\%/‘ = I Er A International Information and

Engineering Technology Association

Mathematical Modelling of Engineering Problems
Vol. 8, No. 3, June, 2021, pp. 333-346

Journal homepage: http://iieta.org/journals/mmep

Fourier Integral Transformation Method for Solving Two Dimensional Elasticity Problems N

in Plane Strain Using Love Stress Functions

Charles C. lke

Check for
updates

Department of Civil Engineering, Enugu State University of Science and Technology, Enugu 400001, Enugu State, Nigeria

Corresponding Author Email: charles.ike@esut.edu.ng

https://doi.org/10.18280/mmep.080302

ABSTRACT

Received: 3 August 2019
Accepted: 13 April 2021

Keywords:

Fourier integral method, two dimensional
elasticity problem in plane strain, Love stress
function, biharmonic stress compatibility
equation

The Fourier integral method was used in this work to determine the stress fields in a
two dimensional (2D) elastic soil mass of semi-infinite extent subject to line and strip
loads of uniform intensity acting on the boundary. The two dimensional plane strain
problem was formulated using stress-based method. The Fourier integral was used to
transform the biharmonic stress compatibility equation to a fourth order linear ordinary
differential equation (ODE) in terms of the stress function. The ODE was solved subject
to the boundedness condition to obtain the bounded stress function. Cartesian stress
components were obtained using the Love stress functions. Application of the stress
boundary conditions for the case of line load of uniform intensity and the cases of
uniformly distributed load on a strip of finite width gave the respective unknown
constants of the Love stress functions; and hence the complete determination of the
Cartesian stress components for the two cases considered. Inversion of the Fourier
integral expressions obtained for the normal and shear stresses in the Fourier parameter
gave respective expressions for the normal and shear stress fields for line and finite strip
loads of finite width in the physical domain variables. The results obtained agreed with

the results from previous studies which used displacement based methods.

1. INTRODUCTION

The analysis and design of road pavements, bridge
structures, building foundations, retaining walls, piles, piers
and water reservoirs entail analysis of the stress, strain and
deformation in the supporting soil as a result of the applied
external loads. This is because the structures are founded on
soil which is required to withstand the resulting stresses and
deformations without the occurrence of failures of the soil [1-
4]. The problems of the determination of stresses, strains and
displacement fields in masses of soil idealised as semi-infinite
in extent, and assumed to be linearly elastic are problems of
the classical mathematical theory of elasticity [1, 5-10]. They
are called elastic half-space problems if the soil mass is
modelled as semi-infinite and occupying the half-space region
defined in Cartesian coordinates as -0o<x<oo; -00<y<oo; 0<z<00.

Otherwise, when the soil mass occupies a two dimensional
region of space which is of semi-infinite extent, the problems
become elastic half-plane problems [11-13]. Problems of the
mathematical theory of elasticity are formulated using the
differential equations of equilibrium, the generalised Hooke’s
stress — strain laws and the geometric (kinematic) relations
together with the deformation and traction boundary
conditions [5-13]. The governing equations for such problems
are usually complicated when heterogeneity and anisotropy
are considered. They are also complicated by considerations
of non-linearities in the stress — strain behaviours. Even for
considerations of homogenous, isotropic and linearly elastic
materials, the governing equations for three dimensional cases
are a system of fifteen equations in terms of fifteen unknown
variables, namely six Cauchy stress components, three
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Cartesian  displacement components, and six strain
components. For two dimensional elasticity problems, the
number of governing equations is reduced but the solution for
the unknowns is still rendered difficult by the relatively high
number of governing equations.

Research efforts to solve elasticity problems in three and
two dimensions have led to the formulation and development
of three methods, namely: stress-based methods, displacement
based methods and mixed (hybrid) methods. Stress-based
methods for formulation of elasticity problems entail the
simultaneous formulation of the governing equations
involving the differential equations of equilibrium, the stress —
strain relations and the kinematic relations such that the
stresses are the primary unknown variables. This achieves a
reduction in the number of governing equations from fifteen
to six for three dimensional problems [5-13]. Similarly, the
displacement based method involve a reformulation of the
governing equations to have the three displacement
components as the primary unknowns. The merit of the
displacement based method is the reduction in the number of
governing equations to be solved from fifteen to three for three
dimensional problems, and to two for two dimensional
problems. The mixed or hybrid methods which are not
common, involve the reformulation of the governing equations
to have the primary unknowns as some stress components and
some displacement components. All the three methods involve
a simplification of the governing equations due to the
reduction in the number of equations to be solved.
Displacement based methods were developed by Navier,
Lamé& Boussinesq, Papkovich, Neuber, Green and Zerna.
Stress based methods were developed by Airy, Beltrami,
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Michell, Love and Morera.

The advantages and merits offered by the displacement and
stress-based methods have led researchers to develop solutions
to the governing equations of the displacement and stress-
based methods. Such solutions, which satisfy the governing
equations of the displacement and stress-based methods are
called respectively displacement functions and stress functions
[14-32]. Some displacement functions of the theory of
elasticity are: Green and Zerna potential (harmonic)
displacement function, Boussinesq displacement functions.
Some stress functions of the theory of elasticity are: Airy’s
stress function, Love stress function and Green and Zerna
stress potential function.

