
Fourier Integral Transformation Method for Solving Two Dimensional Elasticity Problems 

in Plane Strain Using Love Stress Functions 

Charles C. Ike 

Department of Civil Engineering, Enugu State University of Science and Technology, Enugu 400001, Enugu State, Nigeria 

Corresponding Author Email: charles.ike@esut.edu.ng

https://doi.org/10.18280/mmep.080302 ABSTRACT 

Received: 3 August 2019 

Accepted: 13 April 2021 

The Fourier integral method was used in this work to determine the stress fields in a 

two dimensional (2D) elastic soil mass of semi-infinite extent subject to line and strip 

loads of uniform intensity acting on the boundary. The two dimensional plane strain 

problem was formulated using stress-based method. The Fourier integral was used to 

transform the biharmonic stress compatibility equation to a fourth order linear ordinary 

differential equation (ODE) in terms of the stress function. The ODE was solved subject 

to the boundedness condition to obtain the bounded stress function. Cartesian stress 

components were obtained using the Love stress functions. Application of the stress 

boundary conditions for the case of line load of uniform intensity and the cases of 

uniformly distributed load on a strip of finite width gave the respective unknown 

constants of the Love stress functions; and hence the complete determination of the 

Cartesian stress components for the two cases considered. Inversion of the Fourier 

integral expressions obtained for the normal and shear stresses in the Fourier parameter 

gave respective expressions for the normal and shear stress fields for line and finite strip 

loads of finite width in the physical domain variables. The results obtained agreed with 

the results from previous studies which used displacement based methods. 

Keywords: 

Fourier integral method, two dimensional 

elasticity problem in plane strain, Love stress 

function, biharmonic stress compatibility 

equation 

1. INTRODUCTION

The analysis and design of road pavements, bridge 

structures, building foundations, retaining walls, piles, piers 

and water reservoirs entail analysis of the stress, strain and 

deformation in the supporting soil as a result of the applied 

external loads. This is because the structures are founded on 

soil which is required to withstand the resulting stresses and 

deformations without the occurrence of failures of the soil [1-

4]. The problems of the determination of stresses, strains and 

displacement fields in masses of soil idealised as semi-infinite 

in extent, and assumed to be linearly elastic are problems of 

the classical mathematical theory of elasticity [1, 5-10]. They 

are called elastic half-space problems if the soil mass is 

modelled as semi-infinite and occupying the half-space region 

defined in Cartesian coordinates as -∞≤x≤∞; -∞≤y≤∞; 0≤z≤∞. 

Otherwise, when the soil mass occupies a two dimensional 

region of space which is of semi-infinite extent, the problems 

become elastic half-plane problems [11-13]. Problems of the 

mathematical theory of elasticity are formulated using the 

differential equations of equilibrium, the generalised Hooke’s 

stress – strain laws and the geometric (kinematic) relations 

together with the deformation and traction boundary 

conditions [5-13]. The governing equations for such problems 

are usually complicated when heterogeneity and anisotropy 

are considered. They are also complicated by considerations 

of non-linearities in the stress – strain behaviours. Even for 

considerations of homogenous, isotropic and linearly elastic 

materials, the governing equations for three dimensional cases 

are a system of fifteen equations in terms of fifteen unknown 

variables, namely six Cauchy stress components, three 

Cartesian displacement components, and six strain 

components. For two dimensional elasticity problems, the 

number of governing equations is reduced but the solution for 

the unknowns is still rendered difficult by the relatively high 

number of governing equations. 

