEEMDAN AdaBoost 
Ictal, inter-ictal, and 

healthy 
97.6 97.3 97.6 

This 

work 

Chaotic features, wavelet entropies, Parseval’s 

energy 
ELM 

Healthy, Interictal, 

and Ictal 
95 82 90 

 

 

6. CONCLUSION  

 

In this study, we proposed a method based on an ELM 

classifier to discriminate epileptic signals. To do that we used 

publicly available databased which includes five different 

datasets named Z, O, N, F, and S based on their type. Firstly 

we applied S-Transform to decompose signals into their 

frequencies which is 86 Hz. in our work. After we performed 

wavelet entropy and Parseval’s Energy to collect key features 

from each frequency of signals. Lastly, we used ELM to 

classify the interictal, ictal, and epileptic signals by performing 

different parameters on ELM. We observed that the best 

average accuracy (90%) calculated from the Sigmoid 

activation function with 100 hidden neurons. In this study, 

methods based on machine learning were used to process brain 

signals for patients with epileptic seizures. This study was 

conducted in three stages. In the first stage, the S-transform 

method was used in the pre-processing of EEG signals. The 

EEG signals were taken from the University of Bonn dataset. 

In the second stage, features were extracted by applying 

several techniques, including Norm Entropy, Shannon 

Entropy, Logarithmic Energy Entropy, Sure Entropy, 

Threshold Entropy, Multiscale Entropy, Sample Entropy, and 

Parseval's Energy. In the third and final stage, epileptic 

seizures (healthy and epileptic ones) were classified using the 

Extreme Learning Machines (ELM) classifier with different 

parameters. Our study obtained a classification accuracy of 

90% and a sensitivity of 95%. In future studies, it is planned 

to use convolutional neural networks together with S 

modulation. Thus, it is thought that more successful results 

will be obtained. 
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