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Non-technical losses (NTL), which occur up to 40% of the total electric transmission and 

distribution power, create many challenges worldwide. These losses have a severe impact 

on distribution utilities and adversely affect the performance of electrical distribution 

networks. Furthermore, the depreciation of these NTL reduces the requirement of new 

power plants to fulfill the demand-supply gap. Hence, NTL is an emerging research area 

for electrical engineers. This paper proposed a model for the detection of non-technical 

losses based on machine learning and feature engineering. Experimental results check the 

performance of the proposed model. These results clearly show that this proposed 

detection model has better accuracy, precision, recall, F1 score, and AUC score than other 

existing approaches.  
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1. INTRODUCTION

The Power grids have a significant role in the development

of any country. Unfortunately, these grids are adversely 

affected by non-technical losses (NTL). For every utility, NTL 

is a very challenging issue. Across the world, cost estimation 

per annum for electricity suppliers due to these losses is 

around 100 billion USD; and by minimizing NTL, revenue, 

profit, and reliability of the grid can be enhanced. Hence, 

expenditures due to NTL are of vital interest to authorities. 

Nowadays, due to urbanization and living standards, the 

requirement for electrical energy is increasing. We have 

limited fossil fuels that are intended to move towards 

electricity. During electricity generation, transmission, and 

distribution, two types of losses, i.e., technical and non-

technical, occur. The internal resistance of the transformer, 

generator and transmission lines creates technical losses. In 

Western Europe, these types of losses result in around 1-2 % 

of total efficient electricity distribution, and in the case of non-

efficient systems, it may vary up to 9-12% Golden and Min [1] 

or 2-6% [2]. Antmann [3] has defined non-technical losses as 

electricity theft, errors in meter reading, record keeping, 

accounting, broken or faulty infrastructure. 

Electricity theft can be further divided as: 

• Broken or faulty meter.

• Bypassing metering equipment.

• Un-metered supply.

• Human and technical errors in meter reading.

• Fraud, e.g., by tampering with meters.

In refs. [2, 4], authors have reported that financial losses of 

around one thousand million US dollars occur worldwide due 

to these losses. These losses represent the significant share of 

total losses compared to technical losses, which is the 

motivation to write this paper.  

Much work has been done to resolve the above issue based 

on Artificial-intelligence by applying machine learning and 

deep learning methods. Existing machine learning methods 

have been sub-divided into two parts, i.e., classification and 

clustering models [5-8]. But existing machine learning 

detection methods are not effective enough for the 

implementation as most of these approaches still require 

manual feature extraction, which indicates the inability to 

handle high-dimensional data, i.e., standard deviation, 

maximum, and minimum consumption data. Manual feature 

extraction is a mind-numbing and sluggish process and cannot 

capture the 2D features from smart meter data. However, 

among various classifiers, the random forest (RF) classifier 

takes the benefits of two machine learning techniques, 

including bagging and random feature selection. Therefore, 

machine learning-based detection of the non-technical losses 

faces various challenging issues such as class imbalance, data 

quality, comparison of different methods, feature description, 

and selection. 

The issues mentioned above are resolved by the proposed 

machine learning and feature engineering-based model. In the 

proposed model, feature engineering has been used for data 

pre-processing, outlier detection, and removal. The data is 

received from an electric company in an unbalanced condition, 

further balanced using the synthetic minority over-sampling 

technique (SMOTE) algorithm. The proposed model has been 

developed by applying four different classifiers, i.e., Logistic 

Regression (LR), Support Vector Machine (SVM), Decision 

Tree (DT), and Random Forest (RF). Moreover, this model is 

being evaluated by fourteen important parameters and 

compared with existing models. Comparative analysis and 

evaluation with pre-existing models have proved the proposed 

model's effectiveness and usefulness. 

The organization of this paper is as follows: In section 2, 

related works of literature have been mentioned. Section 3 and 

4 have dealt with the proposed method and experimental 

results, respectively. Conclusions are given in section 5, along 

with future research scopes.
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2. RELATED WORK 

 

In this section, we have discussed various causes of NTL, 

the economic effect of NTL, NTL proportion in different 

countries, and existed essential works of literature related to 

the detection of non-technical losses. 