Research efforts to solve elasticity problems in three and 

two dimensions have led to the formulation and development 

of three methods, namely: stress-based methods, displacement 

based methods and mixed (hybrid) methods. Stress-based 

methods for formulation of elasticity problems entail the 

simultaneous formulation of the governing equations 

involving the differential equations of equilibrium, the stress – 

strain relations and the kinematic relations such that the 

stresses are the primary unknown variables. This achieves a 

reduction in the number of governing equations from fifteen 

to six for three dimensional problems [5-13]. Similarly, the 

displacement based method involve a reformulation of the 

governing equations to have the three displacement 

components as the primary unknowns. The merit of the 

displacement based method is the reduction in the number of 

governing equations to be solved from fifteen to three for three 

dimensional problems, and to two for two dimensional 

problems. The mixed or hybrid methods which are not 

common, involve the reformulation of the governing equations 

to have the primary unknowns as some stress components and 

some displacement components. All the three methods involve 

a simplification of the governing equations due to the 

reduction in the number of equations to be solved. 

Displacement based methods were developed by Navier, 

Lamé, Boussinesq, Papkovich, Neuber, Green and Zerna. 

Stress based methods were developed by Airy, Beltrami, 
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Michell, Love and Morera. 

The advantages and merits offered by the displacement and 

stress-based methods have led researchers to develop solutions 

to the governing equations of the displacement and stress-

based methods. Such solutions, which satisfy the governing 

equations of the displacement and stress-based methods are 

called respectively displacement functions and stress functions 

[14-32]. Some displacement functions of the theory of 

elasticity are: Green and Zerna potential (harmonic) 

displacement function, Boussinesq displacement functions. 

Some stress functions of the theory of elasticity are: Airy’s 

stress function, Love stress function and Green and Zerna 

stress potential function. 

Ike [12] used the exponential Fourier transform method to 

solve the theory of elasticity problem of finding Cartesian 

stresses in elastic half-plane soils due to load applied on the 

boundary. Onah et al. [18] used the Fourier transform method 

to determine Cartesian stress components caused by infinitely 

long line loads on semi-infinite elastic soils. Onah et al. [8] 

used the Fourier transform method to determine the Cartesian 

stress field components in semi-infinite, linear elastic soil in 

the xz coordinate plane due to infinitely long line load and 

uniformly distributed load applied on a finite strip -a≤x≤a on 

the boundary. 

The main goal of this research is to use the Fourier integral 

method for solving two dimensional elasticity problems in 

plane strain. The specific objectives include: 

(i) to present the two dimensional elasticity problem in 

plane strain conditions using a stress-based formulation. 

(ii) to apply the Fourier integral transformation to the 

biharmonic stress compatibility equation of the stress-based 

formulation, and obtain a simplification of the boundary value 

problem to a fourth order ordinary differential equation (ODE) 

in the Fourier integral space. 

(iii) to solve the resulting fourth order ODE to obtain 

bounded solution for the stress functions for the half-plane. 

(iv) to use Love stress functions and obtain the Cauchy’s 

stresses in the Fourier integral space. 

(v) to enforce boundary conditions for line and strip loads 

and obtain the integration constants. 

(vi) to apply Fourier integral inversion formulae and obtain 

the stresses in the physical domain variables. 

 

 

2. THEORETICAL FRAMEWORK 
 

2.1 Field equations of 2D elasticity 

 

The field equations for plane strain elasticity are: the strain 

– displacement relations [11-13], the stress-strain equations, 

and the differential equations of equilibrium. The strain-

displacement relations are given by: 

 

xx

u

x


 =


 (1) 

 

zz

w

z


 =


 (2) 

 

1

2
xz

u w

z x

  
 = + 

  
 (3) 

 

0xy yz yy =  =  =  (4) 

where, xx, yy, zz are normal strains, xz, xy, yz are shear 

strains and u, w are displacement components in the x, and z 

Cartesian coordinate directions. 

Saint Venant’s strain compatibility equation is [11-13]: 

 
2 22

2 2
2xx xzzz

x zz x

    
+ =

  
 (5) 

 

The stress – strain relations (equations) are [11-13]: 

 

( 2 )xx xx zzG = +  +  (6) 

 

( 2 )zz zz xxG = +  +  (7) 

 

yy xx zz =  +   (8) 

 

2xz xz xz xzG G =  =  =   (9) 

 

0xy yz =  =  (10) 

 

where, xx, yy, zz are normal stresses; xz(xz), xy, yz are shear 

stresses; G is the shear modulus and  is the Lamé’s constant. 

