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 The paper delivers an assessment of Singular Spectrum Analysis (SSA) forecasting 

ability for short- and medium-term forecasting horizon, on real time traffic volume data. 

The key study goal is to estimate forecasting pertinency for daily traffic volume, based 

upon measurements at toll station. The suggested methodology is tested on real data 

from Moschohorion and Pelasgia Toll Station – Greece, utilizing custom developed 

forecasting software toolbox. Applied research results confirm an advanced forecasting 

ability of proposed methodology for short-term forecasting horizon against medium 

term forecasting horizon, when performance is compared upon the statistical criteria of 

the coefficient of determination R2. The obtained results present that SSA forecasting 

model could provide a competent forecasting methodology for road traffic volume data. 
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1. INTRODUCTION 

 

1.1 Rationale 

 

Transportation demand forecasting is the process of 

estimating the amount of people or vehicles that will utilize a 

transport infrastructure or service over a particular time 

interval. It is an essential part of transportation planning, 

which helps determine the size of the facility, the standards of 

its maintenance, the personnel and equipment required, etc.  

The numerous methods that have been employed in road 

transport demand forecasting may be classified as qualitative 

(such as market surveys, Delphi method, and expert opinion 

method), or quantitative (such as econometric, time series, and 

causal analysis models) [1-3]. Time series methods are used 

for the assessment of future traffic load volume, while past 

data depicting traffic of demand are available. Time series can 

be defined as a series of data recorded in a time order, at equal 

time intervals (e.g., per month, day, hour) [1]. 

All time series methods are reasonably accurate but are 

inherently sensitive to noise. Furthermore, they do not 

correctly capture the qualitatively heterogeneous components 

(such as the trend and the periodic, quasi-periodic, or structural 

behaviors) of which any time series is the sum. To increase the 

accuracy of time series forecasting, various methods have been 

developed to remove noise from raw data and to decompose 

any time series into its trend, its oscillatory components and 

its noise components. One of these methods is Singular 

Spectrum Analysis (SSA), which, for a given window length, 

decomposes any time series into various components that can 

either be trends, periodic oscillations or noise [4]. 

SSA is tested whether it is able to provide structural analysis 

of time series, which signifies that SSA is utilized to 

decompose original time series into the plain and 

understandable components such as trend, periodicities and 

noise residual. While trend is deducted, acknowledgement of 

subset time series with periodic components is the key mission 

for SSA to implement. Afterwards, residuals of leading 

components time series decomposition constitute the noise 

components [4].  

In conclusion, the SSA techniques accomplish to 

decompose original time series into the components of trend, 

oscillation and noise which are easier to understand, analyze 

and forecast. 

 

1.2 Research objectives 

 

The scope of this paper is to deliver pragmatic proof for 

SSA efficiency and usefulness in modeling and identification 

of optimum forecasting horizon for Greek Toll Station traffic 

volume. The paper is focused on the following research topics: 

• Evaluate and assess optimum forecasting horizon 

through an empirical real-life application on daily traffic 

volume. 

• Examine whether SSA methodology is able to model and 

provide solid and robust forecasting ability for road 

traffic volume. 

 
 

2. LITERATURE REVIEW 

 

The SSA methodology has been used during last decades in 

many scientific areas for analysis (identification of trend, 

seasonality and periodic oscillations, noise detection and 

removal, etc.) and forecasting purposes.  

Marques et al. applied SSA technique on univariate 

hydrological time series real data to identify important 

information and forecast skills [5]. The authors investigated 

relative research in a literature overview, discovering an 

extend SSA application on several scientific fields. SSA 

decomposition and reconstruction main stages were described 

in order to exploit algorithm forecasting ability in hydrological 
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time series. Experimental outputs suggested that SSA could 

extract important hydrological time series components with 

nonlinear behavior such as precipitation and run offs and 

provide an accurate forecast. Moreover, even though 

significant components were extracted and forecasted using 

SSA, a large portion of hydrological time series variability did 

not seem to have a suitable time structure to be forecasted. 

