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 In this work three integral transforms through modified Adomian decomposition 

method (ADM) are proposed to obtain the approximate analytical solution of different 

types of mathematical models arising in physical problems. These transformations are 

applied for both homogeneous and non-homogeneous linear differential equations. The 

efficiency and accuracy of the proposed methods are implemented through higher order 

non-homogeneous ordinary differential equations. Numerical tests are reported for 

applicability of the current scheme based on different transformations and compared 

with exact solutions. 
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1. INTRODUCTION 

 

Mathematical modeling's of physical problems help us to 

understand the phenomena in an efficient way. These models 

express the problems in the form of linear and nonlinear 

differential equations having initial -boundary conditions and 

these are useful as they accommodate variations in the 

physical problems as per the demand of the situations. In the 

last three decades a number of integral transform techniques 

both analytical and computational have been devised by many 

researchers to obtain exact and approximate solutions to the 

differential equations. Some methods that are based on the 

extension of Laplace transformation namely Sumudu 

transform [1], Elzaki transform [2, 3], Aboodh transform [4, 

5], New integral transform [6], Mohand transform [7], Kamal 

transform [8] contribute the analytical as well as the 

approximate solution of initial value problems (IVPs). 

G.K.Watugala formulated Sumudu transform in the year 1993 

to solve problems in control engineering. T.M. Elzaki 

formulated Elzaki transformation method from classical 

Fourier transform to solve differential equations with variable 

coefficients which was then beyond the scope of Sumudu 

transform. Aboodh and Mohand transforms were introduced 

in the year 2013 and 2017 respectively to facilitate the solution 

process in time domain. Three integral transforms Elzaki, 

Abboodh and Mohand are discussed in the present work to 

solve linear initial value problems (IVPs) and boundary value 

problems (BVPs). These techniques are useful for both 

homogeneous and non-homogeneous linear differential 

equations which results in exact analytical solution but to 

obtain approximate solution and to solve nonlinear differential 

equations intervention of some other methods like Adomian 

decomposition method [9, 10], Differential transformation 

method [11-18], FDTD Method [19], ARA transform [20], 

New transform iterative method [21], Coupling Elzaki 

transform and Homotopy perturbation method [22], 

Polynomial integral transform [23], modified Adomian 

decomposition method [24], numerical quadrature for real and 

analytic functions [25-47], B-spline collocation [48-51] and its 

subsequent modification rules are essential. Our work 

comprises the analytic and approximate solution of higher-

order IVPs in electrical circuits, mass-spring system, and 

beam theory. In case of RLC circuit the exact solution is 

obtained by direct application of the methods. In other two 

problems the integral transform methods coupled with 

MADM are used to acquire approximate results. Even though 

the methods discussed here are rudimentary its simple 

execution, effective and useful properties can be implemented 

in solving intricate IVPs in applied mathematics and many 

engineering problems.  

The existing method on these three problems (Electric 

Circuits, mass-spring system, and beam theory) based on 

initial value problem, and Laplace transformation. But here we 

applied various modified form of Laplace transformation 

(Elzaki, Aboodh, Mohand transforms) with modified 

Adomian decomposition method (MADM) to obtain better 

approximate results to analytical solutions. 

The article is presented as per the following plan: Section-

1 is an Introductory. Section-2 deals with the basic properties 

and derivations of three transformations. In Section-3 three 

modeling problems are explained through different 

transformations and numerical results are verified. Some 

remarks and conclusions are reported in Sec-4. 

 

 

2. DEFINITION AND DERIVATIONS OF THE 

TRANSFORMS 

 

All the three transforms discussed in this article are defined 

for the piecewise continuous function in the set. 

 

𝐴 = {𝑓(𝑡): ∃𝑀, 𝑘1, 𝑘2 >0 , |𝑓(𝑡)| < 𝑀𝑒

|𝑡|

𝑘𝑗 , 𝑡 ∈ (−1)𝑗 ×
[0,∞)}. 

 

where, M is a finite constant and k1, k2 may or may not be finite. 
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The properties, transformations and inverse transformations 

for various functions are reported in Table 1 and Table 2 

respectively. 

 

Table 1. Three transformations for various functions 

 

Function 

𝒇(𝒕) 

Elzaki 

Transform 

𝑬{𝒇(𝒕)} = 𝑻(𝒗)
 

Mohand 

Transform 

𝑴{𝒇(𝒕)} = 𝑹(𝒗)
 

Aboodh 

Transform 

𝑨{𝒇(𝒕)} = 𝑲(𝒗) 