 

2.1 Causes of NTL  

 

In NTL, there is an involvement of both types of the user 

either contractual or irregular. There are many reasons for the 

occurrence of NTL. It has been observed that many consumers 

try to bypass the meters with the wrong intention of fraud or 

deception. Due to any fault or damage in infrastructure, NTL 

also occurs. Yurtseven [9] and Lewis [10] shows that some 

consumers are so poor that they cannot pay the electricity bill. 

At the same time, some consumers can pay the electricity bill 

but are unwilling to do so. Therefore, another cause of the NTL 

is unpaid bills [2]. 

 

2.2 Economic effects of NTL  

 

The economic effect of NTL reflects directly in the form of 

losses of income return for electric utilities, which leads to an 

increase in the additional charge for the regular customer. The 

indirect economic effect of NTL is the inspection cost because 

more NTL leads to more inspections in the consumer's premise. 

NTL also creates unreliability in the network. For maintaining 

the reliability of the system, the cost of maintenance can be 

used to settle the indirect effects. Linares and Rey [11] have 

explained that the extra cost of detection and prevention from 

NTL may be higher than the rate of return.  

 

2.3 Variation of NTL 

 

The proportion of the NTL in different countries is found 

different, which is shown in Table 1. The variation in the NTL 

depends upon the development status of that particular country.  

 

Table 1. List of countries facing NTL and their proportions 

 
Reference NTL Proportion Country 

[1] 1.6%-37.9% Uttar Pradesh, India 

[9] 4-73% Turkey 

[12] 18% Rwanda  

[13] 3-40% Brazil  

[14] Up to 70% India  

 

2.4 Literature related to the detection of NTL 

 

Negi et al. [15] group of authors have used the fuzzy logic 

expert system and SVM, where the data set the size of ~100K 

customers. The purpose of including expert human knowledge 

is to identify fraudulent behavior. In this work, test recall of 

0.72 has been achieved. In Ref. [7], the following five features 

are being used, i.e., maximum consumption, average 

consumption, standard deviation, the average consumption of 

the residential area, and the number of inspections. Also, in 

this work, the fuzzy c-means clustering algorithm is used for 

grouping the customers into classes based on the features. 

Further, the classification of the customer into NTL and non-

NTL is done by using the Euclidean distance measure based 

on the fuzzy membership values. This test has achieved 0.745 

precision. 

The Support Vector Machines (SVM) are supervised 

learning models used to analyze data for classification and 

regression. Nagi et al. [16] have used this technique for the 

detection of NTL. The data set used in this work is from Kuala 

Lumpur, Malaysia, where the size of the data is ~260K 

customers. In this data set, consumer's 25 months' meter 

readings are recorded, and the average daily consumption per 

month (used as a feature) is calculated. These features are 

normalized and used for training with a Gaussian kernel. 

Further, computation of the creditworthiness ranking (CWR) 

is also used as a feature. Calculations for CWR, along with its 

range, have already been discussed in the previous section. 

This work has achieved a recall value of 0.53. Paper [6], also 

discuss the related setting and achieved the test recall of 0.77 

and accuracy of 0.86 on the different data set. According to 

Ramos et al. [17], 5K Brazilian Industrial Customer data set is 

used where each consumer profile has ten features like 

maximum demand, demand billed, installed power, etc. The 

test accuracy of SVM, neural network, and K-nearest 

neighbors (KNN) are 0.9628, 0.9448, and 0.9620, respectively.  

According to Glauner et al. [18], massive data set of 

Brazilian customers around 700K and ~31 million monthly 

reading are inspected from January 2011 to January 2015. 

They have also used ~400K inspection data. In this work, the 

expert system has been used to optimize the fuzzy system 

parameters using stochastic gradient descent as explained by 

Bottou [19] to that data set. The performance of this fuzzy 

system is better than the Boolean system. Daily average 

consumption features are used for ~100K customers and 

compare the three different algorithms on the different 

proportions of the fraud. The area under the curve (AUC) 

shows performance evaluation. The test AUC of 0.55, 0.465, 

and 0.55 on an NTLproportion of 5% for the optimized fuzzy 

system, Boolean system, and SVM. For an NTL proportion of 

20%, test AUC are0.545, 0.475, and 0.55 for the optimized 

fuzzy system, Boolean system, and SVM. 