Ike [12] used the exponential Fourier transform method to
solve the theory of elasticity problem of finding Cartesian
stresses in elastic half-plane soils due to load applied on the
boundary. Onah et al. [18] used the Fourier transform method
to determine Cartesian stress components caused by infinitely
long line loads on semi-infinite elastic soils. Onah et al. [8]
used the Fourier transform method to determine the Cartesian
stress field components in semi-infinite, linear elastic soil in
the xz coordinate plane due to infinitely long line load and
uniformly distributed load applied on a finite strip -a<x<a on
the boundary.

The main goal of this research is to use the Fourier integral
method for solving two dimensional elasticity problems in
plane strain. The specific objectives include:

(i) to present the two dimensional elasticity problem in
plane strain conditions using a stress-based formulation.

(ii) to apply the Fourier integral transformation to the
biharmonic stress compatibility equation of the stress-based
formulation, and obtain a simplification of the boundary value
problem to a fourth order ordinary differential equation (ODE)
in the Fourier integral space.

(iii) to solve the resulting fourth order ODE to obtain
bounded solution for the stress functions for the half-plane.

(iv) to use Love stress functions and obtain the Cauchy’s
stresses in the Fourier integral space.

(v) to enforce boundary conditions for line and strip loads
and obtain the integration constants.

(vi) to apply Fourier integral inversion formulae and obtain
the stresses in the physical domain variables.

2. THEORETICAL FRAMEWORK
2.1 Field equations of 2D elasticity

The field equations for plane strain elasticity are: the strain
— displacement relations [11-13], the stress-strain equations,

and the differential equations of equilibrium. The strain-
displacement relations are given by:

au
Exx = & (1)

ow
€z = E (2)

ou awj

3
“ 2(62 ox )
Exy =8y =€y =0 “4)
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where, &x, &y, €2 are normal strains, &y, &y, &y are shear
strains and u, w are displacement components in the x, and z
Cartesian coordinate directions.

Saint Venant’s strain compatibility equation is [11-13]:

e ®
The stress — strain relations (equations) are [11-13]:
=(A+2G)e, +Ae,, (6)
o, =(A+2G)e,, +Ae,, (7)
Gy = AE,y +AE,, (8)
1,, =0, =2G¢g,, =Gy, 9)
Ty =Ty, =0 (10)

where, oxx, Gyy, Gz are normal stresses; tx(oxz), Txy, Ty are shear
stresses; G is the shear modulus and A is the Lamé’s constant.
The differential equations of equilibrium are given by:

oo, Ot

—+—=+f =0 11
ox oz X (D
or,, 0o,

224 f,=0 12
X oz z (12)

where, fy and f; are body forces.

For plane strain, the Navier’s displacement equilibrium
equations are given by the system of two partial differential
equations in terms of the two displacement components [19]:

ou  ow
GV u+k+G——+—+f—0 12
( ) (ax azj (12)
ou ow
GVW+(L+G)—| =+—|+f =0
+(A+G) (6x+62)+ , (14)
2 2
-2 .5 (15)
ox? az

where, V2 is the Laplace differential operator.
Alternative forms of Navier’s displacement formulation of
plane strain elasticity problems are:

szu+;i[a—u+%j+fx:
2(1+p)A-2u) ox\ox oz 16)
Gvu+—S 9 (aquaw) f,=0
(1-2u) ox\ox oz
GVZW+;2(8—U+6—W)+ f, =
2(L+w)(1-2u) oz\ox oz an
GV —C 2(a—u+%j+f2:0
(1-2p) oz\ox oz



where, E denotes the modulus of elasticity and p is the

Poisson’s ratio.
Navier’s equation for the displacement formulation of plane
stress problems are [19]:

GV +Lg(a—u+%j+ f.=0 (18)
2(l—p) ox\ox oz

GVZW+LE(6—U+@j+ f,=0 (19)
2(l—p) oz\ox oz

where for plane stress elasticity, the boundary conditions are
Yyz = Vxz = 0.
The surface tractions (stress boundary conditions) are:

[txj _ [GXX 6)(n] 0)
1:Z cTXZ cyZZ nZ
where, ty, t; are tractions, and ny, n; are direction cosines.
For plane stress, the field equations are:
Stress — strain relations:
S = E(Gxx _chz) (21)
1
€, = E(Gzz - Mcxx) (22)
1 u
Syy = _(_chx - “Gzz) = __(Gxx + Gzz) (23)
E E
(1+p) o
xzx = Tcxz = Z_(XBZ (24)
—H
Cy = H(Sxx +&, (25)
Strain — displacement equations:
ﬁ 0 O
OX
SXX
Y= v (26)
8ZZ a
0 — 0 \w
2g,, oz
9 4 9
oz OoX

where, g, = &,, = 0.

Saint Venant’s compatibility equations for plane stress is
still given by Eq. (5).

The differential equations of equilibrium for plane stress
conditions are identical with those of plane strain. The field
equations become for plane stress, Navier’s displacement
equilibrium equation [19] given in Egns. (18) and (19).

2.2 Airy’s stress function formulation

The Beltrami — Michell stress compatibility equations are
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written in general as [32]:

V2(o,, +6,)=C(n) (% + %j 27)
where,
Clw =-1+w (28)
for plane stress and,
Clw) = (29)

for plane strain.