1 𝑣2 𝑣 1 𝑣2⁄  

𝑡 𝑣3
 1 1 𝑣3⁄  

𝑡2 2𝑣4 2! 𝑣⁄  2! 𝑣4⁄  

𝑡𝑛, 𝑛 ∈ 𝑁 𝑛! 𝑣𝑛+2 𝑛! 𝑣𝑛−1⁄  𝑛! 𝑣𝑛+2⁄  

𝑡𝑛, 𝑛
< −1 

Г(n+1)𝑣𝑛+2

 
Г(n + 1) 𝑣𝑛−1⁄

 
Г(n + 1)/ 𝑣𝑛+2⁄  

𝑒𝑎𝑡 𝑣2 1 − 𝑎𝑣⁄  𝑣2 𝑣 − 𝑎⁄  1 𝑣2 − 𝑎⁄  

sin 𝑎𝑡 𝑎𝑣3 1 + 𝑎2⁄ 𝑣2

 
𝑎𝑣2 (𝑣2 + 𝑎2)⁄

 
𝑎 𝑣(𝑣2 + 𝑎2)⁄

 cos 𝑎𝑡 𝑣2 1 + 𝑎2⁄ 𝑣2

 
𝑣3 𝑣2 + 𝑎2⁄

 
1 (𝑣2 + 𝑎2)⁄

 sinh 𝑎𝑡 𝑎𝑣3 1 − 𝑎2⁄ 𝑣2

 
𝑎𝑣2 (𝑣2 − 𝑎2)⁄  𝑎 𝑣(𝑣2 − 𝑎2)⁄

 cosh 𝑎𝑡 𝑣2 1 − 𝑎2⁄ 𝑣2 𝑣3 𝑣2 − 𝑎2⁄  1 (𝑣2 − 𝑎2)⁄
   

Table 2. Determination of functions by three inverse 

transformations 

 

( )T v
 

( )R v
 

( )K v
 

))((

))((

))(()(

1

1

1

vKA

vRM

vTEtf

−

−

−

=

==

 

v2 v 1 v2⁄  1 

v3 1 1 v3⁄  t 

v4 1 v⁄  1 v4⁄  t2 2⁄  

vn+2 1 vn−1⁄  1 vn+2⁄  
tn

n!
, n ∈ N 

vn+2 1 vn−1⁄  1 vn+2⁄  
tn

n!
, n < −1 

v2 1 − av⁄  v2 v − a⁄  1 v2⁄ − a eat 

av3 1 + a2⁄ v2  av2 (v2 + a2)⁄  a v(v2 + a2)⁄   sin at 

v2 1 + a2⁄ v2 v3 v2 + a2⁄  1 (v2 + a2)⁄   cos at 

av3 1 − a2⁄ v2  av2 (v2 − a2)⁄  a v(v2 − a2)⁄   sinh at 

v2 1 − a2⁄ v2 v3 v2 − a2⁄  1 (v2 − a2)⁄  cosh at 

 

2.1 Elzaki transform 

 

The Elzaki transform denoted by the operator 𝐸(. )  is 

defined as: 

 

𝐸(𝑓(𝑡)) = 𝑇(𝑣) = 𝑣 ∫ 𝑒−
𝑡

𝑣𝑓(𝑡)𝑑𝑡
∞

0
, 𝑘1 ≤  𝜈 < 𝑘2, 𝑡 ≥ 0. 

 

The properties of Elzaki transform are given by 

 

Let E(f(t))=T(v) then integration by parts gives the 

following results. 

 

i) 𝐸(𝑓′(𝑡)) = 
𝑇(𝑣)

𝑣
− 𝑓(0)                                    

ii) 𝐸(𝑓 ′′(𝑡)) = 
𝑇(𝑣)

𝑣2 − 𝑓(0) − 𝑣𝑓 ′(0)                  

iii) 𝐸(𝑓𝑛(𝑡)) =
𝑇(𝑣)

𝑣𝑛 − ∑ 𝑣𝑘𝑓(𝑘)(0)𝑛−1
𝑘=0                  

iv) 𝐸(𝑠𝑖𝑛𝑥) = ∑ (−1)𝑛 1

𝑣

∞
𝑛=0                                        

v) 𝐸(𝑒−𝑥) = ∑ (−1)𝑛𝑣𝑛+2                                                  ∞
𝑛=0  

 

 

 

 

 

2.2 Aboodh transform 

 

Aboodh transform is denoted by the operator )(A  and 

defined as 

𝐴(𝑓(𝑡)) = 𝑘(𝑣) =
1

𝑣
∫ 𝑒−𝑣𝑡𝑓(𝑡)𝑑𝑡

∞

0

. 

 

where, 𝑘1 ≤ 𝑣 < 𝑘2, 𝑡 ≥ 0. 

The properties Aboodh of transform are as follows: 

 

If 𝐴(𝑓(𝑡)) = 𝑘(𝑣) ,then  

vi) 𝐴(𝑓 ′(𝑡)) = 𝑣𝑘(𝑣) −
𝑓(0)

𝑣
 

vii)𝐴(𝑓 ′′(𝑡)) = 𝑣2𝐾(𝑣) − 𝑓(0) −
𝑓′(0)

𝑣
 

viii)𝐴(𝑓𝑛(𝑡)) = 𝑣𝑛𝐾(𝑣) − ∑
𝑓𝑘(0)

