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Incompressible 2-D Navier-stokes equations for various values of Reynolds number 

with and without partial slip conditions are studied numerically. The Lid-Driven cavity 

(LDC) with uniform driven lid problem is employed with vorticity - Stream function 

(VSF) approach. The uniform mesh grid is used in finite difference approximation for 

solving the governing Navier-stokes equations and developed MATLAB code. The 

numerical method is validated with benchmark results. The present work is focused on 

the analysis of lid driven cavity flow of incompressible fluid with partial slip conditions 

(imposed on side walls of the cavity). The fluid flow patterns are studied with wide 

range of Reynolds number and slip parameters. 
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1. INTRODUCTION

Worldwide for decades the numerical investigators in 

Computation Fluid Dynamics (CFD) have been left an 

indelible imprint to validate and justify their own developed 

numerical house-computational code with classical lid-driven 

cavity approach. From this approach research investigators 

have been increased the significance of numerical methods 

adopted for their essential outcomes. Lid driven square cavity 

problem is very interesting problem in computational fluid 

dynamics (CFD). Several numerical investigators have been 

investigating the fluid flow behavior within the top lid driven 

cavity for moderate Reynolds number (Re) values. 

Several numerical methods are available in now a day to 

solve fluid flow problems like internal flows or external flows. 

The multi grid method was proposed by Ghia et al. [1], he 

employed a classical lid-driven flow problem for various 

Reynolds number as well as for different mesh sizes. As he 

produced a benchmark results which helped a lot to research 

investigator to correct their own developed computation 

numerical methods (or house – computational codes). Erturk 

et al. [2] presented a finite difference numerical approach with 

second order accuracy scheme on two-dimensional steady 

flow Navier-stoke equations for the Reynolds number Re≤ 

21,000 with uniform mesh. Venkatadri et al. [3] proposed a 

numerical simulation of 2D incompressible driven cavity 

filled with Newtonian (K=0) and non-Newtonian fluid for 

various Reynolds numbers with uniform step along x and y-

directions of computational domain. Gupta and Kalita [4] 

deliberated a different paradigm to solve 2D flow equation 

(Navier – Stokes) equations by incorporating bi-conjugate 

gradient model. They are examined fluid flow behavior within 

the enclosure (square and rectangular) by uniform translating 

upper lid for different Reynolds number. Adaptive grid mesh 

based Finite Volume paradigm is implemented on 2D flow 

equation (Navier – Stokes) by Magalhaes et al. [5]. They 

focused lid-driven cavity flow in 2D square geometry with 

Re=1000.  

Vorticity – Stream function is a moderate technique to solve 

the Navier – Stoke equation. The stream function –vorticity 

formulation techniques is used widely by Erturk et al. [2, 6]. 

The fourth order compact finite difference scheme with ω-ψ 

technique is adopted Erturk et al. [6]. The Collocated Uniform 

grid system is used in ω-ψ technique and velocity – vorticity; 

it is very compactable to solve fluid flow problems. P – finite 

element-based stream function – vorticity approached 

numerical solution of lid – driven cavity problem is examined 

by Barragy and Carey [7] for the Reynolds number up to 

12,500. The interesting study extracted from time derivative 

numerical solution of Navier – Stokes’s equations with 

primitive variable method for moderate Reynolds numbers has 

been proposed and explained in detailed through finite 

difference scheme by Erturk [8]. Obviously, ω-ψ technique is 

easy to apply one fluid flow problems and it gives more 

rigorous and effective results, due to its significance many 

researchers utilized this technique in their studies [9-11]. The 

staggered grid system is widely used in velocity – pressure 

method. The primitive variable velocity – pressure technique 

is imposed many fluid flow problems. Velocity – pressure 

method is validated with standard classical lid-driven cavity 

flow problem for many numerical investigators. Yapici et al. 

[12] examined lid-driven cavity problem by finite volume

discretization is used in the developed computational code of

semi-implicit method for pressure-linked equation (SIMPLE)

algorithm for the Reynolds number Re=65,000. Wang et al.