Airy solved the 2D elasticity problems by defining stress
potential functions ¢(x,z) that satisfy the differential equations
of equilibrium as follows:

¢
Gy =—5+V 30
7 (30)

2
G, = a—‘zp +V (31)
RO

- 32
b T o (32)

where, V is the potential function for the body forces fx and f;
and can be given by:

oV
fp=—— 33
" (33)
oV
= (34)
0z
where,
of, of
. S 35
(o7ANG) (35)
Note:
2 2
ﬁ(a—f+vj+ﬁ(—a@j+fxzo (36)
OX\ oz oz\ oxoz
3 3
6“’2+ﬂ— 6(p2+fX=0 (37)
ox0z© OX  oxoz
which is true since f, = —Z—Z.

2 2
ﬁ(a_@+vj_i(a_¢j+ f, = (38)
oz \ ox? ox \ oxez

3 3

o9 N _99 ¢ _g (39)

+__
ozox®: o1 oxlor



. . av
which is true since f, = ——

oz’
Then, the Beltrami — Michell stress compatibility equation

becomes:
vz(az +V+@+VJ—C( )(ﬁJrij (40)
o o2 Pl " &
82(p 0 (p) (8f of, )
vz( +2VAV =C(un)| =2 +—% 41
8x2 o (W) = (41)
V2V2¢(x,2) + 2V =C(u )(af Zfzj (42)

When body forces are absent, the Beltrami — Michell stress
compatibility equation simplifies to the biharmonic equation
in terms of the Airy’s stress potential function:

V2V20(x,2) = Vip(x,2) =0 (43)
where,
ot ot ot
V4 = V22 :[—+ —+—j 44
ox*  oxter? ot 44

3. METHODOLOGY

Applying the Fourier integral transformation to the stress
compatibility equation, we obtain:

IV“Q(X,Z)(Q cosBx +T, sin Bx)dx = 0 (45)
0
where, fis the Fourier integral transform parameter.
[ b 4 4
I(a—4+2%+a—4j9(x, 2)
ot oo’ a (46)
(T, cosPx+T, sinPx)dx =0
jB“ (T, cosBx +T, sin Bx) Q(x, z)dz —
0
d® [ooe o
Zd?IB (T, cosPBx+t, sin Bx) Q(x, z)dx + 47)
0
d* |
d?-[(q CosPBx+C, sinPx) Q(x,z)dx =0
0
Let,
QB,z) = j(El COSBX + T, sin Bx) Q(X, 2)dx (48)
0

where, 2(B, z) is the Fourier integral transform of the stress
function Q(x,2).
Then, Eq. (47) becomes the fourth order differential
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equation in 2(f, z) given by:

d4

—Q(B z) - 28 —Q(B 2)+B*'Q(B,2) =0 (49)

The solution is obtained using trial function method for
solving ODEs as:

Q,2) = ae” +a,e +a,2e” +a,2e "
= (a, +a;2)e" +(a, +a,2)e ™ 0
3 2 4

where, ai, @y, as, as are integration constants.
By inversion, the stress function is obtained in general as:

0(x.2) = [ (@,(B)cospx+ ¢, B)sinp)e Pdp-+
- (51)
J.(c3 (B)cosBx + ¢, (B)sin px) e dp

where, c1(B), c2(B), cs(B) and ca(B) are the four unknown
functions of the Fourier integral transform.

For bounded solutions of the 2D elasticity problem, stresses
Oxx, Oz, Tx are required to be bounded and finite as z—oo.
Hence, Q(x,z) must be bounded and finite as z—o.

So,

6 (B)=0 (52)
¢, (B)=0 (53)
and the bounded stress function £(x,z) is obtained as:
Q(x.2) = [ (@ (B)cosPr+c, (B)sinre " dp (54)
0

This solution for ©2(x,z) shows that cospx exp(-fz) and singx
exp(-fz) are basis functions of the governing stress
compatibility equation in terms of Q(x,z). For z—oo, it is
observed that Q(x,z)—0.

4. RESULTS
4.1 Stress fields
The corresponding stress fields are found using the Love’s

stress functions Q(x,z) expressed for the xz coordinate plane,
as follows:

’Q(x,z)  *Q(x,z)
G, = ze(z oy (55)
’Q %0 RO
s
0’0 8% 2’0
GWZZG[(l—ZH)y-FZ%—ZH?J (57)



0%Q 0°Q
1, =2G ((1—2@ +z j (58)

oxoy  oxoyoz
3°Q
1,, =2G [z oyl j (59)
3
T, =2G (z 8(?(8?2 j (60)

On the xy coordinate plane, z=0, and,

°Q o’Q
ZZ(Z_O) ZG(—?j:—ZG? (61)
Sz (Z = 0)
= —ZG - j (c,(B)cosBx +c, (B)sinpx) e P2dp (62)
6,(z=0)
(63)

~-26 [ B (6, (B) cos P+ ¢, (B)sin ) e
0
4.2 Distributed load p(x) on the elastic half-plane
When the distributed load on the surface of the elastic soil
mass is given by p(x) for z=0, -co<x<co, where p(X) is a known

function of x, then from the requirement of equilibrium of
internal vertical and external stresses,

6,(2=0) = p(X) (64)

26 (c.(B)cosBr+c,(B)sinpOBe’dB= p0)  (69)
0

_ZGT(cl(B) CosBX +C, (B)sin x)B°dB = p(x) (66)
0
Applying the Fourier integral transform to p(x), we have
p(x) =T(A(B)COSBHAQ(B)SinBX)dB (67)
0
where,

17 27
AB) =;J; p(t) cos Bt dt =;! p(t) cos Pt dt (68)

17 20 .
AB)= ;J; p(t)sinptdt = ;}[ p(t)sin ptdt (69)

where, t is an integration parameter/variable.

