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 In this article, a fuzzy Tarig evolve (T-n-transform) is implemented. Similar theorems 

and properties have been proven. To explain the technique of this fuzzy transform in 

differential equations, examples in real life are presented. This study shows the 

applicability of this interesting fuzzy transform for solving differential equations with 

constant coefficients also for its computational power. It is desirable to use it as a new 

technique, to not only solve “nonlinear fractional differential equations”, and to analyze 

prelocal system information. Moreover, significant theorems are presented to explain 

the properties of T̃-transform as well as a suggested method is validated with two reality 

examples. 
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1. INTRODUCTION 

 

Equations are a naturalistic approach to modeling diffusion 

focused on computational Fuzzy Differential E` instability in 

a complex medium. This type of differential equation can be 

expressed in fuzziness in a number of ways. The older term 

describes the reliance on the Hukuhara derivative that was 

introduced in Uzhga-Rebrov and Kuleshova [1] and has been 

examined in many papers [2, 3]. One of the drawbacks of this 

expression is that solutions to a complicated differential 

equation have an ever-increasing term of assistance, and this 

potential action of an uncertain complex system is gradually 

difficult to validate with the course of time, and thus does not 

allow for intermittent solutions or tentative phenomena. 

Therefore, diverse theories and techniques had to be developed 

in order to solve complex differential equations. The major 

theme in the growth of fuzzy group theory was varied and 

extended to many different actual problems, the most famous 

examples being the golden mean, realistic systems, quantum 

physics and gravity, hyper synchronization, medicine, 

geometrical problems [4, 5]. In recent years, the themes of 

fuzzy differential equations (FDE) and fuzzy integral 

equations (FIE) that have attracted increasing interest for some 

time especially with regard to fuzzy control, have evolved 

rapidly, a range, is always in the period [0,1]. Where interval 

is change, the behavior of the functions will be unstable and 

may be change to be reticulate. 

In this research, a new addition to mathematical science, 

which is fuzzy Tarig transformation to explain fuzzy 

differential equations, which is applied for more engineering 

applications. Any "real-world issues" has become an 

important initial value concern for a normal differential 

equation, such as: 

 

𝜀 `(𝑡) = ℎ(𝑡, 𝑥), 𝜀(𝑡𝑜) = 𝜀𝑜 

 

Rather a method of ordinary differential equations, cannot 

be certain that the design will be excellent. For instance, the 

function ℎ  may contains vague parameters or “The initial 

value” will not exactly be established, so to view the acquired 

measurements, they are inevitably subject to errors. Thus, in 

order to prevent the consequence of these errors, it is important 

to analyses the particular action of the above mentioned 

equation. In another words, for random error occurs, then there 

will be a need for random differential equations with random 

initial data, it develops that a “fuzzy differential equation is 

used [6]. Therefore, for such a mathematical model, it is 

necessary to use fuzzy differential equations”. A fuzzy derived 

that was first submitted by 'Chang & Zadeh' is a very important 

instrument for fuzzy differential equations [7]. Also, it was 

developed up by many researchers such as Assmann et al. [8] 

and Abbasbandy et al. [9]. The definition of derivative that 

was introduced by Bede et al. [10] on the basis of the Hukuhara 

discrepancy that was co-called "generalised Hukuhara 

differentiability". In addition, the essence and singularity of 

the issue of "dissolving fuzzy initial value" using the 'classical 

form' in higher-order of Hukuhara differentiation were defined 

by Georgiou et al. [11], while the same topic of "second-order 

fuzzy differential equations" by adding nth-order generalised 

Hukuhara differentiability was discussed by Salahshour [12]. 

 

 

2. MAIN DEFINITIONS AND THEOREMS  

 

This section contains, fundamental definitions and basic 

concepts related to the present topic of this paper are given for 

completeness purpose.  

 

2.1 Definition [13] 

 

"Fuzzy number" (trapezoidal)) such as e: ℛ→[0, 1] That 

meets the characteristics of  

1. e is the upper half-continuous element, 

2. e (x)=0 beyond any range [m, p], 

3. b, c are actual numbers such as m ≤b ≤ c ≤ p and 

i. (x) is represented “monotonic rising function" on [m, p],  
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ii. e (x) is represented "monotonic lessening element" on 

[c,p], 

iii. e (x)=1 for all x∈[b, c]. 