Hassani applied SSA techniques on monthly time series 

concerning the accidental deaths in the USA between 1973 and 

1978, and then compared the SSA with traditional forecasting 

methodologies [6]. The author used the SSA to split the 

original time series into a subgroup of trend, oscillatory time 

series and structureless noise time series. The results, 

confirmed with statistical criteria analysis such as Mean 

Absolute Error (MAE) and Mean Relative Absolute Error 

(MRAE), revealed the SSA is a robust forecasting 

methodology. 

Alexandrov used SSA to perform trend extraction using 

monthly data of the unemployment level in Alaska between 

the years 1976 and 2006 [7]. The author underline that SSA is 

an interesting and robust to outliers methodology that can 

extracts trend of noisy time series containing oscillations of 

unknown period. 

Hassani and Thommakos studied the SSA methodology on 

financial and economic time series forecasting [8]. The authors 

designated the SSA methodology, they stipulate certain 

conditions for SSA forecasting and proposed a variety of SSA 

applications and experimental outputs. Noteworthy strive 

focused on SSA forecasting aptitude and the appropriate 

assessment of SSA methodology basic parameters. Both the 

theoretical approach and the experimental outcomes proved 

SSA as a competent and favorable forecasting methodology of 

economic and financial time series.  

Briceño et al. presented SSA application for electric volume 

forecasting purposes [9]. The authors performed a literature 

overview in the field of electric volume forecasting and 

described the main stages of the SSA: decomposition, 

reconstructing and forecasting. The main parameters of the 

SSA (window length and number of components) were 

selected, and case study was executed for data acquired from 

wind power generators in Venezuela. Comparison of the SSA 

with other forecasting methodologies, such as SARIMA and 

additive Holt-Winter, using MSE and MAPE statistical criteria, 

revealed that the SSA consist a reliable forecasting 

methodology. 

Alvarez-Meza et al. proposed an automatic SSA-based 

methodology to split and rebuild time series [10]. A clustering 

process was suggested to detect input signal main components, 

by computing a subgroup of orthogonal basis, engaging 

spectrum analysis criteria. The subgroup was represented by 

the Discrete Fourier Transform to deduce basis vectors 

encoding comparable data patterns. Thus, it was feasible to 

identify unseen trends or periodicities into the signal. This 

approximation was evaluated over artificial and real-life data, 

indicating that proposed methodology was a robust toolbox to 

split time series. 

Furthermore, Hassani et al. examined the possible benefits 

of tourism demand forecasting utilizing SSA [11]. The authors 

evaluated SSA forecasting ability on United States tourist 

arrivals monthly data from 1996 to 2012. SSA forecasting 

capacity was compared to a variety of other forecasting 

techniques such as ARIMA, exponential smoothing and 

Artificial Neural Networks (ANN). The experimental 

outcomes conclude that SSA approach accomplished 

significantly improved forecasts (statistically) associated to 

other methodologies. The key conclusion identified major 

SSA advantages in USA tourist arrivals forecasting and 

proposed SSA as a noteworthy methodology for other 

forecasting studies on tourism demand. 

Mahmoudv et al. studied SSA feasibility to perform 

forecasting of the mortality rate [12]. Hyndman-Ullah 

benchmarking as forecasting model was assumed in order to 

achieve SSA forecasting ability evaluation with other 

forecasting techniques. The authors endorsed for SSA because 

of SSA ability to split time series into a subgroup of individual 

components, while important attributes of trend, oscillatory 

components and noise were identified in original time series. 

SSA critical parameters were indicated with rule of thumb and 

the gained results were verified on real data from nine cities of 

Europe. 

Silva and Hassani applied SSA on US trade before, during 

and after 2008 recession forecast [13]. The authors advocated 

for SSA less sensitiveness to initial time series systemic breaks 

and consequently competent to economic values after 

recession modeling and forecasting. It was significant to 

remark that the researchers verified SSA as a propitious 

methodology which, when conglomerate into hybrid models 

such as ARIMA or ANN, could preponderate over single 

models with vigorous forecasting ability. Experimental results 

led to conclusion that SSA provided a more accurate 

forecasting model in comparison to other traditional 

forecasting techniques such as ARIMA, exponential 

smoothing and ANN. 

