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 Climate projections suggest that the frequency and intensity of some environmental 

extremes will be affected in the future because of climate change. Climate change has 

brought about new, unprecedented weather patterns, including changes in extreme 

temperature. Ecosystems and various sectors of human activities are sensitive to high 

and low temperatures, especially when these occur over extended periods. Sumatra 

Island is part of the Indonesian state, where most provinces are trough by tropical 

climates and have annual maximum daily temperatures varying from 72°F–97°F. This 

study focuses on the reduction and management of the disaster risk that occurs as a 

result of extreme high temperatures that lead to global change and heat waves. The main 

goal of this study is to find the best-fitting distribution to extreme daily temperatures 

measured over the 12 stations on Sumatra Island in 1999–2019 by using the power of 

Bayesian Markov Chain Monte Carlo (MCMC) approach. The study also predicts the 

extreme temperatures for the next 10, 50 and 100 years through return periods. In this 

study, extreme temperature events are defined by methods based on the annual 

maximum of daily temperature. Generalised extreme value (GEV) and generalised 

logistic (GLO) distributions are fitted to data corresponding to the methods to describe 

the extremes of temperature and predict its future behaviour. Graphical inspection 

[distribution function (cdf)] and numerical criteria [root mean square error (RMSE)] are 

used to select the most suitable model. In most cases, graphical inspection gives similar 

results but the RMSE results differ. Finally, we find evidence that suggests most regions 

(S1, S3, S5, S6, S7, S8, S9, S10, S11 and S12) have a GEV distribution, which provides 

the most appropriate model for the annual maximums of daily temperatures, while the 

GLO distribution gives the reasonable model for the daily temperature data for the S2 

and S4 locations. Furthermore, estimates of 10-, 50- and 100-year return levels for 

extreme temperatures are derived on the basis of the identified model. 
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1. INTRODUCTION 

 

Extreme weather events amplified by climate change can 

lead to major environmental issues affecting human society. 

Over the past two decades, a major component of climate 

change which has been analysed extensively is temperature [1, 

2]. In high-temperature days, people switch on their cooling 

systems until the point at which all cooling systems are 

operating, resulting in an extreme increase in electricity 

demand [3]. To this effect, modelling the occurrence of 

extreme high temperatures is vital in the energy sector. Steffen 

et al. [4] emphasized that heat waves are contributing factors 

towards the occurrence of several natural disasters, which 

affect economies and the lives of people worldwide. Heat 

waves has several disastrous impacts, which are highlighted in 

this study. The presence of extreme heat leads to drought and 

health consequences, which account for numerous cases of 

hospitalisations and deaths [4-7]. When heat waves occur, a 

high demand for water transpires because water reservoirs 

dwindle, and water is used to guard against the risk of fire in 

various situations [4-7]. Civil constructions, such as roads and 

buildings, also become at risk of collapsing because of 

extreme heat, thereby endangering people’s lives [4-7]. 

Agricultural sectors face severe challenges in the presence of 

extreme heat, to the extent that livestock starve and perish 

because of drought and health challenges arising because of 

extreme heat [4-7]. Thus, an accurate and precise statistical 

modelling of the occurrence of extreme high temperatures is 

necessary for the purpose of guarding against the risk of such 

disastrous impacts occurring because of hot spells or heat 

waves.  

Most classical statistical techniques frequently used in the 

energy sector and in meteorological analysis are classified into 

regression analysis, time series, state space and Kalman 

filtering [8]. The limitation commonly encountered among 

such techniques is that they concentrate on the mean instead 
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of the tails of the distributions. This feature leads to unreliable 