Noted that this is going to be triangular where b=c 

 

2.2 Definition [14] 

 

The unspecified "fuzzy number" is defined in parametric 

form by an ordered pair of functions (𝑒(π); 𝑒(π)), π∈[0, 1], 

"which meets the specific conditions": 

1. 𝑒(π) is a “non- lessening function” over [0, 1], “bounded 

left-continuous”, 

2. 𝑒(π) is a “non-rising function” over [0, 1], “bounded left-

continuous”, 

3. 𝑒(π) ≤ 𝑒(π), π ∈ [0, 1]. 

A compact number π is shown only by the 𝑒(π)=𝑒(π)=π, 0 

≤ π ≤ 1. Whereas a < b < c, a; b; c∈ℛ is given, the (triangular) 

fuzzy integer, e=(a, b, c) is defined by a, b, c in such a way that 

𝑒(π)=a + (b−a) π and 𝑒(π)=c−(c−b) π are the end points of the 

π-level sets, ∀π∈[0, 1]. Here 𝑒 (1)=𝑒 (1)=b is marked by[𝑒]1. 

Arbitrarily e=( 𝑒 (π), 𝑒 (π)), 𝑒` =( 𝑒`  (π); 𝑒` (π)), describes 

addition, multiplication by k as: 

1. (𝑒 +  𝑒`)(π)=(𝑒(π) + 𝑒`(π)), 

2. (𝑒 +  𝑒`)(π)=(𝑒(π) + 𝑒`(π)), 

3.( 𝑘𝑒)(π)=k 𝑒(π), (𝑘𝑒)(π)=𝑘 𝑒 (π); k ≥ 0, 

4. (𝑘𝑒)(π)=𝑘 𝑒(𝜋), (𝑘𝑒)(π)=𝑘 𝑒 (π); k < 0. 

Notice f be a function from X to Y. Let B be a fuzzy set in 

Y with membership function B(y). Then the inverse of B, 

written as f-1 (B), is a fuzzy set in X whose membership 

function is defined by µ𝑓
−1(B) (x)=µB (f (x)), for all xX, The 

continuity of both parts indicates that their images are finite 

periods of time, In general, 𝑒 (π), 𝑒 (π) do not need to be 

reversible, only continuity is required; 𝑒(π) increasing, and 

𝑒(π)decreasing, we get a mathematical object presenting an 

fuzzy number convex in the classical sense. 

 

2.3 Definition [15]  

 

The metrical method is defined by the “Hausdorff length”, 

which satisfier properties, in which RF A class of Fuzzy real 

axis subset is denoted:  

𝔇: R𝔽 × R𝔽 → R+∪ 0, 

𝔇 (𝑒 (𝑟), 𝑒`(r))=Max {sup|𝑒 − 𝑒`|, sup|𝑒 − 𝑒`|}, 

(R𝔽, 𝔇) It is a full metric space and is well recognized for 

the following characteristics: 

i. 𝔇 (𝑒 + 𝑒``, 𝑒` + 𝑒``)=𝔇 (𝑒, 𝑒`), ∀𝑒, 𝑒`, 𝑒`` ∈ R𝔽, 

ii.𝔇 (𝛽𝑒, 𝛽𝑒`)=|𝛽| 𝔇 (𝑒, 𝑒`), ∀𝑒, 𝑒` ∈ R𝔽 , ∀𝛽 ∈R, 

iii.𝔇 (𝑒+𝑒`, 𝑒`` +𝑒```) ≤ 𝔇 (𝑒, 𝑒``)+ 𝔇 (𝑒`, 𝑒```), ∀ 𝑒, 𝑒`, 𝑒``, 
𝑒``` ∈R𝔽. 

Notice There is a relationship between Hausdorff length and 

Fuzzy real axis subset, its distance is probably the most natural 

function of measuring the distance between sets of points. 