Kolidakis et al. applied SSA on a hybrid forecasting model 

for traffic volume [4]. The main research goal was to examine 

whether the appliance of SSA could improve significantly the 

forecasting accuracy of Artificial Neural Networks (ANN) in 

short-term daily traffic volume forecasts crossways Greek 

National Highway Network. Experimental results verified the 

improved forecasting performance of hybrid SSA-ANN model 

against forecasting ability of conventional ANN forecasting 

model. 

 

 

3. SINGULAR SPECTRUM ANALYSIS: BASIC CHA-

RACTERISTICS, IMPLEMENTATION PRINCIPLES, 

AND FORECASTING PROCEDURE  

 

3.1 Basic characteristics 

 

Singular Spectrum Analysis (SSA) was a relatively new 

methodology for time series decomposition, reconstruction 

and forecasting. Method development has been credited to the 

works of Broomhead and King [14], but it was popularized by 

Golyandina et al. [15]. In this section, a brief description of the 

SSA technique for decomposition, reconstruction and 

forecasting is given. 

SSA is confronted with a main challenge: to analyze 

structure of time series, which means that SSA is involved to 

decompose original time series into acknowledgeable 

components of trend, periodic oscillations and noise residuals. 

Analyzing and identifying systemic patterns and random noise 

is the main objective in time series analysis. Many time series 

subsets could be discerned in two key groups: time series 

subgroup characterizing trend and components characterizing 

periodicities. While trend subgroup is removed, recognition of 

periodic subgroup time series components is a key mission for 

SSA to perform. In conclusion, SSA technique accomplished 
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to decompose the original time series into understandable 

components of trend, oscillation periodicities and noise 

residuals (Figure 1). 

 

 
 

Figure 1. SSA steps for time series decomposition into 

simpler components 

 

3.2 Methodology application 

 

SSA methodology is divided into two stages: 

Decomposition and Reconstruction. Decomposition is also 

analyzed into two steps: Embedding and Singular Value 

Decomposition, while reconstruction is analyzed into two 

steps too: Grouping and Diagonal Averaging [6, 16] (Figure 

2). 

 

 
 

Figure 2. SSA methodology description 

 

3.2.1 Stage 1: Decomposition, Step 1: Embedding 

Embedding is called the process where a one-dimensional 

time series transformed into a sequence of lagged vectors of 

size L, by forming 1= − +K N L  lagged vectors: 

 

( )1 2 3 TX x ,x ,x , ,x=  (1) 

 

Usually, the above-mentioned vectors are referred as L–

lagged vectors. The matrix formed after those vectors is called 

trajectory matrix ( )1 2 3 TX ,X ,X , ,X=X , where: 
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The resulting matrix X is a Hankel matrix, which means that 

all elements along the diagonal i+j=const. are equal [6, 16]. 

 

3.2.2 Stage 1: Decomposition, Step 2: Singular Value 

Decomposition 

The step consists of the Singular Value Decomposition 

(SVD) of the trajectory matrix X into a sum of bi-orthogonal 

elementary matrices of rank 1. Let (λ1, λ2, λ3, …, λL) be the 

eigenvalues of S XX = , arranged in decreasing order of 

magnitude (λ1>λ2>λ3>…>λL) and its corresponding 

orthonormal system of eigenvectors 𝑈1, 𝑈2, 𝑈3, … , 𝑈𝐿. 

By setting 𝑑 = 𝑚𝑎𝑥(𝑖, such that 𝜆 𝑖 > 0) = rank X  and 

𝑉𝑖 = 𝑋 ′ 𝑈𝑖/√𝜆 𝑖 , 𝑖 = 1,2, … , 𝑑 , the SVD of the trajectory 

matrix X can be written: 

 

1 2 3 dX X X X= + + + +X  (3) 

 

where, 𝑋𝑖 = √𝜆 𝑖𝑈𝑖𝑉𝑖
′ . The matrixes Xi has rank 1 and are 

called elementary matrixes. The selection 𝑋𝑖 = √𝜆 𝑖𝑈𝑖𝑉𝑖
′  is 

called eigentriple (ET) of SVD. Note that in real life 

applications d=L*, with L*=min{L,K} [6, 16]. 