𝑣2−𝑛+𝑘
𝑛−1
𝑘=0  

ix)𝐴(sin 𝑥) = ∑ (−1)𝑛 1

𝑣2𝑛+3
∞
𝑛=0  

x)𝐴(𝑒−𝑥) = ∑ (−1)𝑛 1

𝑣𝑛+2
∞
𝑛−=0  

 

2.3 Mohand transform  

 

Mohand transform is denoted by the operator )(M and 

defined as  

𝑀(𝑓(𝑡)) = 𝑅(𝑣) = 𝑣2 ∫ 𝑒−𝑣𝑡

∞

0

𝑓(𝑡)𝑑𝑡,      

𝑤ℎ𝑒𝑟𝑒, 𝑘1 ≤ 𝑣 < 𝑘2 , 𝑡 ≥ 0 

 

The properties of Mohand transform are represented as: 

 

Let M(f(t))=R(v), then  

 

xi)𝑀(𝑓 ′(𝑡)) = 𝑣𝑅(𝑣) − 𝑣2𝑓(0). 

xii)𝑀(𝑓′′(𝑡)) = 𝑣2𝑅(𝑣) − 𝑣3𝑓(0) − 𝑣2𝑓′(0). 

xiii)𝑀 (𝑓(𝑛)(𝑡)) = 𝑣𝑛𝑅(𝑣) − ∑ 𝑣𝑛−𝑘+1𝑓(𝑘)(0) 𝑛−1
𝑘=0 . 

xiv)𝑀(𝑠𝑖𝑛𝑥) = ∑ (−1)𝑛𝑣−2𝑛∞
𝑛−0  

xv) 𝑀(𝑒−𝑥) = ∑ (−1)𝑛 1

𝑣𝑛−1
∞
𝑛=0 . 

 

 

3. MATHEMATICAL MODELING OF PHYSICAL 

PROBLEMS 

 

In this section three mathematical models (electrical 

network problem, mass spring system, and elastic beam) are 

suggested with three transformations, i.e., Elzaki, Aboodh and 

Mohand transformation to obtain their exact and approximate 

salutations. Moreover, the first model (RLC circuit) is best fit 

to its analytical solution and the rest two models (Mass Spring 

System, and Elastic beam problems) are numerically in good 

agreement to their exact solutions with introduction of 

MADM. 

 

3.1 RLC circuit 

   

The RLC circuit with resistance(R), inductance, 

capacitance(C) with electromotive force(v(t)) is depicted in 

Figure 1 [12]. 
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Figure 1. RLC circuit 

 

Let us consider a network system as given in the Figure 1, 

where L=20 henry, R=10 ohms, C=0.05 farad, v=20 volts with, 

I1(0)=I2(0)=0. By Kirchoff"s voltage law (KVL) [9], the 

mathematical model of the network is 𝐿𝐼1
′ + 𝑅(𝐼1 − 𝐼2) =

𝑣(𝑡) and 𝑅(𝐼2
′ − 𝐼1

′) +
1

𝐶
𝐼2 = 0.  

Hence substituting the respective values into the system of 

equations we have: 

 

20𝐼1
′ + 10(𝐼1 − 𝐼2) = 20. 

2𝐼1
′ + (𝐼1 − 𝐼2) = 2 

(1) 

 

10(𝐼2
′ − 𝐼1

′) + 20𝐼2 = 0 

Therefore,(𝐼2
′ − 𝐼1

′) + 2𝐼2 = 0 
(2) 

 

Three transforms are illustrated for analytical solution of 

circuit as discussed below. 

 

3.1.1 Elzaki transformation 

Let E(I1(t))=T1(v) and E(I2(t))=T2(v). Taking Elzaki 

transformation of Eqns. (1) and (2) and applying the 

properties(i)-(v). 

 

𝑇2(𝑣) = (
2 + 𝑣

𝑣
) 𝑇1(𝑣) − 2𝑣2 (3) 

 

𝑇2(𝑣) = (
1

2𝑣 + 1
) 𝑇1(𝑣) +

2𝑣2

1 + 2𝑣
 (4) 

 

Comparing Eqns. (3) and (4), 

 

𝑇1(𝑣) =
2𝑣3

1 + 𝑣
= 2 (𝑣2 −

𝑣2

1 + 𝑣
) 

𝑇2(𝑣) =
2𝑣3

(𝑣 + 1)(2𝑣 + 1)
+

2𝑣2

2𝑣 + 1
=

2𝑣2

1 + 𝑣
 

 

Taking the inverse Elzaki transform, we obtain: 

 

𝐼1(𝑡) = 2(1 − 𝑒−𝑡), 𝐼2(𝑡) = 2(𝑒−𝑡). 
 

as the solutions to the system. 

It is observed that this result is same to exact solution. 

 

3.1.2 Aboodh transformation 

Taking Aboodh transformation of Eqns. (1) and (2) with all 

properties(vi)-(x). The following results are obtained. 