Moreover, it can be easily applied to partial match problems, 

given two point sets A={a1, a2, ..., an} and B={b1, b2, ..., bm} 

in E2. The one-sided Hausdorff distance from A to B is defined 

as: 

 

𝛿𝐻 (A, B)=max
a∈A 

 max
b∈B 

 ‖𝑘𝑎 − 𝑏𝑘‖  

 

The bidirectional Hausdorff distance between A and B is 

then defined as: 

𝛿𝐻 (A, B)=max
 

 (𝛿𝐻(A, B), 𝛿𝐻(B, A))  

 

For fixed A and B, this can easily be computed in time. 

O((n + m) log(n + m)) using Voronoi diagrams. Sometimes, 

the one-sided distance is preferable, as in the case of partial 

matching of models to images (under occlusions, etc.). 

 

2.4 Definition 4 [15]  

 

Presume that x, y∈𝑅𝔽. ∃z∈𝑅𝔽 ,s.t x=y + z then z is named 

the H- variance of x, y and it is identified by x⊝y. 

Note that ⊝ constantly meant the “H-variance” as well as x 

⊝ y≠x+ (-y). 

 

2.5 Definition [10]  

 

Let 𝜓: (a, b)⟶E; continuous fuzzy-assessed function and 

x0∈(a,b). It has been that ψ is strongly generalised variance at 

x0. If an aspect exists, �̀�(𝑥0) ∈ 𝐸: 

 

i. For all 𝜏 > 0, ∃ψ(x0 + τ) ⊖ ψ(x0), ∃ψ(x0) ⊖
ψ(x0 − τ)  and the limits (in the metric 𝔇) is 

lim
τ⟶0

ψ(x0+τ)⊖ψ(x0)

τ
= lim

τ⟶0

ψ(x0)⊖ψ(x0−τ)

τ
=

ψ̀(x0), 

or 

ii. For all 𝜏 > 0 only tiny enough,  ∃ψ(x0) ⊖
ψ(x0 + τ), ∃ψ(x0 − τ) ⊖ ψ(x0)  and the 

boundary (in the metric D ) is 

lim
τ⟶0

ψ(x0)⊖ψ(x0+τ)

−τ
= lim

τ⟶0

ψ(x0−τ)⊖ψ(x0)

−τ
=

ψ̀(x0), 

or                                        

iii. For all 𝜏 > 0 only tiny enough,  ∃ψ(x0 + τ) ⊖
ψ(x0), ∃ψ(x0 − τ) ⊖ ψ(x0)  and the boundary 

(in the metrical D ) is lim
τ⟶0

ψ(x0+τ)⊖ψ(x0)

τ
=

lim
τ⟶0

ψ(x0−τ)⊖ψ(x0)

−τ
= ψ̀(x0), 

or                                        

iv. For all 𝜏 > 0 only tiny enough, ∃ψ(x0) ⊖
ψ(x0 + τ), ∃ψ(x0) ⊖ ψ(x0 − τ)  and the 

boundary (in the metrical 𝔇 ) is 

lim
τ⟶0

ψ(x0)⊖ψ(x0+τ)

−τ
= lim

τ⟶0

ψ(x0)⊖ψ(x0−τ)

τ
=

ψ̀(x0).  

         (τ, -τ at mean 
1

τ
 and 

−1

τ
, respectively) 

 

2.6 Theorem [10] 

 

Assume that Ψ: [a, b] →I a function and indicate 

[𝜓(𝛽)]𝜋=[𝑓𝜋(𝛽),𝑔𝜋(𝛽)] for each π ∈ [0,1], I= [0,1]. Then: 

(i) If Ψ is “capable of the 1st form (i), then fπ and gπ 

are capable of a function and [𝜓`(𝛽)]𝜋 =
[𝑓𝜋

`(𝛽), 𝑔𝜋
` (𝛽)]. 

(ii) If Ψ is capable of the 2nd form (ii), then fπ & gπ 

are capable functions and [𝜓`(β)]𝜋 =

[𝑔𝜋
` (β), 𝑓𝜋

`(β)]. 