A (B) =-2GB%c,(B) (70)

A (B) = -2Gp’c, (B) (71)
4.3 Line load Q in the elastic half-plane

4.3.1 Stress function for line load on elastic half-plane

la

0

V4

Figure 1. Line load of intensity Q on an elastic half-plane

For the case of a line load of intensity Q, on an elastic half-
plane as shown in Figure 1, the load function can be given by:

p() = —% X<e (72)

p(x)=0, [x<e (73)

where e— 0, and e is a small quantity.

Then,
AP == T—Qcosﬁt dt
:%I%cosﬁtdt— I ——cosftat
0 (74)
nQE cosPtdt = nQe.[cothdt
_ﬁsinﬁe _—QsinBe
T ne B o Be
A (B) =%I£sinﬁtdt =0 (75)
0
As e— 0,22 1, and
AR =2 (76)
T
AB)=0 (77
_“A@®) _ (Q/m)__Q
= 2Gp? 2GB2  2nGp? 78
c,(p)=0 (79)

The stress function is thus,



°0 Q Evaluating the integrals,
Q(x,2) :J‘mcosﬁxexp(—ﬁz)dﬁ (80)
» 27GP Q2 x*-72 Q2 %0
oo (P +72%)? n (*+7%) ©0)
. Q T cospxexp(—pz)
Qx,2) = 2nG _[ p? dp 81) Further simplification yields:
0
2 2
This integral for the Love’s stress function for the 2D G, =9(2(§ _5 2)— 5 - > j 1)
problem is divergent (does not converge). (X" +2%)° (X"+2°)
However, by differentiation,
Simplifying further,
?0(x,z) 2 Q
—— =— | === cosBxexp(-Bz)dp (82) Q[ 2(x* —z2)—z2(x* +7?)
ox? ox? I 2nGp? 2
X X 2 s B 7z . (X2 +22)2 (92)
Q0 -Q .T Simplifying,
—— =—— cospxexp(—Pz)dp (83)
2
o 2nG 0 2 32 3
. :g(x 7-72%-x z—z)] 03
z 2 2y\2 ( )
. . . 920 T (x*+2%)
The integral obtained for the function Fry (x, z) converges,
and can be readily evaluated. Further simplification gives:
Evaluation yields:
20
% Cp = (94)
[ cosprexp(-pz)dp = (84) n (C+20)
: X“+z
Similarly, o, (x, 2) is found from Eq. (56) is follows:
Similarly,
Q )m
o w« =2G4(1-2 (—— jcos xexp(—pz)d
aZ_Q:iJ.cosBxexp(—Bz)dB (85) ’ {( W 2nG/J Prexp(-pz)dp+
oz 2nG . o w
Y
—= | BcosPxexp(—pz)dp -
3 ) m!ﬁ pxexp(~pz)dp 95)
o°Q
— = %I—B cospxexp(—pz)dp (86) 210 o
oz ™9 —IcosBxexp(—Bz)dB
271G )
P0 Q T o
=—— | BcosPxexp(-pz)d Simplifying, we have:
oz znGOB Pxexp(-Pz)dp (87) plifying
—Q(1-2p) [
4.3.2 Stresses in elastic half-plane due to line load Q O = JcosBxexp(—Bz)dB
The vertical stress field is then found using Eq. (55) as: . 0
Qz
o _ —Bcospxexp(-p2) +7_!.Bcos[3xexp(fﬁz)d[3— (96)
6,=2G|z——| Q | (88) -
2nG J ——— | cosPxexp(—pz) dz
o ZnG.! Pxexp(-f2) mJ.cos[3xexp(—[3z)d[3
T
0
Simplifying,
Evaluating, the integrals, we obtain:
G, :%I—Bcosﬁxexp(—ﬁz)dz o = -Q(1-2p) z
0 %9 X T (x*+7%)
. (89) , (97)
—= | cospxexp(—Bz)dz Lz 7% | 2nQ_ z
Ty m (x*+2%)? T xX2+17°
Simplifying,
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o920

o Jx+z° 08
© \x*+72° T x?+1z2
Simplifying,
_Q_z @ Z-x*
N R S R ((x2 +12%)? ©9)
Simplifying,
Q( z(z* - x%) z
. :;((x2+22)2 X2 472 (100)
Simplifying further,
Qf 2(z* - x*)-z(x* + %)
X :;[ C +22)? (101)
Simplifying,
Q(?-w*-zx*-72°
Oxx = . (2 +72)? (102)
Simplifying,
Q -2zx*
) (03
Hence,
_—2Qzx?
(X2 +22)? (104)

Ty =0,71,=0

The stresses are expressed in terms of the 2D polar
coordinates using the coordinate transformations:

X =rcoso (105)
z=rsind (106)
X +2%=r? (107)
X~ coso (108)
r
z .
—=sin6 (109)
r
Then,
Oy 229 o5 0sing (110)
nr
-2Q .
o, =g (111)