[13] aim to simulate the lid driven cavity flow problem for rage

of Reynolds number Re=100-100000 by using semi-

Lagrangian Vortex-In-Cell method.

The flow field examiners are conducted pioneer work past 

few decades on fluid flow characteristics inside the cavity with 

various numerical techniques by using appropriate numerical 

grid system [14-16]. Several numerical investigators have 
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been investigating the fluid flow behavior within the top lid 

driven cavity for moderate Reynolds number (Re) values. 

Following the above studies, most of the authors neglected the 

influence of the momentum slip on lid driven cavity flow. The 

aim of the present problem is to study the fluid flow 

characteristics with the double lid driven cavity in the presence 

of partial slip conditions for different values of Reynolds 

number. 

 

 

2. BASIC EQUATIONS 

 

Consider 2-D regime with uniform sides (see in Figure 1). 

The governing partial differential equations of the interest of 

domain (square lid driven cavity) are the conservation of mass 

equation and momentum equations (Navier–Stokes’s 

equations). The fluid flow can be taken in this computation as 

incompressible and laminar. In these considerable 

assumptions the dimensional governing partial equations are 

as follows.  

 

 
 

Figure 1. Schematic of problem 
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Now introducing the stream function   and vorticity   

are dependent variables. The vorticity vector at a point is 

defined as twice the angular velocity and is:  

 

u =  (3) 

 

Which is reduced in two dimensional flows in x-y plane is: 
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For two-dimensional, incompressible flows, a scalar 

function may be defined in such a way that the equation of 

continuity is identically satisfied if the velocity components 

expressed in terms of such a function, are substituted in the 

continuity equation. 
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Such function is known as stream function, and is expressed 

by:  

 

u k=  (6) 

 

The above expression in the Cartesian form is  
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The Poisson equation for the stream function ψ can be 

obtained from the equation v u
k

x y
 

 
 = = −

 

 when the 

substituting of velocity components as stream function ψ. 

Thus, we have. 

 
2  = −  (8) 

 

This is a kinematic equation connecting the ω and ψ. So, if 

we can find an equation for ω we will have obtained a 

formulation that automatically produces divergence-free 

velocity field. The vorticity transport equation is obtained 

from taking of curl of Eq. (2). Thus, we have,  
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𝑅𝑒 =
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𝜇
 is the Reynolds number ρ and μ are fluid density 

and viscosity respectively, U and L refers the Lid velocity and 

length of cavity respectively. 

 

2.1 Slip and no-slip Conditions on Boundaries 
 

The square enclosure bounded by four walls in which the 

horizontal walls are having no slip boundaries and the left and 

right sidewalls are move upward and a partial slip flow 

condition is imposed on these walls. It is considered that the 

partial slip in the left sidewall equals its corresponding value 

at the right one [i.e., Sl = Sr]. 
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The following listed parameters are the non-dimensional 

variables.  
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The above mentioned non-dimensional variables are used in 

discussed boundary conditions are transformed in the vorticity 

stream function approach: 
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Along the left wall (X=0):  
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Along the right wall (X=L): 
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The non-dimensional governing equations of two-

dimensional flow in a square enclosure with slip and without 

slip conditions  
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3. SOLUTION TECHNIQUE AND VALIDATION 

 

The non-dimensional form of 2D axi-symmetric flows of 

Navier-Stokes’s equations in Vorticity (Ω) and Stream 

function (ψ) approach is given as  
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The above-mentioned Eqns. (1) & (2), Re denotes the 

Reynolds number of the incompressible fluid flow, the 

velocity profiles along the X and Y directions are represents U 

and V respectively. By solving the above Eqns. (1) and (2) 

with pseudo time derivative and discretization explained in 

detailed as follows  
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The final solution will not be influenced by the order of 

pseudo time derivative in order to get the steady solution as we 

required. Therefore, an Explicit Euler Time step approach is 

implemented for these pseudo time derivatives to get first 

order ( )t  accuracy approximation is used and the governing 

Eqns. (3) and (4) becomes 
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The above equations in operator notation are as follows. 
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In the numerical solution of Eqns. (7) & (9) are strictly used 

second order discretization’s (see in Table 1) and also consider 

the uniform mesh length. 