 

2.7 Definition [16]  

 

If that σ(x) is a fuzzy function to test on [a, b]. Postulate that 

σ(x, r) and σ(x, r) are inappropriate to Riemann-integrable on 

[a, b] so it has been that f(x) is "inappropriate" to [a, b], we 

442



 

known conditions for the assumption are improper Riemman-

integrable on [a, b], the improper Riemann integral allows us 

to calculate the Lebesgue integral of the functions. 

and 

 

(∫ 𝜎(τ, 𝑟)𝑑τ)
𝑏

𝑎
= (∫ 𝜎(τ, 𝑟)𝑑τ

𝑏

𝑎
), 

(∫ 𝜎(τ, 𝑟)𝑑τ
𝑏

𝑎
)=(∫ 𝜎(τ, 𝑟)𝑑τ

𝑏

𝑎
). 

 

2.8 Definition [17]  

 

If σ :(a; b) → E is a “uninterrupted fuzzy valued function”  

then g(x)= ∫ 𝜎(𝑡)𝑑𝑡
𝑥

𝑎
 is capable of with derivative 

𝑔`(x)=𝜎(x). 

 

2.9 Theorem [18]  

 

If the σ: R → E be a mapping and σ(t)= (𝜎(t, r); 𝜎(t, r)), for 

each r∈ [0; 1].  

(1) If σ is capable of the 1st form (i), then 𝜎(t, r) and 𝜎(t, r) 

are capable of the functions and 𝜎 `(t)=( 𝜎 `(t,r),𝜎 `(t,r)). 

(2) If the 𝜎 is capable of with the 2nd form (ii), then 𝜎(t; r) 

and 𝜎 (t; r) are capable of with the duty and 𝜎 ` (t)=( 𝜎 ` (t, 

r), 𝜎 `(t,r)). 

 

 

3. TARIG TRANSFORM (T-TRANSFORM)  

 

Tarig integral transformation (T-transform) [19] is similar 

to Laplace, Smudu, Elzaki integral transformations that are 

used to solve "differential calculus" and those used to solve 

"fuzzy differential calculus"[15]. This transformation also 

helped to solve partial differential equations, especially linear 

and non-linear fractional ones. As this type of partial 

differential equations plays an important role in engineering 

applications such as the study of the flow and heat transfer [3]. 

That Consider functions defined as follows within set A: 

 

𝒜={f(t): ∃, ℳ, k1, k2 > 0, |f(t)| < ℳe

|t|

kj , if t ∈

(−1)j × [0, ∞)} 

(1) 

 

M is a constant that must be a finite number if f is a given 

feature, and k1, k2, which must be finite or infinite. So  

 

T[f(t)]=F(u)=
1

𝑢
∫ 𝑓(𝑡)𝑒

−𝑡

𝑢2∞

0
𝑑𝑡 ,       𝑡 ≥ 0, 𝑢 ≠ 0 (2) 

 

It is known that this transform has a strong connection with 

the most widely used, “Laplace transform”.  

 

3.1 Properties of T- transform 

 

The following are the essential characteristics of T-

transform: 

 

3.1.1 Theorem [19] 

Let p(t) is continuous in [0, k] and T[p(t)]=F(u), then  

i. T[p(at)]=
1

𝑎
𝐹(𝑎𝑢) for any constant a. 

ii. For any functions p (t) and g (t) and any 

constants a, b then: 

T[ap(t)+bg(t)]=aT[p(t)]+ bT[g(t)] 

iii. T [ 𝑝(𝑛)(𝑡) ]= 
𝐹(𝑢)

𝑢2𝑛 −

∑ 𝑢2(𝑖−𝑛)−1𝑝(𝑖−1)(0)𝑛
𝑖=1 . 

iv. If T[p(t)]= G(u) and L[p(t)]=F(s), then: 

G(u)= 
𝐹(

1

𝑢2)

𝑢
, where “Laplace transform” of 

p(t) denoted by F(s). 

 

Examples illustrates that use of T-transform to solve the 

initial value problem that described by ordinary differential 

equation. 

 

3.1.2 Example 3.2 [19] 

let the 1st – order ordinary differential equation. 