Tr

T, :%sinzecose (112)

The stress components in polar coordinates are:

G, =G, C0S°0+3,,SiN°O+1,,5iN20 (113)
Gyy =0, COS° B+, Sin”H—1,,5iN 20 (114)
Trg = (0, — 0 )SiNOCOsSO +1,, COS20 (115)
Gy :f—Ssine:% (116)

Gy =0 (117)

Ty =0 (118)

4.4 Strip load of finite width on the elastic half-plane
For a strip load of width 2b as shown in Figure 2, the origin,

O, and arbitrary point, H is the elastic half-plane are shown in
the Figure 2.

dd LIl

Figure 2. Strip load of finite width on the elastic half-plane

The Fourier integral of the load p(x) is given by:
P00 = [ (A@)cospx+ AB)sinpdp  (119)
where,

A®)== [ peycosptat=2 [ pwcosprat  (120)
TC_OO T 0

A ®)== [ posinptat== [pwsinptat  (121)
TE_OO TCO

For a uniformly distributed strip load of intensity g, we have:
p(x) = —qlx| < b, p(x) = 0|x| > b, then,

AB) =EIQCOSBt dt (122)
T 0
2 b

AP) =—IQCOSBt dt (123)
T 0



; b
A(B)=3q[m} (124)
T B 1
A ) = 29 S0FD (125)
T B
Az(B):%]iqSinﬁtdt:%Iqsinﬁtdt
- ’ , °B X (126)
_4q sin _ 29| —cos t
_nl' Btdt n[—ﬁ l}
Az(B):_—zqM (127)
T B
Hence,
_—AP) _-2gsinBb
)= 268 P 268 (128)
c,(B) = -A(B) :Z_q cosBb _ 2qcospBb (129)

2Gp>2  © B2GBR*  2nGp?

The Love stress function for the case of uniformly
distributed strip load is then:

Q(x,2)

_ J‘(—‘zqs'”fb COSBHWJG'%B (130)
0 2TCGB 2TCGB

Simplifying,

_iw cospb . _sinBbcosPx g,

Further simplification yields

Q:i]:(costsian—gsiancosBx) ePdp (132)
nG B
0
Using trigonometric identities,
_ Tsin(BX—Bb) e
Q=—|——7+—"""e"d
e 5 B (133)
0
Simplifying,
q msinB(x—b)
Q=— | 222 exp(-
= ! 5 exp(—Pz)dp (134)

By differentiation of Q(x,z) with respect to z, we have:

Q  q Tsinﬁ(x—b) d s
b B L) S
az nGJ P it 9P (135)
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Simplifying,

@_iwsinﬁ(x—b) anBz
-G _([—BS (—Be™)dp (136)

Further simplification yields:

@_iw—sinﬁ(x—b) 2
- .!—652 dp (137)

Differentiation of Eq. (137) again with respect to z yields:

Qg ]O‘—sinB(x—b) 0 g
R T Il S L
o2 nG B2 oz g (138)
0
Simplifying,
0 g T—sins(x—b) .
= | =22 (BeP?)d
2 G 5 (Be™™)dB (139)
0
Simplifying,
’Q g TsinB(x—b) .
R e LN
oz?  nGy B g (140)

By differentiation of Eq. (140) with respect to z, we have;

yields:

3P0 q ]O‘sinB(x—b) 0 p
—=——|——F"—¢7"d 141
o nG ) B oz b (141)
Simplifying,
P q Tsin B(x—b), . g
— =—~|— 5 (-Be™)d 142
o° 1G4 B (~pe)dp (142)
Further simplification yields:
aS—Q—ij—sinB(x—lo)e-%m 143
o nGJ (143)
Differentiation of the Love stress function with respect to x
Q q ]C- o . 1 g
Z2- 2 [ Esinp(x-b)—=ed
x G pvel B(x )[33 p (144)
Simplifying,

(145)

6_Q:i.TBcosB§x—b) g
x  nGY B

By differentiation of Eq. (145), we have:



82Q q a cosB(x—b) oy
= ————edp (146)
2 2
ox® Gy ox B
Simplifying,
’Q J- —BsinB(x—h)
—e d 147
v B (147)
Simplifying,
P20 g T—sinﬁ(x—b) i’
—=—|——"e"d
ox* 16 g (148)
Differentiation of Eq. (148) with respect to z yield:
P g .T—sinB(x—b) d s
=— | ——F——~>—e™d
ox*oz G dz b (149)
Simplifying,
o°Q smB(x b) pz
—_— _ d 1
ox*or nG.[ (pe )dp (150)
Simplifying,
Qg ]Z . -
=—|sinp(x-b)e*d 151
oxoz nGJ Plx-Dble™dp (151)
Differentiation of Eq. (138) with respect to x yields:
*Q  q [0 sinp(x-b) g
—=—|=———e"d 152
oxoz?  nG ) ox B g (152)
Simplifying,
Pe) J-BcosB(x b) g (153)
oxoz?
Simplifying,
*Q  q .
=— | cosp(x—b)e*d
= j B(x—b)e "dp (154)

Stress fields for strip loads
Evaluating the integrals and using the Love stress functions,
the stress fields for strip heads are obtained as follows:

tan‘l(ij
_q X—b :
%z =7 4 z 2bz(x? — 22 —b?) (155)
—tan m T2 o2 p2z2 2.2
(x“+2°-b")" +4b°z

tan’l(i)
d xb 156
(e} = —
“ T ,1( z ) 2bz(x? — 2% —b?) (156)
—tan!| — |+
x+b/  (x*+1z? —b?)* +4b%z?