The differential equations of equilibrium are given by: 

 

0xzxx
xf

x z


+ + =

 
 (11) 

 

0xz zz
zf

x z

 
+ + =

 
 (12) 

 

where, fx and fz are body forces. 

For plane strain, the Navier’s displacement equilibrium 

equations are given by the system of two partial differential 

equations in terms of the two displacement components [19]: 

 

2 0( ) x

u w
G u G f

x x z

   
 +  + + + = 

   
 (12) 

 

2 0( ) z

u w
G w G f

z x z

   
 +  + + + = 

   
 (14) 

 
2 2

2

2 2x z

 
 = +

 
 (15) 

 

where, 2 is the Laplace differential operator. 

Alternative forms of Navier’s displacement formulation of 

plane strain elasticity problems are: 

 

2

2(1 )(1 2 )
x

E u w
G u f

x x z

   
 + + + = 

 + −    
 

2 0
(1 2 )

x

G u w
G u f

x x z

   
 + + + = 

 −    
 

(16) 

 

2

2(1 )(1 2 )
z

E u w
G w f

z x z

   
 + + + = 

 + −    
 

2 0
(1 2 )

z

G u w
G w f

z x z

   
 + + + = 

 −    
 

(17) 
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where, E denotes the modulus of elasticity and   is the 

Poisson’s ratio. 

Navier’s equation for the displacement formulation of plane 

stress problems are [19]: 

 

2 0
2(1 )

x

E u w
G u f

x x z

   
 + + + = 

 −   
 (18) 

 

2 0
2(1 )

z

E u w
G w f

z x z

   
 + + + = 

 −   
 (19) 

 

where for plane stress elasticity, the boundary conditions are 

𝛾𝑦𝑧 = 𝛾𝑥𝑧 = 0. 

The surface tractions (stress boundary conditions) are: 

 

x xx xz x

z xz zz z

t n

t n

     
=         

 (20) 

 

where, tx, tz are tractions, and nx, nz are direction cosines. 

For plane stress, the field equations are: 

Stress – strain relations: 

 

1
( )xx xx zz

E
 =  −   (21) 

 

1
( )zz zz xx

E
 =  −  (22) 

 

1
( ) ( )yy xx zz xx zz

E E


 = − − = −  +   (23) 

 

1

2

( ) xz
xz xz

E G

+ 
 =  =  (24) 

 

1
( )yy xx zz

−
 =  + 

−
 (25) 

 

Strain – displacement equations: 

 

0 0

0 0

0 0
2

0
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x
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y

v
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z

z x

 
 
 

            =        
      

 
   

  

 
(26) 

 

where, 𝜀𝑦𝑧 = 𝜀𝑥𝑦 = 0. 

Saint Venant’s compatibility equations for plane stress is 

still given by Eq. (5). 

The differential equations of equilibrium for plane stress 

conditions are identical with those of plane strain. The field 

equations become for plane stress, Navier’s displacement 

equilibrium equation [19] given in Eqns. (18) and (19). 

 

2.2 Airy’s stress function formulation 

 

The Beltrami – Michell stress compatibility equations are 

written in general as [32]:  

 

2 ( ) ( ) zx
xx zz

ff
C

x z

 
  +  =  + 

  
 (27) 

 

where, 

 

( ) (1 )C  = − +  (28) 

 

for plane stress and, 

 

1
( )

1
C

−
 =

−
 (29) 

 

for plane strain. 

Airy solved the 2D elasticity problems by defining stress 

potential functions φ(x,z) that satisfy the differential equations 

of equilibrium as follows: 

 
2

2xx V
z

 
 = +


 (30) 

 
2

2zz V
x

 
 = +


 (31) 

 
2

xz
x z

 
 = −

 
 (32) 

 

where, V is the potential function for the body forces fx and fz 

and can be given by: 

 

x

V
f

x


= −


 (33) 

 

z

V
f

z


= −


 (34) 

 

where, 

 

zx ff

z x


=

 
 (35) 

 

Note: 

 
2 2

2
0xV f

x z x zz

        
+ + − + =  

     
 (36) 

 
3 3

2 2
0x

V
f

xx z x z

    
+ − + =
   

 (37) 

 

which is true since 𝑓𝑥 = −
𝜕𝑉

𝜕𝑥
. 