estimates because most of the sample values fall outside the 

tails of the distributions, adding to the difficulty of estimating 

the model parameters that would lead to a good fit in the tails 

[9-12]. The problems that arise as consequences of using 

statistical techniques that do not concentrate on the tails of the 

distributions are overcome by the use of extreme value theory 

(EVT), which can model the asymptotic behaviour of thin- or 

heavy-tailed distributions [13]. According to Hyndman and 

Fan [13], the frequency of the occurrence of coldest or hottest 

temperatures is an extreme event and is best modelled with the 

use of EVT. In the past two decades, EVT has been applied in 

numerous studies on climate variables, generally temperature 

and precipitation [14-17]. The studies evaluated generalised 

extreme value (GEV) distributions in observational data and 

in output from general circulation models and regional climate 

models. GEV statistical distribution has been used to examine 

the time-series of climate extremes. Jarušková and Rencová 

[17] studied the extreme changes in annual maxima and 

minima temperature series using five meteorological sites, 

implementing EVT and hypothesis testing within the 

framework of the GEV-based method. Most often, the 

modelling of extreme temperature events was performed using 

sophisticated distribution modelling methods, such as GEV 

distribution, which is also known as extreme Frechet and 

generalised logistic (GLO) distribution.  

This study focuses on extreme temperatures in Sumatra, an 

island of Indonesia. Indonesia has an equatorial climate, which 

signifies abundant sunshine, generally high heat, high 

humidity and high rainfall year-round. However, blanket of 

clouds obstructs a substantial amount of sunshine and, on the 

average, Indonesia receives about six hours of sunshine per 

day. Nonetheless, seasonal and spatial variations are present in 

the amount of sunshine received. Sumatra Island is highly 

influenced by the surrounding sea and wind system. An 

increasing trend in the average surface temperature has been 

observed for Indonesia over the years. The western part of 

Indonesia where Sumatra Island is located reported a greater 

rise in temperature compared with other regions in Indonesia, 

and the months September to November recorded the highest 

temperature increase. Studies on extreme temperatures are 

beneficial to our understanding of extreme events. Decision 

makers, risk management professionals and researchers in 

climatology will benefit from acquired knowledge on the 

behaviours of extreme temperatures, as appropriate policies 

and plans can be drawn to prepare the general public for 

changes due to extreme temperatures. The objective of this 

study is to quantify and describe the behaviours of extreme 

temperatures in Sumatra Island. Particularly, we aim to model 

extreme temperatures using GEV and GLO distributions. The 

estimation parameters of these distributions are determined 

using Bayesian non-informative prior use of Bayesian Markov 

Chain Monte Carlo (MCMC) techniques. The basic theory of 

Bayesian analysis of extreme values is well established and is 

presented in a number of excellent articles and texts, such as 

those by Coles, S. et al. [18, 19]. Bayesian MCMC techniques 

can avoid highly complex mathematical calculations in 

estimating parameters. The power of these techniques lies in 

their ability to produce parameters that converge in iterations 

performed many times; they can also easily use certain initial 

values in the iteration process carried out. Bayesian MCMC 

techniques have a fundamental impact on virtually every 

statistical methodology. Bayesian analysis has enormous 

potential for various research fields. The theoretical 

background to apply non-informative prior distribution is 

plentiful [20-22], and extensive literature is available on the 

theory behind MCMC techniques and their applications. 

Introductions to the area are provided by the authors [23-25]. 

From the best-fitted distribution, the return period can be 

generated for 10-, 50- and 100-year return levels, and the 

results based on the two distributions can be compared.  

 

 

2. DATA AND AREA STUDY 

 

The data consisting of daily temperatures (in Fahrenheit) 

from 12 stations in Sumatra Island from 1999 to 2019 are 

obtained from meteorological, climatological and geophysical 

agencies. The descriptive statistics for daily temperatures from 

these stations are presented in Table 1, and annual maximum 

daily temperatures are presented in Figure 1. The 12 stations 

with codes shown in Table 1 represent 10 provinces located on 

Sumatra Island. 