Nagi et al. [20] presented the data sets detail 6K high-

voltage and 80K low-voltage customers in Malaysia. The 

detection of electricity theft is based on 30 days meter reading 

data at an interval of 30 minutes. The test recall is 0.55, which 

has been achieved in this work. This work uses fuzzy logic 

along with human expert knowledge for detection. Some of the 

supervised learning models like CNN and LSTM are used to 

detect non-technical losses and theft detection in the electric 

distribution network. In Ref. [21], convolutional neural 

network (CNN) and long short-term memory (LSTM) was 

used for classification. The class imbalance problem is also 

tackled by using the SMOTE algorithm. The data set size for 

simulation is 10,000 customers and achieved a test accuracy 

of 89%. In this technique, several hidden layers are used, first 

four layers performed the convolutional operation with 20 

features by each layer, and the remaining layers performed the 

LSTM operation. 

Viegas et al. [22] have introduced a technique for detecting 

NTL by applying fuzzy-based clustering known as fuzzy 

Gustafson Kessel Clustering. In this technique, the authors try 

to identify the user's consumption behavior to determine the 

prototype used to score the NTL. The AUC score of this 

technique is 0.741. 

 

 

3. PROPOSED METHODOLOGY 

 

This section explains the proposed methodology used for 

NTL detection in the electric distribution company. After that, 
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we have outlined the necessity of separate performance 

evaluation metrics for NTL detection. Various procedures are 

involved in completing this proposed methodology. These 

procedures are described in the following sub-sections.  

The flow of the proposed work is shown in Figure 1. The 

input of the model is consumer's consumption reading data, 

which is collected from the service provider. The collected 

data is analyzed based on consumer types and weather types. 

The data pre-processing is used for data cleaning, missing 

value imputation, and data transformation, which is done 

through feature engineering.  

The collected data set has many useless features such as 

division code, SDO code, etc. These useless features are 

removing from the dataset. The k fold cross-validation 

algorithm is applied to the pre-processed dataset for training 

and testing. In the data set, the number of defaulters is 

significantly less to the number of normal consumers, which 

generates the data imbalance problem. The data imbalance 

problem may affect the performance of the proposed model. 

So, we have used SMOTE algorithm for data balancing. 

In the proposed model, four machine learning classifiers are 

used. Different performance evaluation metrics are calculated 

according to testing results, which lay a strong base to identify 

various factors that select the most appropriate classifiers to 

detect NTL [23].  

 

 
 

Figure 1. Flowchart of NTL detection 

 

3.1 Data collection and analysis 

 

NTL cannot be adequately detected without a real dataset. 

Therefore, a real dataset is collected from an electric 

distribution utility situated in Utter Pradesh, India. The 

collected data contains monthly consumption records of 

consumers from January 2019 to December 2019. It has 

monthly consumption records of 37814 consumers. This data 

is analyzed based on consumer types and weather types. 

 

3.2 Data Pre-processing 

 

The raw data collected from the distribution utility has 98 

features. But it has been observed that few features are not 

helpful. For example, the feature division code, SDO code, and 

load unit are the same for all consumers. So, these features can 

be removed. Similarly, the feature 'serial number' and 'account 

id' are used for unique identification. Hence, one of them can 

only be used for identification. In this step, also replace the 

null value with a suitable feature value. The proposed 

approach has used 21 features.  

We have found that many features in collected data have 

some erroneous values during data pre-processing, i.e., 

outliers. In this paper, feature engineering is used to restore the 

outliers according to the Eqns. (1) and (2): 

 

𝐹(𝑧) =
x − µ

𝜎
 (1) 

 

where F(z), x, 𝜎, and µ are the Z score, current feature value, 

standard deviation, and mean value, respectively. After 

calculating the Z score, both upper(Z) and lower(Z) is 

calculated as a threshold value that depends on the type of 

feature and standard deviation. Finally, the outliers are 

detected and also removed using Eq. (2). 