 

𝐾2(𝑣) = (2𝑣 + 1)𝐾1(𝑣) −
2

𝑣2
   (5) 

 

𝐾2(𝑣) = (
1

𝑣 + 2
) (

2

𝑣
+ 𝑣𝐾1(𝑣)) (6) 

 

Comparison of the two Eqns. (5) and (6): 

 

𝐾1(𝑣) =
2𝑣

𝑣2(𝑣2 + 𝑣)
= 2 (

1

𝑣2
−

1

𝑣2 + 𝑣
) 

𝐾2(𝑣) =
2𝑣(𝑣 + 2)

𝑣2(𝑣 + 1)(𝑣 + 2)
= 2 (

1

𝑣2 + 𝑣
) 

 

Taking the inverse Aboodh transform the solutions are 

obtained as; 

 

𝐼1(𝑡) = 2(1 − 𝑒−𝑡),𝐼2(𝑡) = 2(𝑒−𝑡), 

 

which coincides with the exact solution of RLC circuit. 

 

3.1.3 Mohand transformation 

Let 𝑀(𝐼1(𝑡)) = 𝑅1(𝑣)and 𝑀(𝐼2(𝑡)) = 𝑅2(𝑣). 

Operation of Mohand transformation on Eqns. (1) and (2) 

and simplifying the following results with properties(xi)-(xv) 

are obtained. 

 

𝑅1(𝑣) =
2𝑣

𝑣 + 1
= 2 (𝑣 −

𝑣2

𝑣 + 1
) (7) 

 

𝑅2(𝑣) =
2𝑣2

𝑣 + 1
 (8) 

 

Inverse Mohand transform of the Eqns. (7) and (8), gives 

the same solution as in the previous cases. 

 

3.2 Mass spring system 

 

Forced motion in a mass spring system with periodic input 

is given by the general second order equation. 

 

𝑚𝑦′′ + 𝑐𝑦′ + 𝑘𝑦 = 𝐹0 cos 𝜔𝑡, 𝐹0 > 0, 𝜔 > 0 

 

where, m is the mass of the spring, c,k are the damping and 

spring constants respectively and the solution of the system y(t) 

that is the displacement of the body at any time t. 

Let us determine the motion of the undamped forced mass 

spring system corresponding to Eq. (9). 

 

𝑦 ′′ + 25𝑦 = 24𝑠𝑖𝑛𝑡 , 𝑦(0) = 𝑦 ′(0) = 1   (9) 

 

All the three transforms are discussed in this section to get 

the approximate solution of Eq. (9). 

 

3.2.1 Aboodh transform 

Aboodh transformation of Eq. (9) results:  

 

𝐴(𝑦 ′′) = 24𝐴(𝑠𝑖𝑛𝑡) − 25𝐴(𝑦) 

𝑣2𝐾(𝑣) −
𝑦′(0)

𝑣
− 𝑦(0) = 24𝐴(𝑠𝑖𝑛𝑡) − 25𝐴(𝑦) 

𝑣2𝐾(𝑣) = 1 +
1

𝑣
+ 24𝐴(𝑠𝑖𝑛𝑡) − 25𝐴(𝑦) 

𝐾(𝑣) =
1

𝑣2
+

1

𝑣3
+

24

𝑣2
𝐴(𝑠𝑖𝑛𝑡) −

1

𝑣2
25𝐴(𝑦) 

 

Operating Aboodh inverse on both sides.  
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𝑦(𝑡) = 1 + 𝑡 + 24𝐴−1 [
1

𝑣2
∑(−1)𝑟

1

𝑣2𝑟+3

∞

𝑟=0

]

− 25𝐴−1 [
1

𝑣2
𝐴(𝑦)] 

𝑦(𝑡) = 1 + 𝑡 + 24 ∑(−1)𝑟
𝑡2𝑟+3

(2𝑟 + 3)!

∞

𝑟=0

− 25𝐴−1 (
1

𝑣2
𝐴(𝑦)) 

(10) 

 

Eq. (11) is obtained by taking the series solution for the 

Aboodh transform. 

 

𝑦(𝑡) = ∑ 𝑦𝑛(𝑡)

∞

𝑛=0

 (11) 

 

Substituting Eq. (11) into Eq. (10): 

 

∑ 𝑦𝑛(𝑡) =

∞

𝑛=0

1 + 𝑡 + 24 ∑(−1)𝑟
𝑡2𝑟+3

(2𝑟 + 3)!

∞

𝑟=0

− 25𝐴−1 (
1

𝑣2
𝐴(𝑦)) 

(12) 

  

Further, using modified Adomain decomposition method 

(MADM), we can decompose Eq. (12) into two parts as: 

 

𝑦0 = 1 + 𝑡 + 24 ∑(−1)𝑟
𝑡2𝑟+3

(2𝑟 + 3)!

∞

𝑟=0

 

 

The recurrence relation is generated as:  

 

𝑦𝑛+1 = −25𝐴−1 (
1

𝑣2 𝐴(𝑦𝑛)) , for 𝑛 ≥ 0. (13) 

 

Hence for 𝑛 = 0,1,2,3 in Eq. (13), the corresponding 

𝑦1,𝑦2,𝑦3,𝑦4 are: 

 

𝑦1 = −25𝐴−1 (
1

𝑣2
𝐴(𝑦0)) 

= −25𝐴−1 (
1

𝑣2
𝐴 (1 + 𝑡 + 24 ∑(−1)𝑟

𝑡2𝑟+3

(2𝑟 + 3)!