 

 
 

Figure 1. Annual maximum daily temperature data 

 

Table 1. Main characteristics and codes of the 12 stations 

 
Station Code Minimum Mean Median Variation Maximum 

Belawan S1 73.90 82.14 82.10 3.41 88.00 

Cut bau maimun S2 73.00 81.37 81.50 4.71 87.90 

Cut nyak dien S3 73.50 81.23 81.40 4.45 88.20 

Dabo singkep  S4 72.90  81.16 81.40   4.57 97.70 

Depati parbo S5 62.80  72.96 73.00  3.09 80.20 

Fatmawati S6 72.30  80.45 80.60  3.69 86.90 

Raden intan S7 73.30  80.79 80.80 4.01 89.20 

Sultan Mahmud badarudin S8 71.50  81.34 81.40 4.32 88.90 

Sultan syarif kasim S9 73.80  81.90 81.90 5.06 89.50 

Tabing padang S10 69.90  80.31 80.50 3.41 88.20 

Pangkal pinang S11 73.00  80.77 80.80 4.59 90.10 

Hang nadim  S12 73.20  81.72 81.90 4.46 88.50 
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On the basis of data in Table 1, temperatures in Sumatra 

Island can be classified into hot temperatures. The data 

likewise reveal no significant difference between the stations 

used in this study. The homogeneity of variation values can 

also be interpreted that Sumatra Island has a temperature 

characteristic of almost the same temperature. The maximum 

annual temperature data, as shown in Figure 1, also indicate 

that Sumatra Island experiences rather high temperatures, 

ranging from 70°F–100°F. These results show that many 

natural phenomena can occur in the extreme temperature range, 

including drought springs and decreased yields due to drought. 

For this reason, determining the best model to describe the 

characteristics of extreme temperatures for the next 10, 50 and 

100 years is imperative. 

 

 

3. METHODOLOGY 

 

3.1 Probability distribution 

 

The most common analysis of extreme hydrological events 

involves the use of annual maximum or annual extreme. Hence, 

the series obtained will have a length equal to the number of 

years. Two probability distributions associated with modelling 

extreme events are considered in this study, namely GEV and 

GLO. The probability density function, probability function 

and quantile function for each distribution considered are 

shown in Table 2, where x denotes the observed values of the 

random variable representing the event of interest, α is the 

scale parameter, ε is the location parameter and κ is the shape 

parameter. To fit a particular theoretical distribution to the 

observed distribution of annual maximum temperatures, we 

estimate the parameters using Bayesian MCMC techniques. 

 

3.2 Bayesian MCMC and goodness-of-fit tests 

 

This section introduces the idea of Bayesian MCMC using 

non-informative priors. Suppose that prior beliefs about θ can 

be formulated and expressed by a probability density function 

𝜋(𝜃) with no reference to the data. The likelihood for θ is 

𝐿(𝜃|𝑥) . The prior information and the likelihood can be 

combined using Bayes theory to produce a posterior 

distribution for θ as follows:  

 

𝜋(𝜃|𝑥) = 𝜋(𝜃)𝐿(𝜃|𝑥) ∫𝜋(𝜃)𝐿(𝜃|𝑥)𝑑𝜃⁄  (1) 

 

The usual function of an extreme value analysis is to 

describe the extreme behaviours of an observed process to find 

the probability of extreme events occurring in the future. 

Within the Bayesian framework, prediction is possible through 

the predictive distribution. Let y denote a future observation 

with probability density function 𝑓(𝑦|𝜃). Then,  

 

𝑓(𝑦|𝑥) = ∫𝑓(𝑦|𝜃) 𝜋(𝜃|𝑥)𝑑𝜃 (2) 

 

𝑓(𝑦|𝑥) is the predictive distribution of y given x. Thus, if a 

suitable prior distribution can be specified, there are good 

reasons to choose Bayesian procedures. The difficulty in 

computing the integral in predictive distribution means the 

simulation techniques, such as Bayesian MCMC, can be 

overcome to simulate realisations of the posterior distribution. 

The main problem in Bayesian MCMC with non-informative 

prior distribution is that the priors are constructed by assuming 

no information is available about the process apart from the 

data. In this study, prior density is chosen to be: 

 
𝑤𝑖𝑡ℎ 𝜑
= 𝑙𝑜𝑔 𝛼 , 𝜑~𝑁(0,100), 𝜉~𝑁(0,1000), 𝑎𝑛𝑑𝜅~𝑁(0,10) 

(3) 

 

The variances chosen are large enough to make the 

distribution almost flat, corresponding to prior ignorance. 