 

3.2.3 Stage 2: Reconstruction, Step 1: Grouping 

In this step, the elementary matrices Xi are separated into 

different groups, based on their similarity, and then the 

matrices within each group are summed. Let I={i1, i2, i3, …, ip} 

be a group. In such a case, the matrix XI corresponding to the 

group I can be defined as 𝑋𝐼 = 𝑋𝑖1
+ 𝑋𝑖2

+. . . +𝑋𝑖𝑝
. If the set 

of indices J=1, 2, …, d split into m disjoint subsets I1, I2, …, 

Im (a procedure known as eigentriple grouping) then the matrix 

X can be presented as: 

 

1 2 3 mi i i iX X X X= + + + +X  (4) 

 

3.2.4 Stage 2: Reconstruction, Step 2: Diagonal Averaging 

In the final step of the SSA methodology, the matrices 

I1,I2,…,Im are converted into a one-dimensional time series, 

through a process known as diagonal averaging. Let zij be an 

element of an arbitrary L×K matrix Z, then the k-th element of 

the resulting series is obtained by averaging zij over all i, j such 

that i+j=k+2. The method essentially takes the average of all 

the elements in all the diagonals that can be formed from the 

matrix Z, such that i+j=k+2. This is also known as 

Hankelization of the matrix Z. 

Let 𝐿 ∗= min{𝐿, 𝐾} , 𝐾 ∗= max{𝐿, 𝐾} , 𝑁 = 𝐿 − 𝐾 + 1 , 

and 𝑧 ∗𝑖𝑗= 𝑧𝑖𝑗  if 𝐿 < 𝐾  and 𝑧 ∗𝑖𝑗= 𝑧𝑗𝑖  otherwise. The 

diagonal averaging procedure transforms the matrix Z into the 

time series (�̃�1, �̃�2, … �̃�𝑇) using the Eq. (5): 
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The Hankelization procedure is optimal because the 

Hankelized matrix of Z is the closest to Z (with respect to the 

matrix norm) among all Hankel matrices of the same size [16]. 

If the Hankelization procedure is applied to the expansion in 

Eq. (4), then: 

 

1 2 3 mI I I IX X X X= + + + +X  (6) 

 

where, �̃� is the Hankelized matrix of X. This is equivalent to 

the decomposition of the initial time series 𝑌𝑇 = �̃�1, �̃�2, … �̃�𝑇 

into a sum of m series: 

 

Initial 

time series

Trend 

extraction

Periodicities

(oscillations)  

extraction

Noise

detection

• Step 1:

Embedding

(section 3.2.1)

• Step 2:

Singular Value 

Decomposition

(section 3.2.2)

Decomposition

Stage 1

• Step 1:

Grouping 

(section 3.2.3)

• Step 2:

Diagonal 

Averaging

(section 3.2.4)

Reconstruction

Stage 2Initial
time series

Singular  Spectrum  Analysis (SSA)

Forecasted 
time series
(section 3.3)
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where, 𝑌𝑇 = �̃�1, �̃�2, … �̃�𝑇 corresponded to the �̃�𝐼𝑘
 matrix [16]. 

 

3.3 Forecasting procedure 

 

SSA can be used for time series forecasting. Given a time 

series 𝑋 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁), where N is the time series length, 

the following steps are implemented: 

• Estimation of the window length L<X/2. 

• Construction of the trajectory matrix X for the time series 

X. 

• Construction of the orthogonal system of eigenvalues 

𝑈1, 𝑈2, 𝑈3, … , 𝑈𝐿 , using the Singular Value 

Decomposition. 

• Construction of the matrix �̂� = ∑ 𝑈𝑖 𝑈𝑖
𝑇𝐿

𝑖=1 𝑋. 

• Construction of the Hankelized matrix of �̃� = 𝐻(�̂�). 

• Setting 𝜈2 = 𝜋1
2 + 𝜋2

2 + ⋯ + 𝜋𝐿
2 (𝜈2 < 1) , where iπ  is 

the last component for vector 𝑈𝑖 , 𝑖 = 1,2, … 𝐿. 