∞

𝑟=0

)) 

=−25𝐴−1 (
1

𝑣2 (
1

𝑣2 +
1

𝑣3 + 24 ∑ (−1)𝑟 1

𝑣2𝑟+5
∞
𝑟=0 )) 

=  −25𝐴−1 (
1

𝑣4 +
1

𝑣5 + 24 ∑ (−1)𝑟 1

𝑣2𝑟+7
∞
𝑟=0 ) 

= −
25

2!
𝑡2 −

25

3!
𝑡3 − 25 × 24 ∑(−1)𝑟

𝑡2𝑟+5

(2𝑟 + 5)!

∞

𝑟=0

 

= −25 (
𝑡2

2!
+

𝑡3

3!
+ 24 ∑(−1)𝑟

𝑡2𝑟+5

(2𝑟 + 5)!

∞

𝑟=0

) 

For, 𝑛 = 1 

𝑦2 = −25𝐴−1 (
1

𝑣2
𝐴(𝑦1)) 

= −25𝐴−1 (
1

𝑣2 𝐴 (−
25

2!
𝑡2 −

25

3!
𝑡3

− 25 × 24 ∑(−1)𝑟
𝑡2𝑟+5

(2𝑟 + 5)!

∞

𝑟=0

)) 

= 252𝐴−1 (
1

𝑣2
(

1

𝑣4
+

1

𝑣5
+ 24 ∑(−1)𝑟

1

𝑣2𝑟+7

∞

𝑟=0

)) 

= 252𝐴−1 (
1

𝑣6
+

1

𝑣7
+ 24 ∑(−1)𝑟

1

𝑣2𝑟+9

∞

𝑟=0

) 

= 252𝐴−1 (
𝑡4

4!
+

𝑡5

5!
+ 24 ∑(−1)𝑟

𝑡2𝑟+7

(2𝑟 + 7)!

∞

𝑟=0

) 

Similarly for, 𝑛 = 2,3, 

𝑦3 = −253 (
𝑡6

6!
+

𝑡7

7!
+ 24 ∑(−1)𝑟

𝑡2𝑟+9

(2𝑟 + 9)!

∞

𝑟=0

) 

𝑦4 = 254 (
𝑡8

8!
+

𝑡9

9!
) + 𝑂(10) 

 

Therefore, using first five terms of the series and neglecting 

rest of 𝑂(10), 

 

𝑦(𝑡) = 𝑦0 + 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 

 

𝑦(𝑡) = 1 + 𝑡 + 24 (
𝑡3

3!
−

𝑡5

5!
+

𝑡7

7!
−

𝑡9

9!
) 

−25 (
𝑡2

2!
+

𝑡3

3!
+ 24 (

𝑡5

5!
−

𝑡7

7!
+

𝑡9

9!
)) 

+252 (
𝑡4

4!
+

𝑡5

5!
+ 24 (

𝑡7

7!
−

𝑡9

9!
)) 

−253 (
𝑡6

6!
+

𝑡7

7!
+ 24

𝑡9

9!
) + 254 (

𝑡8

8!
+

𝑡9

9!
) + 𝑂(10) 

𝑦(𝑡) = 1 + 𝑡 −
(5𝑡)2

2!
−

𝑡3

3!
+

(5𝑡)4

4!
 

+
𝑡5

5!
−

(5𝑡)6

6!
−

𝑡7

7!
+

(5𝑡)8

8!
+

𝑡9

9!
+ ⋯ 

(14) 

 

The exact solution of the problem is y(t)=cos 5(t)+sin t [12] 

and the series solution in Eq. (14) is nothing but the Maclaurin 

series of the exact solution. 

 

3.2.2 Mohand transform 

Taking Mohand transformation of Eq. (9). 

 

𝑀(𝑦′′) = 24𝑀(sin 𝑡) − 25𝑀(𝑦) 

𝑅(𝑣) = 1 + 𝑣 + 24𝑀−1 [
1

𝑣2
∑(−1)𝑟

1

𝑣2𝑟

∞

𝑟=0

] 

−25𝑀−1 [
1

𝑣2
𝑀(𝑦)] 

(15) 

 

Application of inverse Mohand transform on Eq. (15) 

 

𝑦(𝑡) = 𝑡 + 1 + 24 ∑(−1)𝑟
𝑡2𝑟+3

(2𝑟 + 3)!

∞

𝑟=0

− 25 𝑀−1 [
1

𝑣2
𝑀(𝑦)] 

(16) 

 

The solution y(t) can be defined as an infinite series as in 

Eq. (11). 

Hence putting Eq. (11) in Eq. (16) the series is obtained as: 
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∑ 𝑦𝑛(𝑡) = 1 + 𝑡 +

∞

𝑛=0

24 ∑(−1)𝑟
𝑡2𝑟+3

(2𝑟 + 3)!