Thus, the posterior density is:  

 

𝜋(𝜑, 𝜉, 𝜅|𝑦)∞𝜋(𝜑, 𝜉, 𝜅)𝐿(𝜑, 𝜉, 𝜅|𝑦) (4) 

 

The full details of the algorithm are as follows: 

1. Initialise the chain 𝜃0 = (𝜑0, 𝜉0, 𝜅0) and the counter 

at j = 1. 

2. Put 𝜑∗ = 𝜑(𝑗−1) +𝜔𝜑 , 𝜔𝜑~𝑁(0,4). 

3. Accept 𝜑(𝑗) = 𝜑∗  with probability 𝑎(𝜑(𝑗−1), 𝜑∗) =

𝑚𝑖𝑛 {1, 𝐴}, where,  

𝐴 =
𝜋(𝜑∗|𝜉(𝑗−1),𝜅(𝑗−1))

𝜋(𝜑(𝑗−1)|𝜉(𝑗−1),𝜅(𝑗−1))
 and 𝜑(𝑗) = 𝜑(𝑗−1) otherwise. 

4. Put 𝜉∗ = 𝜉(𝑗−1) + 𝜔𝜉 , 𝜔𝜉~𝑁(0,0.3). 

Table 2. List of distributions used in this study 

 
 GEV GLO 

pdf 𝑓(𝑥) = 𝛼−1𝑒𝑥𝑝{−(1 − 𝜅)𝑦 − 𝑒𝑥𝑝(−𝑦)} 
with 

𝑦 = {
−𝜅−1𝑙𝑜𝑔{1 − 𝜅(𝑥 − 𝜀) 𝛼⁄ },    𝜅 ≠ 0

(𝑥 − 𝜀) 𝛼⁄ ,                               𝜅 = 0
 

−∞ < 𝑥 < 𝜀 + 𝛼 𝜅   𝑓𝑜𝑟 𝜅 > 0 ⁄  

−∞ < 𝑥 < ∞ 𝑓𝑜𝑟 𝜅 = 0 

𝜀 + 𝛼 𝜅 ≤ 𝑥 < ∞ 𝑓𝑜𝑟 𝜅 < 0⁄ . 

𝑓(𝑥) =
𝛼−1𝑒𝑥𝑝{−(1 − 𝜅)𝑦}

(1 + 𝑒𝑥𝑝(−𝑦))
2  

with 

𝑦 = {
−𝜅−1𝑙𝑜𝑔{1 − 𝜅(𝑥 − 𝜀) 𝛼⁄ },   𝜅 ≠ 0

(𝑥 − 𝜀) 𝛼⁄ ,                                 𝜅 = 0
 

−∞ < 𝑥 < 𝜀 + 𝛼 𝜅   𝑓𝑜𝑟 𝜅 > 0 ⁄  

−∞ < 𝑥 < ∞ 𝑓𝑜𝑟 𝜅 = 0 

𝜀 + 𝛼 𝜅 ≤ 𝑥 < ∞ 𝑓𝑜𝑟 𝜅 < 0⁄  

cdf 

𝐹(𝑥) =

{
 
 

 
 
𝑒𝑥𝑝(−(1 −

𝜅

𝛼
(𝑥 − 𝜀))

1
𝜅

) , 𝑖𝑓 𝜅 ≠ 0

𝑒𝑥𝑝 (−𝑒𝑥𝑝 (−
1

𝛼
(𝑥 − 𝜀))) , 𝑖𝑓 𝜅 = 0

 

𝐹(𝑥) = (1 + (1 − 𝜅 (
𝑥−𝜀

𝛼
))

1

𝜅
)

−1

  

qdf 
𝑥(𝐹) = 𝜀 +

1

𝜅
(1 − (−𝑙𝑛(𝐹))

𝜅
) 𝑥(𝐹) = 𝜀 +

𝛼

𝜅
(1 − (

1 − 𝐹

𝐹
)
𝜅

) 
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5. Accept 𝜉(𝑗) = 𝜉∗  with probability 𝑎(𝜉(𝑗−1), 𝜉∗) =