B 4bxz? 57
“ o n (6% + 2% -b?)? + 4b%7? (157)

or, in simplified trigonometric forms,

G, :ﬂ(oc+sinoccos(oc+26)) (158)
T
O, = g((x —sina.cos(o + 23)) (159)
Y
= (sinasin(o + 25)) (160)
T

where, the angles, o and 6 are defined as shown in Figure 3.

¥ b
LL.J
90+0+0

o
o
-

» X

ZY H(x 2)

Figure 3. Uniformly distributed vertical infinitely long strip
load of width 2b acting on the surface of an elastic semi-
infinite soil mass

tan(90—8):ﬁ (161)
tan90—(oc+8):ﬁ (162)
90—6:tan’l(ﬁj (163)

90— (a+38) = tan " (%bj (164)

90— 8- (90— (0 +3)) = 90— 590+ (0t +8) (165)
=a+06-0=a

o =tan (ﬁ)—tan’l(ﬁ) (166)

The results are presented in non-dimensional forms in
Tables 1, 2, and 3 for the various loading cases considered in
this study. The results are further validated in Table 3 which
compared the present results with previous results and
illustrates the agreement of present results with the previous
results of Das [2] and Onah et al. [13].



Table 1. Non-dimensional vertical stress influence values for line load on elastic half-plane
Values of 6,/q, ox/q, and t«/q for vertical strip loading

x/b zlb czlq oxdq Txl( x/b z/b czlq ol Txlq
0 1.000 1.000 0 0.25 0.0177 0.2079 0.0606
0.5 0.9594 0.4498 0 0.5 0.0892 0.2850 0.1466
0 1.0 0.8183 0.1817 0 15 1.0 0.2488 0.2137 0.2101
15 0.6678 0.0803 0 ' 15 0.2704 0.1807 0.2022
2.0 0.5508 0.0410 0 2.0 0.2876 0.1268 0.1754
2.5 0.4617 0.0228 0 25 0.2851 0.0892 0.1469
0 1.000 1.000 0
025 09787 06214 0.0522 0.25 0.0027 0.0987 0.0164
0.5 0.0194 0.1714 0.0552
0.5 0.9028 0.3920 0.1274
1.0 0.0776 0.2021 0.1305
0.5 1.0 0.7352 0.1863 0.1590 2.0
15 0.1458 0.1847 0.1568
15 0.6078 0.0994 0.1275
2.0 0.1847 0.1456 0.1567
2.0 0.5107 0.0542 0.0959 25 02045 0.1256 0.1442
2.5 0.4372 0.0334 0.0721 ' ' ' '
0.25 0.4996 0.4208 0.3134 0.5 0.0068 0.1104 0.0254
0.5 0.4969 0.3472 0.2996
1.0 0.0357 0.1615 0.0739
1.0 0.4797 0.2250 0.2546
1.0 2.5 15 0.0771 0.1645 0.1096
15 0.4480 0.1424 0.2037
2.0 0.1139 0.1447 0.1258
2.0 0.4095 0.0908 0.1592 25 0.1409 0.1205 0.1266
2.5 0.3701 0.0595 0.1243 ) ' ) )

Table 2. Dimensionless influence values for uniformly distributed strip load on elastic half-plane

ozlq
(x/b)
(z/b) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
0.10 1.000 1.000 0999 0999 0999 0998 0997 0993 0980 0909  0.500
0.20 0997 0997 099 0995 0.992 0.988 0.979 0.959 0.909 0.775 0.500
0.30 0990 0989 0987 0984 0.978 0.967 0.947 0.908 0.833 0.697 0.499
0.40 0977 0976 0973 0966 0.955 0.937 0.906 0.855 0.773 0.651  0.498
0.50 0959 0958 0953 0943 0.927 0.902 0.864 0.808 0.727 0.620  0.497
0.60 0937 0935 0928 0915 0.89% 0866 0825 0.767 0.691 0598 0.495
0.70 0910 0908 0899 088 0863 0831 0.788 0.732 0.662 0581 0.492
0.80 0.881 0878 0869 0.853 0.829 0.797 0.755 0.701 0.638 0.566  0.489
0.90 0.850 0.847 0837 0821 0.797 0.765 0.724 0675 0617 0552 0.485
1.00 0.818 0815 0805 0.789 0.766 0.735 0.696 0.650 0.598 0.540 0.480
1.10 0.787 0.783 0.774 0.758 0.735 0.706 0.670 0.628 0.580 0.529  0.474
1.20 0.755 0.752 0.743 0.728 0.707 0.679 0.646 0.607 0.564 0517 0.468
1.30 0725 0722 0714 0699 0.679 0.654 0.623 0.588 0.548 0506  0.462
1.40 0696 0693 0.685 0672 0653 0630 0.602 0569 0534 0495 0455
1.50 0.668 0.666 0.658 0.646 0.629 0.607 0581 0552 0519 0484 0.448
1.60 0642 0639 0633 0621 0605 0586 0562 0535 0506 0474 0.440
1.70 0.617 0615 0.608 0.598 0.583 0.565 0.544 0519 0492 0463 0433
1.80 0593 0591 0585 0576 0563 0546 0526 0504 0479 0453 0.425