∞

𝑟=0

− 25 𝑀−1 [
1

𝑣2
𝑀(𝑦𝑛)] 

(17) 

 

𝑦0 = 1 + 𝑡 + 24 ∑(−1)𝑟
𝑡2𝑟+3

(2𝑟 + 3)!

∞

𝑟=0

 

 

The recurrence relation, 𝑦𝑛+1 =

−25𝑀−1 [
1

𝑣2 𝑀(𝑦𝑛)]  𝑓𝑜𝑟 𝑛 ≥ 0. 

For, 𝑛 = 0,     

𝑦1 = −25𝑀−1 [
1

𝑣2
𝑀(𝑦0)] 

= −25𝑀−1 [
1

𝑣2
𝑀 [1 + 𝑡 + 24 ∑(−1)𝑟

𝑡2𝑟+3

(2𝑟 + 3)!

∞

𝑟=0

]] 

= −25𝑀−1 [
1

𝑣2
[𝑣2 + 𝑣3 + 24 ∑(−1)𝑟

1

𝑣2𝑟+2

∞

𝑟=0

]] 

= −25𝑀−1 [𝑣 + 1 + 24 ∑(−1)𝑟
1

𝑣2𝑟+4

∞

𝑟=0

] 

= −25𝑀−1 [
1

𝑣2
+

1

𝑣
+ 24 ∑(−1)𝑟

1

𝑣2𝑟+4

∞

𝑟=0

] 

= −25 [
𝑡2

2!
+

𝑡3

3!
+ 24 ∑(−1)𝑟

𝑡2𝑟+5

(2𝑟 + 5)!

∞

𝑟=0

] 

 

Similarly, at 𝑛 = 0,1,2,3 the results occur as it is in case of 

Aboodh transform.  

These components in Eq. (11) obtain the desired result. 

 

3.2.3 Elzaki transformation 

The Elzaki transform of Eq. (9).  

 

𝐸(𝑦′′) = 24𝑀𝐸(sin 𝑡) − 25𝐸(𝑦) 

𝑣−2𝑇(𝑣) − 𝑦(0) − 𝑣𝑦′(0)

= 24 ∑(−1)𝑟𝑣2𝑟+3 − 25𝐸(𝑦)

∞

𝑟=0

 

𝑇(𝑣) = 𝑣2 + 𝑣3 + 24 ∑(−1)𝑟𝑣2𝑟+5 − 25𝑣2𝐸(𝑦) 

∞

𝑟=0

 

(18) 

 

Taking inverse Elzaki transform of Eq. (18), 

 

𝑦(𝑡) = 1 + 𝑡 + 24 ∑(−1)𝑟
𝑡2𝑟+3

(2𝑟 + 3)!
− 25

∞

𝑟=0

𝐸−1(𝑣2𝐸(𝑦)) 

 

Further, using MADM we can decompose Eq. (18) into two 

parts as: 

 

𝑦0 = 1 + 𝑡 + 24 ∑(−1)𝑟
𝑡2𝑟+3

(2𝑟 + 3)!

∞

𝑟=0

 

 

The recurrence relation is given by: 

 

𝑦𝑛+1 = −25𝐸−1(𝑣2𝐸(𝑦𝑛)) (19) 

 

Putting values of 𝑛 = 0,1,2,3 the components as well as the 

series solution for the given differential equation repeats itself 

as it is in previous two cases. 

The absolute errors for mass spring system are reported in 

Table 3 and depicted in Figure 2. 

 

 
 

Figure 2. Comparisons for exact, approximate and absolute 

errors for different mesh points for mass spring system 

 

3.3 Elastic beam 

 

For a beam free at both ends on an elastic foundation under 

the action of a distributed load 𝑤(𝑥), the flexurat deflection 

𝑦(𝑥) is governed by the equation.  

 

𝐸𝑙𝑦4 + 𝑘𝑦 = 𝑤(𝑥)with the boundary conditions 𝑦′′(0) =
𝑦′′′(0) = 0 = 𝑦′′(𝐿) = 𝑦′′′(𝐿) 

 

In particular, let us consider the following example: 

 

𝑦(4) + 𝑦 = 𝑒−𝑥, 0 ≤ 𝑥 ≤ 1, 𝑦′′(0) = 𝑦′′′(0) = 𝑦 ′′(1)
= 𝑦′′′(1) = 0 

(20) 

 

3.3.1 Elzaki transform 

The Elzaki transform of Eq. (20), obtains: 

 

𝑣−4𝑇(𝑣) − 𝑣−2𝑦(0) − 𝑣−1𝑦′(0) − 𝑦′′(0)
− 𝑣𝑦′′′(0) = 𝐸(𝑒−𝑥 − 𝑦) 

𝑇(𝑣) = 𝐶1𝑣2 + 𝐶2𝑣3 + 𝑣4𝐸(𝑒−𝑥 − 𝑦) 

(21) 

 

The value of 𝐶1 = 𝑦(0), 𝐶2 = 𝑦′(0)  will be determined 

after the series solution as in Eq. (6) is obtained. 