 
𝑑𝑥

𝑑𝑡
+ 𝑝𝑥 = 𝑓(𝑡),    𝑡 > 0 , x (0)=a 

 

Apply T- transform for this equation to get: 

 
x(u)

𝑢2 −
1

𝑢
𝑥(0) + 𝑝x(u) =F (u) or  x(u) =

u2F(u)

1+u2p
+

au

1+u2p
,  

 

where, 𝑥(𝑢) is T- transform of x(t). The inverse of T- 

transform leads to the solution. 

 

 

4. FUZZY TARIG TRANSFORM ( �̃�- TRANSFORM)  

 

Will define �̃� − Transformation , in which this type of 

integral transformation reduces the fuzzy differential equation 

(FDE) problem to an algebraic problem. This switching from 

operations of calculus to algebraic operations on 

transformations is called operational calculus which plays a 

significant rool in applied mathematics. Essentially, T̃ − 

Transformation method is the most important operational 

method. 
 

4.1 Definition 8 
 

Let 𝜇(t) be a continual fuzzy-assessed feature. Suppose this 

is 1/u. Suppose that 
1

𝑢
∫ 𝑒

−𝑡

𝑢2∞

0
𝜇 (t)d(t) is incorrect fuzzy 

Rimann-integrable on [0, ∞),then 
1

𝑢
∫ 𝑒

−𝑡

𝑢2∞

0
. 𝜇 (t)d(t) is called 

T̃- transform and it is denoted by �̃� (𝜇 (t))= 
1

𝑢
∫ 𝑒

−𝑡

𝑢2∞

0
.f(t)d(t) 

(t>0). So:  

 
1

𝑢
∫ 𝑒

−𝑡

𝑢2∞

0
. 𝜇 (t)d(t)=( 

1

𝑢
∫ 𝑒

−𝑡

𝑢2∞

0
𝜇(t)d(t), 

1

𝑢
∫ 𝑒

−𝑡

𝑢2∞

0
𝜇(t)d(t)) 

 

Using the classic T transform definition yields the following 

equation:  

 

T(𝜇 (t,𝛼))=
1

𝑢
∫ 𝑒

−𝑡

𝑢2∞

0
𝜇(t)d(t) and T(𝜇 (t, 𝛼))=

1

𝑢
∫ 𝑒

−𝑡

𝑢2∞

0
𝜇(t)d(t) 

 

So: 

 

�̃�(𝜇 (t))=(T (𝜇 (t, 𝛼)), T (𝜇 (t, 𝛼))) 

 

4.2 Theorem  

 

Let μ: ℛ ⟶ �̃�(ℛ) a fuzzy-value function be continuous and 

μ is the primitive of μ` on [0,∞), then:  
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1. If μ(𝜏)  is 𝑖 − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 , then 

�̃�[𝜇`(𝜏)] =
𝐺 (𝑢) 

𝑢2 ⊖  
𝜇(0)

𝑢 .   

2. If μ(𝜏)  is 𝑖𝑖 − 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 , then 

�̃�[𝜇`(𝜒)] = −
𝜇(0)

𝑢 ⊖ − (
𝐺 (𝑢)

𝑢2 ). 

 

Proof: (1) For an arbitrary fixed number 𝜃 ∈ [0,1] we have 

𝜇 (𝜏 )=(  𝜇 (𝜏 ),  𝜇 (𝜏 )). Now, to prove (1): Since 𝜇(𝜏) be (i)-

differentiable [18] then: 

𝜇′ ( 𝜏, 𝜃 )=(  𝜇′ ( 𝜏, 𝜃 ),  𝜇′ ( 𝜏, 𝜃 )). Therefore 

𝜇′(𝜏, 𝜃)=𝜇′(𝜏, 𝜃), 𝜇′(𝜏, 𝜃)=𝜇′(𝜏, 𝜃). 

Then �̃�[𝜇′(𝜏, 𝜃)] = �̃� (𝜇′(𝜏, 𝜃), 𝜇′(𝜏, 𝜃)) 

=(𝑇(𝜇′(𝜏, 𝜃)), T(𝜇′(𝜏, 𝜃))). 