 

𝑓(𝑥) = {
𝑥, 𝑢𝑝𝑝𝑒𝑟(𝑍) ≥ 𝑥 ≥ 𝑙𝑜𝑤𝑒𝑟(𝑍)

 𝑚𝑒𝑎𝑛(𝑥), 𝑒𝑙𝑠𝑒
 (2) 

 

In the collected raw data, many features have a wide range 

of values. So, before applying training and testing, these 

require the normalization process. The normalization of the 

feature value is done using Eq. (3), where Vx is the current 

feature value, min(Vx)and max(Vx) are minimum and 

maximum values in the present feature, respectively. 

 

𝐹(𝑉𝑥) =
Vx − min(Vx)

max(Vx) − min(Vx)
 (3) 

 

3.3 Feature selection 

 

Collected raw data has information about 98 features, but 

all these features are not necessary. Therefore, in the very 

beginning, valuable features from the master data are chosen. 

Prediction error decides the importance of any particular 

feature i.e. if by changing the value of any feature, the 

prediction error is varying, then that feature is useful; 

otherwise, not. By following this procedure, we have 

shortlisted 21 valuable features. 

Apart from these features, we have generated some more 

features based on meter data features such as creditworthiness 

(CWR). This feature range is 1 to 5, depending on the 

consumers' ignorance or delaying payments of the bill, healthy 

consumer flag, overload, meter read remark, and abnormal 
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load consumption rate. This feature categorizes various 

consumers into normal and abnormal categories. In the 

proposed work, five different types of CWR are used, which 

are calculated as follows: 

 

𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑 = 𝑀𝐷𝐼 − 𝐿𝑜𝑎𝑑 (4) 

 

The overload value is normalized between 1 to 5. The value 

of CWR1 is calculated based on this overload value, where a 

high overload value is considered as high CWR1 and low 

overload value as low CWR1. CWR2 is based on the healthy 

consumer flag (HCF) value. If the HCF value is yes, then 

CWR2 value is 1; else CWR2 is 5. 

 

𝐶𝑊𝑅2 = {
1,  𝐻𝐶𝐹 = 𝑦𝑒𝑠

 5, 𝑒𝑙𝑠𝑒
 (5) 

 

𝐶𝑊𝑅3 = {
5,  𝑀𝑅𝑅 = 𝐶𝐷𝐹
 1, 𝑒𝑙𝑠𝑒

 (6) 

 

CWR3 is based on the meter read remark (MRR) status, 

where CWR3 will be 5 if the MRR status is Ceiling Defective 

(CDF) otherwise 1. CWR4 is based on the late payment 

surcharge (LPSC). The value of LPSC is normalized between 

1 to 5 and considered as CWR4 value. CWR5 is based on the 

load consumption rate. These all five CWR are very useful for 

identifying the consumer's categories.  

 

3.4 Generation of train and test datasets 

 

The k fold cross-validation algorithm is used for creating 

the train and test dataset. Parameters of the proposed model 

are trained by train dataset, and assessment is done by test data 

set. The SMOTE algorithm is applied for data balancing.  

 

3.5 Classification 

 

We have used four classifiers for training and testing and 

their application for NTL detection. The normalized data is 

used to train and test these four classifiers, namely, logistic 

regression, random forest, decision tree, and SVM.  

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

The proposed model is implemented using Python 3.6, and 

system configuration are Intel Core i3, CPU 3.4 GHz, and 4.0 

GB RAM. The logistic regression, decision tree, SVM, and RF 

are programmed using sci-kit learn [23]. 

 

4.1 Performance metrics 

 

NTL is detected as a discrete two-class classification task. 

Therefore, each consumer is divided into abnormal or normal 

categories. The output of classifier validation is called 

confusion matrices. Here, four confusion matrices true 

positive (TP), false negative (FN), false positive (FP), and true 

negative (TN) are used for NTL detection. These matrices are 

defined as the number of consumers that are classified 

correctly as normal, classified falsely as abnormal, classified 

falsely as normal, and classified correctly as abnormal, 

respectively. Another important evaluation metric is accuracy, 

which measures how accurately a classifier predicts the TP and 

TN values. Accuracy can be calculated using Eq. (7) which is 

as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN
 (7) 

 

Some other essential evaluation metrics are used for 

performance measures of the proposed model, which are 

shown in Eqns. (8) to (12). 