 

Table 1. Second order central discretization 
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The developed house computational MATLAB code is 

performed in the present problem and obtained fluid flow 

patterns with the following convergence criteria. 
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(27) 

 

Results (seen in Figure 2) obtained through the methods of 

Vorticity-Stream function formulation (VSF) shows an 

excellent agreement with [1] for Re=1000. This comparison 

test gives the confidence on developed house-computational 

MATLAB Code for the further investigations. 
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a) 

 
b) 

 
c) 

 
 

Figure 2. Finite difference simulation of Streamlines and centerline velocity profile for various mesh sizes at Re=1000. a) Grid 

size 41X41, b) Grid size 81X81 and c) Grid size 129X129. Solid line -Present work (FDM-VSF) and red dots – Ghia et al. [1] 
 

 

4. RESULTS AND DISCUSSION 

 

This section illustrates the fluid flow patterns with driven 

cavity for various values of Reynolds numbers with the impact 

of velocity slip influences, the fluid flow patterns for wide 

range of controlling key parameters such as Re = 50-1000, 

Sl=Sr=S=0.2-1.0 and with fixed lid driven control parameters 

λl=1, λr=-1. The implemented numerical method is validated 

with Ghia et al. [1], the detailed validation is presented in 

Figure 2, the streamline patterns at Re=1000 along with central 

line velocity are obtained for different grid sizes (i.e. 41X41, 

81X81 and 129X129). The vertical central line velocity profile 

mapped with Ghia et al. [1] which gives an excellent 

agreement for the grid size 81X81 and 129X129.This 

comparison test gives the confidence for further computations 

with grid size 81X81. It is worth noting that side walls driven 

uniformly with the values of control parameters λl=1, λr=-1. 

Figure 3 represents the simulation of streamline pattern at 

Re=100 with velocity partial slip-onside walls S=1, here 

uniform horizontal streamline patterns are generated and the 

respective central line velocity profiles are also visualized. The 

minor vortices are formed near the side walls, which are 

generated by the walls, are driven in opposite directions. In 

Figure 4, when Re=400 the uniform streamline vortex pattern 

upsurge and the shape of the vortex is slightly shifted from 

horizontal position to diagonal position with minor vortices. In 

Figure 5, Rising the Reynolds number Re=1000 the vortex 

pattern is fully upraised form horizontal to diagonal mode and 

also the minor cells are merged, the shape of the vortex is 

changed from dumbbell to oval which shows that the fluid 

flow rises with the increase of Re values in presence of partial 

slip-on right wall. 
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Mid-section velocity profile of U for Re=1000 by varying 

the slip parameter S from 0.2 to 1.0 is depicted in Figure 6. 

This depicted plot explains, when velocity slip parameter rises 

from 0.2 to 1.0 it is observed that the flow pattern is uniformly 

twisted once at Y=0.5 and also the velocity of the fluid 

decreases when the right driven wall in positive (λl=1) 

direction and left wall driven in negative (λr=-1) direction. The 

Figure 7 shows mid-section V velocity profile for Re=1000 

with the variation of Slip parameter S from 0.2 to 1.0. The 

presented plot expressed when slip parameter rises from 0.2 to 

1.0 it is observed that the flow pattern is uniformly symmetric 

at X = 0.5. The velocity of the fluid upsurge near the right 

driven wall in positive (λl=1) direction and rise down the flow 

on left driven wall in negative (λl=-1) direction. The fluid flow 

velocity is gradually reducing when increasing of velocity slip 

parameter S. 

The variation on fluid velocity (velocity profile U with 

vertical direction) with the various values of Reynolds 

numbers Re and λl=1, λr=-1, Sl=Sr=S=1 is shown in Figure 8. 