We know from the ordinary differential equations that:  

T[ 𝜇′(𝜏)] =
G(u) 

𝑢2 −
𝜇(0)

𝑢
, T[𝜇′(𝜏)] =

G(u) 

𝑢2 −
𝜇(0)

𝑢
 , Then:  

T̃[𝜇′(𝜏)]=( 
G(u) 

𝑢2 −
𝜇(0)

𝑢
, 

G(u) 

𝑢2 −
𝜇(0)

𝑢
) =

G(u) 

𝑢2 ⊖
𝜇(0)

𝑢
. 

(2): Since 𝜇(𝜏) be (ii)-differentiable [18] then: 

𝜇′ ( 𝜏, 𝜃 )=( 𝜇′ ( 𝜏, 𝜃 ),  𝜇′ ( 𝜏, 𝜃 )). Therefore 

𝜇′(𝜏, 𝜃)=𝜇′(𝜏, 𝜃), 𝜇′(𝜏, 𝜃)=𝜇′(𝜏, 𝜃).  

Then �̃�[𝜇′(𝜏, 𝜃)] = �̃� (𝜇′(𝜏, 𝜃), 𝜇′(𝜏, 𝜃)) 

=(T (𝜇′(𝜏, 𝜃)) , 𝑇(𝜇′(𝜏, 𝜃))).   

We know from the ordinary differential equations that:  

T[ 𝜇′(𝜏)] =
G(u) 

𝑢2 −
𝜇(0)

𝑢
, T[𝜇′(𝜏)] =

G(u) 

𝑢2 −
𝜇(0)

𝑢
, Then:  

 

T̃[𝜇′(𝜏)]=(
G(u) 

𝑢2 −
𝜇(0)

𝑢
,

G(u) 

𝑢2 −
𝜇(0)

𝑢
) =

G(u) 

𝑢2 ⊖
𝜇(0)

𝑢
. 

 

 

5. APPLICATION OF �̃�-TRANSFORM OF ORDINARY 

DIFFERENTIAL EQUATIONS” 

 

We said in Our paper presentation that fuzzy Tarig 

transform (�̃�-transform) can be used as an essential tool for 

solve ordinary differential equations with initial data. The 

following real-world examples are illustrated the usage of �̃�-

transform in solving problems of “initial value” described by 

ordinary differential equations. 

 

5.1 Example [20] 

 

In Figure 1, Seen is a tank with a heating system where 

ℶ̃=0.5, the thermal capacitance is σ̃= 2, y is the temperature. 

Thus, model is formulated as: 

 

𝜁`(𝜏) = −
1

ℶσ̃
𝜁(𝜏) , 0 ≤ 𝑇 ≤ �̃� , 𝜁(0) = (𝜁(0, 𝑟), 𝜁(𝑟, 0)). 

 

By T̃- transformation: 

i. 𝜁(𝜏) be ii- differentiable, T̃ [ζ`(τ)]= Τ̃ [-ζ(τ)] 
−ζ(0)

u  + 
Τ[ζ(τ)]

u2 =- T [−ζ(τ)]  

 

−u ζ(0) + T[ζ(τ)]=−u2 T [ζ(τ)] (3) 

 

−u ζ(0) + Τ[ζ(τ)]=−u2 Τ [ζ(τ)] (4) 

 

from (3) and (4) we have 

Τ [ζ(τ)] =
−u3

1+u4 ζ(0)+
u 

1+u4 ζ(0) =  −sin τ ζ(0) + cos τ ζ(0) 

Τ[ζ(τ)] = −sin τ ζ(0)+cos τζ(0) 

Τ̃ [ζ(τ)]= ( −sin τ ζ(0) + cos τζ(0) , − sin τ ζ(0) + 

cos τ ζ(0)). 

 

ii. 𝜁(𝜏) be i- differentiable, ζ′(𝝉, 𝜽)=( ζ′(𝝉, 𝜽), ζ′(𝝉, 𝜽)). 

Therefore ζ′(𝝉, 𝜽)=ζ′(𝝉, 𝜽), ζ′(𝝉, 𝜽)=ζ′(𝝉, 𝜽). 