• Determination of the vector 𝐴 = 𝑎 1, 𝑎 2, 𝑎 3, … , 𝑎 𝐿−1, by 

using the Eq. (8): 
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It can be proved that the last component xL of any vector 𝑋 =
(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝐿)  is a linear combination of the first 

components 𝑋 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝐿−1).  

• The last step in forecasting procedure is the definition of 

the forecasted values 𝑋𝑁+ℎ = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁+ℎ)  as 

follows: 
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where, h is the length of time series which will be forecasted. 

 

 

4. CASE STUDY 

 

A software toolbox is developed to validate SSA 

effectiveness and reliability for short- and medium-term road 

traffic forecasting, elaborating daily traffic volume from 

Moschohorion and Pelasgia toll stations of the Aegean 

Motorway (Figure 3). It is the principal north-south road 

connection in Greece (connecting the country's capital Athens 

with the country's second largest city, Thessaloniki) and part 

of the European route E75 which starts from Norway to 

Greece and runs south via Finland, Poland, Czech Rep., 

Slovakia, Hungary, Serbia, North Macedonia. Daily recording 

of traffic volume begun on April 2008 and ended on May 2014, 

producing 2,251 daily road traffic volume records (Figure 4). 

To investigate and evaluate SSA forecasting ability for 

short- and medium-term horizon, the coefficient of 

determination R2 is the most common forecasting ability 

statistical criterion [3], and is calculated by Eq. (10): 
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where, yi are the real values of the initial time series, �̃�𝑖 the 

estimated by the SSA values, iy the mean value of yi, and N 

the number of the time series available records (daily traffic 

volume data). The coefficient of determination R2 takes values 

in the closed interval [0,1]. The value R2=1 indicates that the 

SSA forecasting model predicts perfectly the real data of the 

daily traffic volume, whereas the value R2=0 indicates that no 

relationship between real data and the estimated by the SSA 

values can be found [3].  

 

 
 

Figure 3. Moschohorion and Pelasgia toll stations, 

lengthwise Aegean Motorway, Greece 

 

 
 

Figure 4. Daily traffic volume of Moschohorion and Pelasgia 

toll stations 
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5. APPLICATION AND RESULTS 

 

5.1 Parameter selection 

 

The two parameters to be selected for the SSA algorithm are 

the window length L and the number of elementary matrices 

to use for the reconstruction r. The L parameter determines the 

number of components that initial time series will be 

decomposed into and the r parameter defines the subset of 

critical components that will finally be used for SSA 

forecasting. Forecasting horizon to be investigated is assumed 

M=7 days and M=90 days ahead. Figure 5 indicatively 

illustrates the decomposition of initial time series of the daily 

traffic volume of Moschohorion toll station into 30 

components, whereas Figure 6 gives the same information for 

Pelasgia toll station. 

 

5.2 Selecting the window length, L 

 

The window length is a significant parameter needed for the 

decomposition of the time series. There is currently no 

algorithm for selecting the window length, but many 

researchers have suggested as a rule of thumb choosing L<N/2, 

where N the number of available time series data [16-19]. This 

basic rule is derived from the fact that trajectory matrix SVD’s 

are equivalent, due to the symmetry of left and right singular 

vectors. The choice of L depends on the nature of the time 

series data and the type of components that one is interested in 

extracting. 

Large values for L can lead to undesired split of original 

time series into a subgroup of subsequent time series, where 

each component may mix unpleasantly with other components. 

This troublesome possibility may cause a poor quality for 

component separation, which provokes a low quality SSA, 

with weak ability to component separation. On the other hand, 

small values for L may lead to mix-up of subsequent time 

series components, which also deprives the SSA ability to 

separate initial time series into interpretable components. In 

any case, it is proper to run SSA several times, using different 

values for L, in order to estimate the optimized L value for SSA 

decomposition. In that perspective, six different ranges of 

values were simulated for L parameter, in order to identify the 

optimum L parameter. For both study cases (Moschohorion 

and Pelasgia toll station) the six different cases for L parameter 

were: 

• L parameter range up to 20, notated as Critical-20. 

• L parameter range up to 50, notated as Critical-50. 