𝑚𝑖𝑛 {1, 𝐴}, where, 
( ) ( )( )

( ) ( ) ( )( )11

1*

,

,

−−

−

=
jjj

jj

A



 and 

( ) ( )1−= jj   otherwise 

6. Put 𝜅∗ = 𝜅(𝑗−1) + 𝜔𝜅 , 𝜔𝜅~𝑁(0,0.1). 

7. Accept 𝜅(𝑗) = 𝜅∗  with probability 𝑎(𝜅(𝑗−1), 𝜅∗) =

𝑚𝑖𝑛 {1, 𝐴}, where, 
( ) ( )( )

( ) ( ) ( )( )jjj

jj

A




,

,

1

*

−
=  and  

( ) ( )1−= jj   otherwise 

8. Increase counter from j to j + 1 and return to Step 2. 

Once the distribution of the observed values is determined 

for annual maximum temperature series, expected frequencies 

under the assumed distribution are computed for each station. 

The most appropriate distribution for each station is identified 

using the results found according to several goodness-of-fit 

(GOF) tests.  

The GOF tests considered are root mean square error 

(RMSE). The methods involve assessing the difference 

between observed and expected values under the assumed 

distribution. The formulas for the tests are:  

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(

𝑥𝑖:𝑛 − �̂�(𝐹𝑖)

𝑥𝑖:𝑛
)

2𝑛

𝑖=1

 (5) 

where, 𝑥𝑖:𝑛  is the observed values for ith order statistics of 

random sample of size n, and �̅�(𝐹𝑖) =
1

𝑛
∑ �̂�𝑛
𝑖=1 (𝐹𝑖)  is the 

estimated quantile values associated with the Gringorton 

plotting position 𝐹𝑖. The smallest value of RMSE will indicate 

the best-fitting distribution.  

 

 

4. RESULTS 

 

The parameters in the two probability distributions, namely 

GEV and GLO distributions, are estimated using Bayesian 

MCMC techniques with the random walk chain algorithm. In 

the case of Bayesian framework, the algorithm in 3.2 can be 

used to obtain parameters. Daily temperature data for 12 

stations will be analysed using the algorithm in 3.2. In each 

case, 30,000 iterations of the algorithm are carried out. The 

Bayesian MCMC trace plots and estimated posterior densities 

for GEV and GLO parameters for 12 stations are given in 

Tables 3 to 10 accordingly. To validate that the chains 

converge to the correct place, the same algorithm is carried out 

using the starting points. The chains for the 12 stations all 

converge suitably within the first 10,000 iterations. Therefore, 

the developed proposal distribution works well. The MCMC 

method used in Bayesian with non-informative prior 

distribution guarantees that all initial values used can produce 

an accurate estimate. In Tables 3 to 6, the initial values used 

are the same for the GEV and GLO distributions. The same 

initial value is also used for all stations used in this study. 

 

Table 3. Trace plots of the GEV parameters using Bayesian MCMC techniques for S1–S6 

 
Station Trace plot (ξ) Trace plot (α) Trace plot (κ) 

S1 
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S6 

(GEV) 

   

 

Table 4. Trace plots of the GEV parameters using Bayesian MCMC techniques for S7–S12 
 

Station Trace plot (ξ) Trace plot (α) Trace plot (κ) 

S7 

(GEV) 
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(GEV) 
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(GEV) 
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(GEV) 

   

S11 

(GEV) 

   

S12 

(GEV) 

   
 

Table 5. Trace plots of the GLO parameters using Bayesian MCMC techniques for S1–S6 

 
Station Trace plot (ξ) Trace plot (α) Trace plot (κ) 

S1 (GLO) 

   

S2 (GLO) 

   