 

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑇𝑃𝑅) =
TP

TP + FN
 (8) 

 

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝑇𝑁𝑅) =
TN

TN + FP
 (9) 

 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝐹𝑃𝑅) =
FP

TN + FP
 (10) 

 

𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 (𝐹𝑁𝑅) =
FN

TP + FN
 (11) 

 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉) =
TP

TP + FP
 (12) 

 

Recall or true positive rate (TPR) measures the total number 

of electricity theft consumers correctly classified by the 

classifier. If the value of TPR is higher, the detection of NTL 

becomes easier.  

Tested values of the precision, recall, and F1 score are 

shown in Tables 2 to 5 for the LR, SVM, DT, and RF 

classifiers. Table 6 shows the comparative analysis among 

these classifiers based on precision, recall, and F1 score. We 

have also demonstrated its effectiveness by comparison in 

Figure 2. The precision, recall, and F1 score of the decision 

tree are 0.97, 0.97, and 0.97. The recall, precision, and F1 

score of random forest are 0.98, 0.98, and 0.98, respectively, 

which are better than other existed works. This comparison is 

shown in Table 8. In Tables 2 to 5, we can see that both the 

classes (normal and defaulter consumers) have the 

approximately same value for precision, recall, and F1 score, 

which means that the proposed model solves the data-

unbalancing problem.  

 

Table 2. Classification score of Logistic Regression 

 

 
Parameters 

Precision Recall F1 Score 

Normal consumer 0.75 0.76 0.75 

Defaulter consumer 0.75 0.73 0.74 

Average/total 0.75 0.75 0.75 

 

Table 3. Classification score of SVM 

 

 
Parameters 

Precision Recall F1 Score 

Normal consumer 0.90 0.80 0.85 

Defaulter consumer 0.82 0.91 0.86 

Average/total 0.86 0.86 0.86 

 

Table 4. Classification score of Decision Tree 

 

 
Parameters  

Precision Recall F1 Score 

Normal consumer 0.97 0.97 0.97 

Defaulter consumer 0.97 0.97 0.97 

Average/total 0.97 0.97 0.97 
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Table 5. Classification score of Random Forest 

 

 
Parameters 

Precision Recall F1 Score 

Normal consumer 0.97 0.98 0.98 

Defaulter consumer 0.98 0.97 0.98 

Average/total 0.98 0.98 0.98 

 

Table 6. Classification score of LR, SVM, DT, and RF 

 

Classifiers 
Parameters 

Precision Recall F1 score 

Logistic Regression 0.75 0.75 0.75 

SVM 0.86 0.86 0.86 

Decision Tree 0.97 0.97 0.97 

Random Forest 0.98 0.98 0.98 

 

The harmonic mean is also used, which is calculated as 

follows: 

 

𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑚𝑒𝑎𝑛 =
2 ∗  Precision ∗  Recall

Precision +  Recall
 (13) 

 

A high value of the harmonic mean shows the high value of 

precision and recall. The harmonic mean of this proposed 

model is 97% and 98% for Decision Tree and Random Forest, 

respectively. Arithmetic mean and Dominance parameters are 

also used, which are calculated as: 

 

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 =
 Precision + Recall

2
 (14) 

 

𝐷𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 = 𝑇𝑃𝑅 − 𝑇𝑁𝑅 (15) 

 

The range of this parameter is +1 to -1. The value of 

dominance is close to +1, showing the classifier's good 

accuracy for the positive class. And dominance value near to 

−1, depicting good accuracy of the classifier for the negative 

class. This proposed model's arithmetic mean and dominance 

is 98% and 0.006, respectively, shown in Table 7. 

 

 
 

Figure 2. Comparison among different classifiers based on 

Precision, Recall, and F1 score 

 

The area under curve (AUC) and receiver operating 

characteristic (ROC) curve are also used for the detection of 

NTL. The ROC curve of this proposed model is shown in 

Figure 5. Mathew's correlation coefficient (MCC) is a vital 

evaluation parameter [24], which is defined in Eq. (16). MCC 

can also be used for the evaluation parameter to detect non-

technical losses based on machine learning. The proposed 

model has 0.94 and 0.96 MCC scores for Decision Tree and 

Random Forest, respectively. 