 
2 2

2
0zV f

z x x zx

        
+ − + =  

     
 (38) 

 
3 3

2 2
0z

V
f

zz x x z

    
+ − + =
   

 (39) 
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which is true since 𝑓𝑧 = −
𝜕𝑉

𝜕𝑧
. 

Then, the Beltrami – Michell stress compatibility equation 

becomes: 

 
2 2

2

2 2
( ) x zf f

V V C
x zz x

       
 + + + =  +  

     
 (40) 

 
2 2

2 2

2 2
2 ( ) x zf f

V C
x zx z

       
 + +  =  +  

     
 (41) 

 

2 2 2( , ) 2 ( ) x zf f
x z V C

x z

  
   +  =  + 

  
 (42) 

 

When body forces are absent, the Beltrami – Michell stress 

compatibility equation simplifies to the biharmonic equation 

in terms of the Airy’s stress potential function: 

 
2 2 4( , ) ( , ) 0x z x z   =  =  (43) 

 

where, 

 

4 2 2 = 
4 4 4

4 2 2 4
2

x x z z

   
= + + 
    

 (44) 

 

 

3. METHODOLOGY 

 

Applying the Fourier integral transformation to the stress 

compatibility equation, we obtain: 

 

4
1 2

0

( , )( cos sin ) 0x z c x c x dx



   +  =  (45) 

 

where,  is the Fourier integral transform parameter. 

 

4 4 4

4 2 2 4

0

1 2

2 ( , )

( cos sin ) 0

x z
x x z z

c x c x dx


   

+ +  
    

 +  =

  (46) 

 

4
1 2

0

( cos sin ) ( , )c x c x x z dz



  +   −  

2
2

1 22

0

2 ( cos sin ) ( , )
d

c x c x x z dx
dz



  +   +  

4

1 24

0

( cos sin ) ( , ) 0
d

c x c x x z dx
dz



 +   =  

(47) 

 

Let, 

 

1 2

0

( , ) ( cos sin ) ( , )z c x c x x z dx



  =  +    (48) 

 

where, �̄�(𝛽, 𝑧) is the Fourier integral transform of the stress 

function Ω(x,z). 

Then, Eq. (47) becomes the fourth order differential 

equation in �̄�(𝛽, 𝑧) given by: 

 
4 2

2 4

4 2
( , ) 2 ( , ) ( , ) 0

d d
z z z

dz dz
  −    +   =  (49) 

 

The solution is obtained using trial function method for 

solving ODEs as: 

 

1 2 3 4

1 3 2 4

( , )

( ) ( )

z z z z

z z

z a e a e a ze a ze

a a z e a a z e

 −  −

 −

  = + + +

= + + +
 (50) 

 

where, a1, a2, a3, a4 are integration constants. 

By inversion, the stress function is obtained in general as: 

 

1 2

0

( , ) ( ( )cos ( )sin ) zx z c x c x e d



− =   +    +  

3 4

0

( ( )cos ( )sin ) zc x c x e d



  +     

(51) 

 

where, c1(), c2(), c3() and c4() are the four unknown 

functions of the Fourier integral transform. 

For bounded solutions of the 2D elasticity problem, stresses 

xx, zz, xz are required to be bounded and finite as z→. 

Hence, Ω(x,z) must be bounded and finite as z→. 

So,  

 

3( ) 0c  =  (52) 

 

4 ( ) 0c  =  (53) 

 

and the bounded stress function Ω(x,z) is obtained as: 

 

1 2

0

( , ) ( ( ) cos ( )sin ) zx z c x c x e d



− =   +     (54) 

 

This solution for Ω(x,z) shows that cosβx exp(-βz) and sinβx 

exp(-βz) are basis functions of the governing stress 

compatibility equation in terms of Ω(x,z). For z→, it is 

observed that Ω(x,z)→0. 