• L parameter range up to 100, notated as Critical-100. 

• L parameter range up to 300, notated as Critical-300. 

Different cases were investigated in order to detect 

processing time for different window length L values and 

select a balanced value between long processing time and 

efficient forecasting ability. 

For time series data with a known period, it is recommended 

choosing L such that L/T is an integer [15]. For instance, if the 

time series data was seasonal and the period is 4, then choosing 

L to be multiples of 4 (4, 8, 12,...) would help capture the 

periodic components with periods 4. If time series had 

multiple periods say T1,T2,...,Tn, then L should be chosen such 

that L/Ti be an integer for all i=1,2,..., n, which was possible 

only if all T1,T2,...,Tn were rational to each other and even then 

may yield L>N/2. 

To extract only a trend component, L should be chosen large 

enough so that the trend was separable from other components 

such as the noise but not too large because large values of L 

mix-up the trend with other components. In conclusion, L 

should be chosen such that all the components from the 

decomposition of the time series were separable (distinct) or 

non-correlated. 

 

5.3 Selecting the leading components, r 

 

Ordinarily, a harmonic produced two eigentriples with near 

eigenvalues. One more helpful approach was delivered by 

inspecting breaking points of eigenvalue spectrum, counting 

on a customary noise residuals attribute of singular values 
slowly decreasing sequence [8]. Figure 7 presents the plot of 

eigenvalues, ordered by their decomposition contribution, for 

the Moschohorion and Pelasgia toll stations. A significant drop 

occurred at eigenvalue 3 and another one at eigenvalue 12. So, 

according to Figure 7, it is safe to assume that leading 

components could be 3 or 12. After 12 components, the 

eigenvalues decrease very slowly, thus component 13 and after 

are assumed to be noise. 

Another typical measurement based on the contribution of 

each component to the variance of original time series, was 

assessed by Eq. (11): 

 

1

i

d

i

i

λ

λ
=



 
(11) 

 

where, λi is the eigenvalue i to the corresponding eigenvector 

i, and d=1, 2, …, Lag. 

Forecasting with SSA involved choosing only two 

parameters L and r. If an appropriate L had been chosen, then 

for an arbitrary time series, the author could choose r<L such 

that the error in prediction was minimized [18]. 

For both case studies (Moschohorion and Pelasgia toll 

station), 95% of initial time series information was assumed to 

be the minimum acceptable amount of initial time series 

spectral content, and can define the number of critical 

components r when identifying the optimum forecasting 

horizon for the SSA (Figure 7).  

Taking under consideration this fact, critical components 

can be estimated, for different cases of parameter L. Thus, at 

forecasting horizon of M=7 days and M=90 days, for 

Moschohorion toll station critical components r are estimated 

to be: 

 up to 2, when initial time series is split up to 20 subgroup 

time series (L=20), 

 up to 4, when initial time series is split up to 50 subgroup 

time series (L=50), 

 up to 6, when initial time series is split up to 100 

subgroup time series (L=100), 

 up to 10, when initial time series is split up to 300 

subgroup time series (L=300), 

while for Pelasgia toll station, at a forecasting horizon of M=7 

and M=90 days, critical components are estimated to be: 

− up to 5, when initial time series is split up to 20 subgroup 

time series (L=20), 

− up to 9, when initial time series is split up to 50 subgroup 

time series (L=50), 

− up to 13, when initial time series is split up to 100 

subgroup time series (L=100), 

− up to 29, when initial time series is split up to 300 

subgroup time series (L=300). 
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It is significant to highlight the fact that the values of the 

parameters L and r could differentiate in each case study 

(Moschohorion and Pelasgia toll station), since they depend on 

the nature and the characteristics of the time series that 

describe each case study. 