Table 3. Variation of 6,/(q/z) with x/z

x/z__ Present study cz/(q/z) Reference [2, 13] cz/(q/z) | x/z  Present study cz/(q/z)  Reference [2, 13] c2/(q/z)
0 0.637 0.637 1.3 0.088

0.1 0.624 0.624 14 0.073

0.2 0.589 0.589 15 0.060 0.060
0.3 0.536 0.536 1.6 0.050

0.4 0.473 0.473 17 0.042

0.5 0.407 0.407 1.8 0.035

0.6 0.344 0.344 1.9 0.030

0.7 0.287 0.287 2.0 0.025 0.025
0.8 0.237 0.237 2.2 0.019

0.9 0.194 0.194 24 0.014

1.0 0.159 0.159 2.6 0.011

1.1 0.130 2.8 0.008

1.2 0.107 3.0 0.006 0.006
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5. DISCUSSION

The Fourier integral method was successfully used in this
work to determine the normal and shear stress fields in an
elastic half-plane under line and strip loads applied on the
boundary. The elastic half-plane is made of soil that is
assumed linear elastic, isotropic, homogeneous and of semi-
infinite extent with —oo < x < 0, 0 < z < oo, The governing
equations of the elastic half-plane problem are the differential
equations of equilibrium, the stress compatibility equation, the
geometric (strain —displacement) relations and the boundary
conditions. Stress formulation of the equations was adopted
and the Beltrami — Michell stress compatibility equation was
formulated for the two dimensional elastic half-plane problem
considered. The Fourier integral transformation method was
applied to the governing Beltrami Michell stress
compatibility equation in Eq. (46) to transform the problem
from a boundary value problem to a fourth order linear
ordinary differential equation (Eq. (49)) in terms of the stress
functions in the Fourier integral transform space variable. The
fourth order ODE was solved using methods for solving ODEs
to obtain the stress function in the Fourier integral space in
terms of four integration constants as Eq. (50). By inversion of
Eq. (50), the stress function was obtained in the physical
domain space variables as Eq. (51) which contained four
unknown integration constants, ci(B), c2(B), ¢3(B) and ca(B),
which in general are functions of the Fourier integral
parameter f3. The requirements for boundedness of the stresses
and hence the stress functions were used to obtain solutions to
two of the unknown constants of integration as Eqns. (52) and
(53); thus, simplifying the unknown stress function as
Equation (54) which had two unknown integration constants.
Love stress functions for plane elasticity problems given as
Eqns. (55) — (60) were used to obtain the expressions for the
Cartesian stress components. The general problem of
distributed load p(x) applied to the surface of the elastic half-
plane was considered and the equilibrium of internal vertical
stresses and the external (applied) stresses on the surface z =0
was used to obtain the boundary conditions as Eq. (64). The
enforcement of the boundary conditions gave the values of the
two unknown integration constants for the bounded stress
functions as Eqns. (68) and (69). For the case of line load of
intensity O, described mathematically as Eqns. (72) and (73),
the unknown integration constants were found as Eqns. (76)
and (77) or (78) and (79). The bounded Love stress function
for the case of line load of intensity Q was then found as Eq.
(81). The obtained expression for the Love stress function for
line load was then used in Eqns. (55) — (60) to obtain the
Cartesian stress components respectively as Eqns. (94) and
(104). The stresses were expressed in terms of plane polar
coordinates to obtain Eqns. (110) — (112).

For the case of strip load of intensity ¢ and finite width 25,
considered as shown in Figures 2 and 3, the equilibrium of the
internal vertical stresses and the external stresses on the z =0
plane was used as the boundary condition to obtain the
unknown integration constants as Eqns. (128) and (129). The
bounded Love stress functions for the finite strip load of
uniform intensity was thus obtained as Eq. (134). The Love
stress function expressions Eqgns. (55 — 60) were used to obtain
the Cartesian stress components for the elastic half-plane
problem under finite strip load as Eqns. (155) for 6, (156) for
ox, and (157) for tx. The stresses were presented in
trigonometric forms respectively as Egns. (158 — 160).

It was observed that the expressions obtained for the
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Cartesian stress field components oy, 62z and tx, were identical
for the two particular cases considered — line load and finite
width strip load of uniform intensity — to the expressions
obtained by Das [2], Onah et al. [13] and other researchers,
who solved the elastic half-plane problem using other methods
such as the displacement based approach, or Airy stress
function method. Eqns. (155-157) were calculated for different
various values of x/b and z/b and the influence values for the
normal and shear stresses for strip load of finite width (2b)
presented as Tables 1 and 2. Similarly, the influence values for
vertical stress due to line load of constant intensity Q were
evaluated and presented for various values of x/z as Table 3.

6. CONCLUSION

The conclusions of the present work are as follows:

(i) The Fourier integral method has been successfully used
in this work to obtain general solutions for bounded Love
stress functions, and normal (ox, 0zz) and shear stresses txz in
a linear elastic, isotropic, homogeneous elastic half-plane in
the xz coordinate for -co<x<oo; 0<z<oo under distributed
boundary load p(x).