The inverse Elzaki Transformation of Eq. (21) gives the 

solution as follows: 

 

𝑦(𝑥) = 𝐶1 + 𝐶2𝑥 + 𝐸−1[𝑣4𝐸(𝑒−𝑥 − 𝑦)] 

𝑦(𝑥) = 𝑒−𝑥 + 𝐶1 − 1 + (𝐶2 + 1)𝑥 −
𝑥2

2
+

𝑥3

3!
− 𝐸−1[𝑣4𝐸(𝑦)] 

(22) 

 

By MADM and Taylor’s series approximation, Eq. (22) is 

decomposed as:  

 

𝑦0 = 𝐶1 + 𝐶2𝑥 +
𝑥4

4!
−

𝑥5

5!
+

𝑥6

6!
−

𝑥7

7!
+

𝑥8

8!
−

𝑥9

9!
+

𝑥10

10!
+ 𝑂(11) 
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The recurrence relation is given by: 

 

𝑦𝑛+1 = −𝐸−1[𝑣4𝐸(𝑦𝑛)] 𝑓𝑜𝑟 𝑛 ≥ 0 

For 𝑛 = 0, 𝑦1 = −𝐸−1[𝑣4𝐸(𝑦0)] 

= −𝐸−1 (𝑣4𝐸 (𝐶1 + 𝐶2𝑥 +
𝑥4

4!
−

𝑥5

5!
+

𝑥6

6!
−

𝑥7

7!
+

𝑥8

8!
−

𝑥9

9!

+
𝑥10

10!
)) 

= −𝐸−1(𝑣4(𝐶1𝑣2 + 𝐶2𝑣3 + 𝑣6 − 𝑣7 + 𝑣8 − 𝑣9 + 𝑣10

− 𝑣11 + 𝑣12)) 

= − (𝐶1

𝑥4

4!
+ 𝐶2

𝑥5

5!
+

𝑥8

8!
−

𝑥9

9!
+

𝑥10

10!
−

𝑥11

11!
+

𝑥12

12!
−

𝑥13

13!

+
𝑥14

14!
) 

For  𝑛 = 1, 𝑦2 = 𝐶1
𝑥8

8!
+ 𝐶2

𝑥9

9!
+

𝑥12

12!
−

𝑥13

13!
+

𝑥14

14!
 

For  𝑛 = 2,  𝑦3 = −𝐶1
𝑥12

12!
− 𝐶2

𝑥13

13!
 

 

Substitution of the values of these components in Eq. (11), 

the approximate solution is: 

 

𝑦(𝑥) = 𝐶1 + 𝐶2𝑥 + (1 − 𝐶1)
𝑥4

4!
− (1 + 𝐶2)

𝑥5

5!
+

𝑥6

6!

−
𝑥7

7!
 

+𝐶1

𝑥8

8!
+ 𝐶2

𝑥9

9!
+ (1 − 𝐶1)

𝑥12

12!
+ 𝐶2

𝑥13

13!
+ ⋯ 

(23) 

 

The boundary condition in Eq. (20) are substituted in Eq. 

(23), provides: 
 

C1 = 0.943127854229432, 

C2 = −0.622264767724301 

 

Hence,  

 

𝑦 =  
8494940505740811

9007199254740992
−

1401215688024475

2251799813685248
𝑥

+
512258748000181

216172782113783808
𝑥4

−
850584125660773

270215977642229760
𝑥5 +

1

720
𝑥6

−
1

5040
𝑥7

+
2831646835246937

121056757983718932480
𝑥8

−
280243137604895

163426623278020558848
𝑥9

+
512258749000181

4314462854539742753587200
𝑥12

−
56048627520979

560880171090166557966336
𝑥13

+ ⋯ 

 

 
 

Figure 3. Comparisons of exact, approximate and absolute 

errors for different mesh points for elastic beam modelling 
 

Table 3. Absolute errors for mass spring system at different mesh points 

 
x Exact value Approximate value Absolute error 

0 1.000000000000000 1.000000000000000 0.000000000 

0.1 0.977415978537201 0.977415978557043 1.984201691840326e-11 

0.2 0.738971636663201 0.738971639214306 2.551104993919751e-09 

0.3 0.366257408329042 0.366257455039382 4.671033998482344e-08 

0.4 0.026728494238492 0.026727984314194 5.099242979984819e-07 

0.5 0.321718076942731 0.321712362702702 5.714240029042195e-06 

0.6 0.425350023205410 0.425291603001488 5.842020392199387e-05 

0.7 0.292239000053105 0.291771119899731 4.678801533740118e-04 

0.8 0.063712470035911 0.066638254725620 2.925784689709 e-03 

0.9 0.572531110196704 0.587375957831336 1.4844847634632 e-02 

1 1.125133170271123 1.188609209077959 6.3476038806836 e-02 

 