 

 
 

Figure 5. Principal components extracted by SSA decomposition, from Moschohorion toll station traffic volume time series 
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Figure 6. Principal components extracted by SSA decomposition, from Pelasgia toll station traffic volume time series 
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Figure 7. Eigenvalues and Cumulative Percentage of Eigenvalues (CPE) graphs for Moschohorion and Pelasgia toll stations. The 

values in parentheses in each graph denote the number of critical component in which the minimum acceptable time series 

information (at least 95%) is interpreted by SSA 

 

5.4 Selecting optimum values for L and r 

 

In order to identify the optimum architecture selection for L 

and r parameters, custom software was developed to simulate 

all different values calculations of forecasting window M, L 

and r parameters. Figure 8 illustrates the evolution of R2 at both 

Moschohorion and Pelasgia toll station, for L= 20, 50, 100, and 

300. In both cases, it was evident that the performance of SSA 

forecasting ability is degrading when forecasting horizon is 

extended, which mean that forecasting performance is robust 

for small forecasting horizon values (M=7) and weak for larger 

forecasting horizon values (M=90). 

Moreover, a significant parameter to be highlighted is the 

necessary computer processing time for simulation and 

modeling with SSA. Obviously, the response time of a 

computer depends on the speed of its central processing unit 

and, the available memory, the used software for modeling the 

SSA, etc. However, it is possible to compare the relative 

computer processing time, setting the value 1 for the required 

time for SSA to forecast the future road traffic demand in the 

short term (M=7) when L=20, and the required time when the 

window length L increased (L=50, L=100, and L=300) and the 

forecasting horizon refers to the medium term (M=90) (Figure 

9). 

 

 
 
Figure 8. Evolution of the coefficient of determination R2 for 

short-term (M=7 days) and medium-term (M=90 days) 

forecasting for different values of window length L 
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Figure 9. Computer processing time in relation to the 

forecasting horizon M and the window length L 

 

From Figure 9 it is derived that small values of window 

length L (Critical-20 and Critical-50) retained processing time 

in small values. On the other hand, large values of window 

length L (Critical-100 and Critical-300) significantly increase 

the computer processing time. Having in mind that proposed 

forecasting methodology should be applied in real life 

problems, it is apparent that the window length L should 

increase only when there is enough available time. For 

example, for the case under study and using a typical desktop 

PC, the required processing time for M=7 and L=20 is around 

12 sec, however, when L=300 the required processing time can 

reach the 5 hours.  

 

 

6. CONCLUSIONS 

 

Accurate forecasts necessity for road traffic volume is 

apparent for transportation assets managers, engineers and 

authorities. Vigorous road traffic forecasts are crucial for long-

term and short-term decision-making with in planning and 

management, while proper management of road traffic is an 

important issue as the volume of traffic increases day by day. 

Road traffic congestion has various impacts; increased travel 

time leads to delays, additional fuel consumption results 

higher emissions, drivers stress provokes aggressive driving 

behaviors and in some cases accidents. Thus, road traffic 

volume forecasting methodologies provide a significant 

decision support toolbox for transportation system capacity to 

local and national infrastructure managing authorities. 

The paper presented a relative assessment of Singular 

Spectrum Analysis (SSA) as a forecasting methodology, 

applied on Greek toll stations road traffic volume real data. 

The suggested methodology was tested on real data from 

Moschohorion and Pelasgia Toll Station (Greece), utilizing 

custom developed forecasting software toolbox. Experimental 

results revealed that SSA constitute a robust forecasting 

methodology for short-term forecasting horizon (7 days) but 

demonstrated a reduced forecasting ability for medium-term 

forecasts (90 days). 

Moreover, the computer processing time for simulation and 

modeling with SSA was significantly affected by the selected 

window length (L) of the SSA methodology, since the 

necessary processing time from several seconds in cases of 

low value of L increased (jumped) to some hours in cases of 

high values of L, implying a certain balance arrangement of L 

in order to maintain the characteristics of initial times series, 

achieve a robust forecasting performance while retaining 

processing time at reasonable and practical level. 

Forecasting road traffic volume is a very challenging 

engineering problem. Various factors can affect road traffic 

time series implying a dynamic phenomenon with stochastic 

real-life performance. Consequently, more systematically 

research should take place in order to increase forecasting 

accuracy for short-term and medium- or long-term forecasting 

horizon. Future research should be focused either on data pre-

processing techniques aiming to processing time reduction and 

forecasting errors diminish, or to propose innovative 

forecasting methodologies upon the notion of combined or 

hybrid methodologies [19, 20]. 
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