0 5000 10000 15000 20000 25000 30000

2
0

4
0

6
0

8
0

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

1
2

3
4

5
6

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000-2

.0
-1

.0
0

.0
1

.0

Trace plot

iteration

0 5000 10000 15000 20000 25000 30000

2
0

4
0

6
0

8
0

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

1
2

3
4

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

-1
.0

0
.0

1
.0

Trace plot

iteration

0 5000 10000 15000 20000 25000 30000

2
0

4
0

6
0

8
0

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

1
2

3
4

5

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

-1
.5

-0
.5

0
.5

Trace plot

iteration

0 5000 10000 15000 20000 25000 30000

2
0

4
0

6
0

8
0

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

1
2

3
4

5
6

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

-2
.0

-1
.0

0
.0

Trace plot

iteration

0 5000 10000 15000 20000 25000 30000

2
0

4
0

6
0

8
0

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

1
2

3
4

5

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

-1
.5

-0
.5

0
.5

Trace plot

iteration

0 5000 10000 15000 20000 25000 30000

2
0

4
0

6
0

8
0

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

1
2

3
4

5
6

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

-1
.5

-0
.5

0
.5

Trace plot

iteration

0 5000 10000 15000 20000 25000 30000

2
0

4
0

6
0

8
0

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

1
2

3
4

5
6

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

-1
.5

-0
.5

0
.5

Trace plot

iteration

0 5000 10000 15000 20000 25000 30000

2
0

4
0

6
0

8
0

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

0
2

4
6

8
1

0

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

-1
.0

0
.0

1
.0

Trace plot

iteration

0 5000 10000 15000 20000 25000 30000

2
0

4
0

6
0

8
0

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

1
2

3
4

5
6

Trace plot

iteration
0 5000 10000 15000 20000 25000 30000

-1
.0

0
.0

0
.5

Trace plot

iteration

369



 

S3 (GLO) 

   

S4 (GLO) 

 

   

S5 

(GLO) 

   

S6 

(GLO) 

   
 

Table 6. Trace plots of the GLO parameters using Bayesian MCMC techniques for S7–S12 
 

Station Trace plot (ξ) Trace plot (α) Trace plot (κ) 
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Table 7. Posterior densities of the GEV parameters using Bayesian MCMC techniques for S1–S6 
 

Station Posterior density (ξ) Posterior density (α) Posterior density (κ) 

S1 (GEV) 

   

S2 (GEV) 

   

S3 (GEV) 

   

S4 (GEV) 

   

S5 (GEV) 

   

S6 (GEV) 

   
 

Table 8. Posterior densities of the GEV parameters using Bayesian MCMC techniques for S7–S12 
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Table 9. Posterior densities of the GLO parameters using Bayesian MCMC techniques for S1-S6 

 
Station Posterior density (ξ) Posterior density (α) Posterior density (κ) 
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Table 10. Posterior densities of the GLO parameters using Bayesian MCMC techniques for S7–S12 

 
Station Posterior density (ξ) Posterior density (α) Posterior density (κ) 
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Figure 2. Comparison modelling of GEV, GLO and theoretical distribution function (cdf) 

 

Table 11. Posterior means by Bayesian MCMC for the GEV and GLO parameters and RMSE 

 
Station Parameters GEV Parameters GLO RMSE 

 (ξ) (α) (κ) (ξ) (α) (κ) GEV GLO 

S1 86.584 0.980 0.585  86.928    0.495  0.211 0.002 0.011 

S2 85.944 1.203 0.521 86.397 0.587 0.201 0.003 0.002 

S3 85.319   1.489 0.269 85.816 0.950 -0.025 0.004 0.007 

S4 85.346  0.946 -0.498 85.763   0.827 -0.502 0.018 0.014 

S5 77.380  2.276   0.713 78.034   1.187 0.342 0.003 0.006 

S6 84.806  1.281  0.392 85.093   0.842   0.096 0.003 0.006 

S7 85.559  1.481  0.144 86.005  0.952 -0.121 0.005 0.008 

S8 86.025  1.285  0.227 86.481   0.815 -0.055 0.004 0.006 

S9 86.795   1.104 -0.096 87.159  0.854 -0.389 0.011 0.026 

S10 84.529  1.139 -0.126 85.006  0.903 -0.385 0.011 0.025 

S11 85.054   1.627   0.021 85.586  1.066 -0.150 0.008 0.009 

S12 86.103  1.104  0.169 86.503   0.777 -0.133 0.004 0.009 

 

The results of the parameter estimation in the 12 stations 

using GEV and GLO distributions are summarised in Table 11. 