 

𝑀 =
(TN∗TP)−(FN∗FP)

√(𝐹𝑃+𝑇𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑁)(𝑇𝑁+𝐹𝑃)
  (16) 

 

Table 7. Complex metrics for LR, SVM, DT and RF 

 
Parameters  LR SVM DT RF 

Accuracy % 75% 85.4% 97% 98% 

Arithmetic mean 0.75 0.85 0.97 0.98 

Harmonic mean 0.75 0.85 0.97 0.98 

TPR 0.75 0.86 0.97 0.98 

FPR 0.265 0.093 0.030 0.025 

TNR 0.734 0.906 0.969 0.974 

FNR 0.234 0.198 0.033 0.017 

Dominance 0.016 -0.046 0.001 0.006 

MCC 0.46 0.72 0.94 0.96 

AUC score 0.749 0.854 0.97 0.98 

 

 
 

Figure 3. Dominance of LR, SVM, DT, and RF 

 

 
 

Figure 4. Comparison among LR, SVM, DT, and RF based 

on TPR, TNR, and Harmonic Mean 

 

 
 

Figure 5. ROC curves for LR, DT, and RF 
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Table 7 shows the comparative analysis of LR, SVM, DT, 

and random forest based on different metrics such as accuracy; 

arithmetic mean, harmonic mean, TPR, FPR, TNR, FNR, 

dominance, and AUC score. Figure 3 shows the comparative 

analysis of classifiers based on dominance metrics. Figure 4 

shows a comparative analysis of the classifiers based on TPR, 

TNR, and harmonic mean. ROC curves of these three different 

classifiers (LR, SVM, RF) are shown in Figure 5. Figure 5 

clearly shows that the performance of Random Forest is better 

than others. The proposed model's performance has been 

compared with existed works which are shown in Table 8. 

From Table 8, it is clear that the proposed model performs 

better than other existed works in terms of accuracy, recall, 

precision, and AUC score. 

 

Table 8. Comparison between the proposed scheme and existed works 

 
Reference Model Accuracy Recall Precision AUC 

[6] SVM(Gauss) 0.86 0.77 - - 

[15] 
SVM+ Fuzzy - 0.72 - - 

SVM-FIS 0.72 - - - 

[7] Fuzzy Classification 0.745 - - - 

[16] SVM 0.60 0.53 - - 

[20] Fuzzy Logic 0.55 - - - 

[21] CNN, LSTM 0.89 0.87 0.90 - 

[22] Fuzzy Clustering - - - 0.741 

[25] Wide and Deep CNN 0.9404 - - - 

[26] DT coupled SVM 0.925 - - - 

[27]  (SVM, OPF, C4, 5 tree) 0.862 0.64 0.544 - 

[28] CNN, LSTM 0.966 - - - 

Proposed Scheme 

Logistic Regression 0.75 0.75 0.75 0.749 

SVM 0.854 0.86 0.86 0.854 

Decision Tree 0.97 0.97 0.97 0.968 

Random Forest 0.98 0.98 0.98 0.98 

 

 

5. CONCLUSIONS AND FUTURE RESEARCH 

DIRECTIONS 

 

Evidently, in the electricity distribution system, non-

technical losses (NTLs) are significant losses. This paper has 

proposed a model for detecting NTL based on feature 

engineering and machine learning. In this, used a realistic 

dataset of a distribution company in India. The proposed work 

considers the various challenging issues, including class 

imbalance, data quality, comparison of different methods, 

feature description, and selection. The comparative analysis of 

the proposed model has found that the proposed scheme has 

better accuracy, precision, recall, F1 score, and AUC score 

than other existed works. This work will drastically give a 

massive benefit to the service provider to detect NTL. It will 

improve their abilities for NTL detection and the enormous 

savings of revenue losses which is also a serious concern. 

We found that collecting a realistic dataset of a distribution 

company is a challenging task during this research. So, there 

is a need for publicly available a real dataset, which can be 

helping in this area of study. 
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