This figure deliberates that as the Reynolds number Re 

increases from 50 to 1000 the flow pattern is uniformly 

symmetric at Y=0.5 and the U velocity is diminishes. That is 

the respective fluid flow velocity inside the cavity up rises at 

left driven wall and rises down near right driven wall of the 

enclosure and the fluid flow occupies the entire cavity.  

 

   
 

Figure 3. Finite difference simulation of Streamlines – (a) and centerline velocity profiles – (b&c) for λl=1, Sl=1, Re=100, λr=-1, 

Sr=1 

 
 

Figure 4. Finite difference simulation of Streamlines and centerline velocity profiles for λl=1, Sl=1, Re=400, λr=-1, Sr=1 

 

 
 

Figure 5. Finite difference simulation of Streamlines and centerline velocity profiles for λl=1, Sl=1, Re=1000, λr=-1, Sr=1 
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Figure 6. Mid-section velocity profile of U for Re=1000 and 

λl=1, λr=-1, Sl=Sr=S 

 

 
 

Figure 7. Mid-section velocity profile of V for Re=1000 and 

λl=1, λr=-1, Sl=Sr=S  

 
 

Figure 8. Mid-section velocity profile of U for λl=1, λr=-1, 

Sl=Sr=S 

 

The variation on fluid velocity (velocity profile V with 

horizontal direction) with the various values of Reynolds 

numbers Re and λl=1, λr=-1, Sl=Sr=S=1 is shown in Figure 9. 

It is expressed that as the Reynolds number Re increases from 

50 to 1000 the flow pattern is uniformly symmetric at X=0.5 

and the V velocity is raise down. That is the respective fluid 

flow velocity inside the cavity up rises at left driven wall and 

rises down near right driven wall of the enclosure. 

 
 

Figure 9. Mid-section velocity profile of U for λl=1, λr=-1, 

Sl=Sr=S 

 

 

5. CONCLUSIONS 

 

The two-dimensional laminar incompressible double lid 

(λl=1, λr=-1) driven cavity flow under the effects of velocity 

slip conditions and Vorticity stream function approach has 

been examined numerically. Lid driven square cavity problem 

is a very interesting problem in computational fluid dynamics 

(CFD). Several numerical investigators have been 

investigating the fluid flow behavior within the top lid driven 

cavity for moderate Reynolds number (Re) values. Most of the 

lid driven cavity problems having only no-slip boundary 

conditions while in this investigation we considered slip and 

no-slip boundary conditions for various values of Re. The 

governing Partial differential equations with slip and no slip 

boundary conditions have been employed by finite difference 

method. Investigation of the control parameters influence on 

flow structures within the enclosure has been performed. It has 

been found that velocity slip parameter can be a good control 

parameter which allows changing the fluid flow velocity 

profiles regardless of Reynolds number values. Gradual 

reduction of fluid velocity is noticed for the incremental values 

in velocity slip parameter S. When the Reynolds number Re 

varies from 50 to 1000 a uniformly symmetric flow patterns 

are observed about the lines X= 0.5 and Y=0.5 respectively. 

The future works focused on natural convective internal flows 

with slip influence and manage the heat transport performance 

by controlling the fluid flow velocity. 
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NOMENCLATURE 

L Length scale 

P Dimensionless pressure 

Re Reynolds number 

Sl Partial slip in the left sidewall 

Sr Partial slip in the Right sidewall 

𝑡 Time 

U Lid velocity 

u, v 
Dimensionless velocity components in X and Y 

direction respectively 

V0 Side walls velocity 

Greek symbols 

 Non-dimensional stream function 

λl Left Wall driven control parameter 

λr Right Wall driven control parameter 

ω Non-dimensional vorticity function 

 Laplacian operator 

 Fluid density of the particles 

 Kinematic viscosity

 Dynamic viscosity 

Ω Vorticity function 

τ Non-dimensional time function 

Ψ Stream function 

Subscripts 

l Left

r Right 

0 Initial value 
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