Table 4. Absolute errors for elastic beam problem at different grid points 

 
x Exact value Approximate value Absolute error 

0 0.943200000000000 0.943124474808975 7.552519102504984e-05 

.1 0.880967246664593 0.880899363884991 6.788277960201317e-05 

.2 0.818736870650345 0.818676710002571 6.016064777392138e-05 

.3 0.756513311064063 0.756461038146504 5.227291755904862e-05 

.4 0.694301142844698 0.694257015147056 4.412769764206015e-05 

.5 0.632067866921078 0.632103494794425 3.562787334698836e-05 

.6 0.569921209167234 0.569894537246701 2.667192053296130e-05 

.7 0.507752671841497 0.507735517094754 1.715474674301998e-05 

.8 0.445594249046082 0.445587280495720 6.968550362029813e-06 

.9 0.383441272930632 0.383445269271236 3.996340603995563e-06 

1.0 0.321289523969921 0.321305374716945 1.585074702398215e-05 
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All the numerical computations are carried on using Matlab 

and the comparison with the exact solution is reported in the 

Table 4 and also shown in Figure 3. 

 

3.3.2 Mohand transforms 

Taking the Mohand transform of Eq. (20).  

 

𝑣4𝑅(𝑣) − 𝑣5𝑦(0) − 𝑣4𝑦′(0) − 𝑣3𝑦′′(0) − 𝑣2𝑦′′′(0)
= 𝑀(𝑒−𝑥 − 𝑦) 

𝑣4𝑅(𝑣) = 𝐶1𝑣5 + 𝐶2𝑣4 + 𝑀(𝑒−𝑥) − 𝑀(𝑦) 

𝑅(𝑣) = 𝐶1𝑣 + 𝐶2 +
1

𝑣4
𝑀(𝑒−𝑥) −

1

𝑣4
𝑀(𝑦) 

 

Taking the inverse Mohand transform and Taylor’s series 

expansion for exponential function.  

 

𝑦(𝑥) = 𝐶1 + 𝐶2𝑥 +
𝑥4

4!
−

𝑥5

5!
+

𝑥6

6!
−

𝑥7

7!
+

𝑥8

8!
−

𝑥9

9!
+

𝑥10

10!
− 𝐸−1[𝑣4𝐸(𝑦)] 

 

By decomposition method: 

  

𝑦0 = 𝐶1 + 𝐶2𝑥 +
𝑥4

4!
−

𝑥5

5!
+

𝑥6

6!
−

𝑥7

7!
+

𝑥8

8!
−

𝑥9

9!
+

𝑥10

10!
, 

 

and, the recurrence relation 𝑦𝑛+1 = −𝑀−1 [
1

𝑣4
𝑀(𝑦𝑛)] , 𝑛 ≥ 0 is 

obtained. 

As earlier the components of Eq. (11) are calculated which 

agrees with the values calculated for Elzaki transformation. 

Therefore the solution derived by Mohand transformation is 

also same. 

 

3.3.3 Aboodh transform 

The Aboodh transform of Eq. (20), yields: 

 

𝑣4𝐾(𝑣) − 𝑣2𝑦(0) − 𝑣𝑦′(0) − 𝑦′′(0) −
1

𝑣
𝑦′′′(0)

= 𝐴(𝑒−𝑥 − 𝑦) 

𝑣4𝐾(𝑣) = 𝐶1𝑣2 + 𝐶2𝑣 + 𝐴(𝑒−𝑥) − 𝐴(𝑦) 

𝐾(𝑣) = 𝐶1

1

𝑣2
+ 𝐶2

1

𝑣3
+

1

𝑣4
(∑(−1)𝑟𝑣𝑟+2

∞

𝑟=0

) −
1

𝑣4
𝐴(𝑦) 

 

The inverse Aboodh transform of the above equation: 

 

𝑦(𝑥) = 𝐶1 + 𝐶2𝑥 +
𝑥4

4!
−

𝑥5

5!
+

𝑥6

6!
−

𝑥7

7!
+

𝑥8

8!
−

𝑥9

9!
+

𝑥10

10!

− 𝐴−1 [
1

𝑣4
𝐴(𝑦)] 

 

The repetition of the steps in former transforms evaluate the 

components of the infinite series of the Eq. (6) which are 

exactly equal to the ones derived by Elzaki and Mohand 

transform and so also the final solution. 

 

 

4. CONCLUSIONS 

 

The basic objective of this work is to implement the given 

transformations to linear non homogeneous differential 

equations in modeling occur in engineering, applied sciences 

and other physical phenomena The applicability and efficiency 

of the proposed scheme is executed by three test problems 

though three transformations numerically as well as 

graphically. The absolute error is merged with the abscissa 

except with some fluctuations at 0.9 and 1 as shown in Figure 

2 and Figure 3 for mass spring system and elastic beam 

problems respectively. The present scheme can also be 

implemented to different branches of applied sciences for 

constructive modeling in the field of ordinary differential 

equation (ODEs) as well as partial deferential equations (PDE) 

in Mathematical Sciences. The proposed scheme with 

numerical quadrature can be implemented for electromagnetic 

field problems in Electronics engineering and Fracture 

mechanics in Civil and mechanical engineering.   
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