In the table, the posterior means of Bayesian MCMC are 

highly similar to one another regardless of the station and 

probability distribution. This result proves the power of 

Bayesian MCMC to estimate the parameters of GEV and GLO 

distributions and avoid difficult calculations with the same 

purpose in estimated parameters. Therefore, Bayesian MCMC 

techniques have an advantage in estimated parameters. The 

comparison of the results of the GEV and GLO distributions 
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using graphical inspection [distribution function (cdf)] are 

presented in Figure 2. In most cases, graphical inspection 

provides the same result, but using numerical criteria, such as 

RMSE in Table 11, will give the different numerical GOF. 

Hence, we find the evidence suggesting that, for all GOF tests, 

most regions (S1, S3, S5, S6, S7, S8, S9, S10, S11 and S12) 

have a GEV distribution, which provides the most appropriate 

model for the annual maximums of daily temperatures. By 

contrast, GLO distribution gives a reasonable model for the 

daily temperature data for the S2 and S4 locations. 

On the basis of the best-fitted models, we can calculate the 

return values of 10-, 50- and 100-year periods for the 12 

stations, as shown in Table 12, by substituting the vectors of 

observations from the marginal posterior distributions of α, ε 

and κ into the quantile function in Table 2; for 0 < F < 1, 

samples from the posterior distribution of return levels can be 

obtained. This procedure is carried out for p = 0.1, 0.5 and 0.01, 

to obtain the posterior distributions of the 10-, 50- and 100-

year return levels. 

In Table 12, an increase in extreme temperatures for the next 

10, 50 and 100 years are presented, especially in S4 and S11. 

Table 12 exhibits an increase in extreme temperatures for the 

next 10, 50 and 100 years, especially in S4 and S11. This result 

is highly useful as a guideline for governments in 

implementing temperature-related policies, such as in 

agriculture, electricity and so on. 

 

Table 12. Comparison of the performance of Bayesian 

MCMC under different return periods for GEV and GLO 

distributions 

 

Station 

Return 

Periods 10-

year 

Return 

Periods 50-

year 

Return Periods 

100-year 

S1 87.801 88.245 88.388 

S2 87.440 87.983 88.159 

S3 87.835 88.919 89.251 

S4 89.082 95.745 100.669 

S5 79.931 80.375 80.453 

S6 86.722 87.366 87.536 

S7 88.406 89.979 90.540 

S8 88.291 89.352 89.694 

S9 89.573 92.032 93.195 

S10 87.494 90.274 91.634 

S11 88.630 91.145 92.182 

S12 88.169 89.254 89.629 

 

 

5. CONCLUSIONS 

 

In this study, the occurrence probability of annual 

maximum temperature events was analysed in the 12 stations 

of Sumatra Island. GEV and GLO distributions were selected 

to fit the data. The types of data in this study were analysed 

using the Bayesian MCMC techniques, particularly to estimate 

the parameters of the two probability distributions. In this 

study, Bayesian MCMC techniques worked well and 

efficiently with the non-informative prior distribution by 

validating the acceptance rate. From the results of the 

parameter and quantile estimations, Bayesian MCMC 

techniques had an advantage when the median or mean value 

was required. However, in the aspect of the uncertainty 

analysis, Bayesian MCMC can remarkably reduce the range of 

uncertainty. The reduction of uncertainty in the results of the 

frequency analysis may not always give a suitable description 

for all the cases. In addition, Bayesian analysis cannot always 

reduce uncertainty. Specifically, if we have considerable 

information, such as a large sample size for defining unknown 

parameters, then the influence of the uncertainty is relatively 

weak to determine a specific decision. However, if we have 

little information, then the analysis of the uncertainty has a 

strong influence on the final selection of the parameters. 

Therefore, reduced uncertainty in the frequency analysis with 

extreme events, such as the extreme temperature events in this 

study, can provide a meaningful description. 
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