 

Τ̃ [ζ`(τ)]= Τ̃ [−ζ(τ)] 
Τ[ζ(τ)]

u2 −
ζ(0)

u =-Τ [ζ(τ)] 

T [ζ(τ)] − uζ(0) = −u2Τ [ζ(τ)] 

Τ [ζ(τ)] =
u 

1 + u2
ζ(0) 

ζ(τ)= e−τζ(0) 

Τ[ζ(τ)] =
u 

1 + u2
ζ(0) 

ζ(τ)= e−τζ(0) 

�̃�[ζ(τ)]=( e−τζ(0), e−τζ(0)). 

 

 
 

Figure 1. Thermal system 

 

5.2 Example [20] 

 

The tank structure as seen in Figure 2. Suppose μ=0 is the 

inflow disruption of the tank that produces friction at the liquid 

stage Q, ω=1 is a flow barrier that can be governed by a value. 

Q=1 is the tank's cross-section. The liquid sum is assumed 

to be the following partnership. 

 

ζ`(t) = −
1

Qω
ζ(t) +  

μ

Q`
 0 ≤ T ≤ T̃, 

 ζ(0) = (ζ(0, r), ζ(r, 0))  

 

 
 

Figure 2. Liquid tank system 

 

Using a T-transform produces the following equation: 

i. ζ(t) be ii- differentiable, T̃ [ζ`(t)=−ζ(t) +  
𝜇

Q
] 

−ζ(0)

u  + 
T[ζ(t)]

u2 =T [−ζ(t)]  

 

−u ζ(0) + T[ζ(t)] = u2 T [−ζ(t)] (5) 

 

−u ζ(0) + T[ζ(t)] = u2 T [- ζ(t)] (6) 
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from 5 and 6 we have: 

 

T[ζ(t)]=
u3

1−u4 ζ(0)+
u 

1−u4 ζ(0) 

ζ(t)= sinh t ζ(0)+cosh t ζ(0) 

ζ(t)= sinh t ζ(0)+cosh tζ(0) 

T̃ [ζ(t)]=( sinh t ζ(0) + cosh tζ(0), sinh t ζ(0)+cosh tζ(0)). 

 

ii. ζ(t) be i- differentiable, T̃ [ζ`(t)]= T̃ [−ζ(t) + 
𝜇

Q
] 

T[ζ(t)]

u2 −
ζ(0)

u =-T [ζ(t)] 

T [ζ(t)] − uζ(0) = −u2T [ζ(t)] 

T [ζ(t)] =
u 

1 + u2
ζ(0) 

ζ(t)= e−tζ(0) 

T[ζ(t)] =
u 

1 + u2
ζ(0)  

ζ(t)= e−tζ(0) 

T̃ [ζ(t)]=( e−tζ(0), e−tζ(0)). 

 

 

6. CONCLUSIONS 

 

A modern mathematical approach is explored in this study. 

which is a fuzzy transformation of Tarig (T-agreement-

transform) that is used for a solution of 1st order FDEs? In 

such a way as to explain it by extending the definition of 

extremely generalized differentiability. It is obvious that the 

FDE removes the algebraic problem from the fuzzy Tarig 

transformation approach. In addition, some essential theorems 

are given to show the properties of T-transform. In comparison, 

two practical results validate the new mathematical procedure. 

In other words, this paper provides a major contribution to the 

implementation of a higher starting point for such extensions. 

Future work would include applying this transformation to 

solve a system of FDEs and partial differential equations. 

 

 

7. RESULTS AND DISCUSSION 

 

In our paper, we concluded that a fuzzy Tarig 

transformation ( �̃� − transform ) solves numerous realist 

problems in an easier and faster way. In more details there are 

two general cases, the first one, if is ii-differential odd function, 

the solution will be solved by compensation. Whereas the 

second case When cases is ii-differential odd, the solution will 

be by compensation. In the case of ii-differential even, the 

solution will be direct is ii-differential even function, the 

solution will be direct and depends on the upper and lower 

initial condition. 
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