(ii) The Fourier integral method has been successfully used
in this work to obtain solutions for bounded Love stress
functions, Cartesian stress field components oxx, oz, % IS an
elastic half-plane due to line load of uniform intensity Q
applied on the surface.

(iii) The Fourier integral transform method has been used in
this work to obtain bounded Love stress functions, and
Cartesian stress field components ox, 0z and z in elastic half-
plane problems due to finite width strip loads of constant
intensity applied on the boundary.

(iv) The Fourier integral method transforms the elastic half-
plane problem expressed in stress formulation using Beltrami
— Michell stress compatibility equations to a linear ordinary
differential equation in terms of the unknown stress function
(B, z) expressed in terms of the Fourier integral transform
space variables.

(v) The stress formulation method adopted in this work
simplified the elastic half-plane problem to a problem of
finding a suitable biharmonic stress function (Xx, z) that
satisfies the boundary conditions of the particular (given)
elastic half-plane problem expressed by the equilibrium of
internal vertical stresses and the external stresses/load at the
z=0 plane.

(vi) The resulting solutions obtained for the Love stress
functions and the Cartesian stress field components satisfy the
boundedness conditions at z—oo, and are bounded solutions.

(vii) The Fourier integral method is an integral
transformation method which transforms the governing
Beltrami — Michell stress compatibility equation, a biharmonic
partial differential equation in terms of the stress function to
an ordinary differential equation (ODE) which would be more
amenable to closed form mathematical solutions.
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NOMENCLATURE

2D

ODE
ODEs
XY,z

2a (or 2b)
SXX

Syy

8ZZ

u

v

w
szlayzvsxy
Txy' Tyz’ Txz
Oy c5yz7 Oy
G

A

fx: fya fz

E

tx, t;

Ny, Nz

\

C(w)
00 9
ox' oy oz
ai, dz, dz, A4

¢, (B). ¢, (B). c5(B). ca (B)

C, G,

p(x)
APB), AB)

Greek symbols

VZ
n
o(x,2)

v
\%

two dimensional

Ordinary Differential Equation
Ordinary Differential Equations
Cartesian coordinates

width of a finite strip load
normal strain in the x direction

normal strain in the y direction
normal strain in the z direction

displacement component in the x
direction

displacement component in vy
direction

displacement component in z
direction

normal strains

shear stresses

shear modulus

Lamé’s constant

body force components

Modulus of elasticity

tractions

direction cosines

potential function for the body
forces

parameter defined in terms of

for plane stress and plane strain
elasticity

partial differential operators with
respect to x, y and z respectively

integration constants

four unknown functions of the
Fourier integral tranform
constants used in defining Fourier
integral tranforms of the Airy
stress function Q(x, z)
distributed load on the boundary
of elastic half plane

constants used in defining the
Fourier integral tranform of the
distributed load p(x)

dummy variable of integration for
integrals in respect of the
distributed load

small quantity used in defining
the line load

intensity of uniformly distributed
strip load

Laplace differential operator

Poisson’s ratio

Airy stress function for elasticity
problems in the xz coordinate
plane

biharmonic differential operator

gradient operator

345

B Fourier integral tranform
parameters
Q(x,2) Airy stress potential function

adopted for the 2D elasticity
problem studied

QB, 2) Fourier integral transform of the
stress function adopted for the 2D
elasticity problem studied

a,d angles defined for the strip load
problem shown in Figure 3.
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ay _ -y
e” cos(a)da = ———;
Xt +y

e L e 1)

e“yoccos(ocx)da=ije“y003axda=i( -y 2)
dy ¢ dy  x* +y

Ot 8 o

e"‘yonsinocxdoc=iJ‘e°‘ycomxdo¢=ﬂ Y 4y
dx J dx \ x> +y? ) dx{x®+y?

P Q[ ..

o~ 3G | PO
I—B cospxexp(—pz)dp = Xzz — ZZZ -

3 (x*+29)

Then, for line load 0 of infinite extent, the stress field are:

_2Q X’z
T (@ +22)
2Q 7
_-2Q  xz°

XX
4

TXZ

APPENDIX 11

Solution to Eq. (49)

9 6.2)- 26 L a(p, 2) + p*0p, 2) = 0
dz dz

By the method of trial functions, the unknown Q(B, z) is
assumed to be an exponential function of z of the form:

Q(B, z) = expAz

where, A is a parameter sought to enable the assumed trial
exponential function be the desired solution.
Then,

2

d—zﬁ(B, 7) = A2 expAz
dz

4

FQ(B, 7) =A% expz



Then the equation becomes
(A* =2B°2% +B*)expArz =0
For nontrivial solutions, expAz = 0, and

24 —ZBZKZ +B4 _ (KZ _BZ)Z -0
A =1 (twice)

The basis of solutions are:

expPz, zexpPz, exp(—Pz), —zexp(—pz)
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The general solution is the superposition of the linearly
independent solution basis.
Thus,

QP z) =ae” +a,2e" +a,e ™ +3,(-z2 )
QP z) =8 +a,2e" +a,e ™ -g,2e ™

QP z) = ae” +a,ze” +ae ™ +a,ze ™

where, a, =a,, a,=3a,, 8, =3, 3, =—g,

Q. z) = (a, +a,2)e™ +(a, +a,2)e ™