 

 

4. RESULTS 

 

4.1 Stress fields 

 

The corresponding stress fields are found using the Love’s 

stress functions Ω(x,z) expressed for the xz coordinate plane, 

as follows: 

 
3 2

3 2

( , ) ( , )
2zz

x z x z
G z

z z

    
 = − 

  
 (55) 

 
2 3 2

2 2 2
2 (1 2 ) 2xx G z

x x z z

      
 = −  + −  

    
 (56) 

 
2 3 2

2 2 2
2 (1 2 ) 2yy G z

y y z z

      
 = −  + −  

    
 (57) 
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2 3

2 (1 2 )xy G z
x y x y z

    
 = −  + 
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 (58) 

 
3

2
2yz G z

y z

  
 =  

  
 (59) 

 
3

2
2zx G z

x z

  
 =  

  
 (60) 

 

On the xy coordinate plane, z=0, and, 

 
2 2

2 2
( 0) 2 2zz z G G

z z

    
 = = − = − 

  
 (61) 

 

2

1 22

0

( 0)

2 ( ( )cos ( )sin )

zz

z

z

G c x c x e d
z



−

 =


= −   +   

 
 (62) 

 

2
1 2

0

( 0)

2 ( ( )cos ( )sin )

zz

z

z

G c x c x e d



−

 =

= −    +   
 (63) 

 

4.2 Distributed load p(x) on the elastic half-plane 

 

When the distributed load on the surface of the elastic soil 

mass is given by p(x) for z=0, -∞≤x≤∞, where p(x) is a known 

function of x, then from the requirement of equilibrium of 

internal vertical and external stresses, 

 

0( ) ( )zz z p x = =  (64) 

 

2 0
1 2

0

2 ( ( )cos ( )sin ) ( )G c x c x e d p x



−   +     =  (65) 

 

2
1 2

0

2 ( ( )cos ( )sin ) ( )G c x c x d p x



−   +     =  (66) 

 

Applying the Fourier integral transform to p(x), we have 

 

1 2

0

( ) ( ( ) cos ( )sin )p x A x A x d



=   +     (67) 

 

where, 

 

1

0

1 2
( ) ( )cos ( )cosA p t t dt p t t dt

 

−

 =  = 
    (68) 

 

2

0

1 2
( ) ( )sin ( )sinA p t t dt p t t dt

 

−

 =  = 
    (69) 

 

where, t is an integration parameter/variable. 

 

2
1 1( ) 2 ( )A G c = −    (70) 

 
2

2 2( ) 2 ( )A G c = −    (71) 

 

4.3 Line load Q in the elastic half-plane 

 

4.3.1 Stress function for line load on elastic half-plane 

 

 
 

Figure 1. Line load of intensity Q on an elastic half-plane 

 

For the case of a line load of intensity Q, on an elastic half-

plane as shown in Figure 1, the load function can be given by: 

 

( )
2

Q
p x = −


, x< (72) 

 

( ) 0p x = , x< (73) 

 

where 0,→  and  is a small quantity. 

Then, 

 

1

0 0

1
( ) cos

2

2 2
cos cos

2 2

t

t

Q
A t dt

Q Q
t dt t dt



−

 =

=

−
 = 

 

− −
=  = 

   



 

 

0 0

2
cos cos

2

Q Q
t dt t dt

 

− −
=  = 

    

sin sinQ Q−  − 
= =
   

 

(74) 

 

2

0

2
( ) sin 0

2

Q
A t dt



−
 =  =

   (75) 

 

As → 0, 
𝑠𝑖𝑛 𝛽∈

𝛽∈
→ 1, and 

 

1( )
Q

A
−

 =


 (76) 

 

2 ( ) 0A  =  (77) 

 

1
1 2 2 2

( ) ( )
( )

2 2 2

A Q Q
c

G G G

−  − 
 = = − =

   

/
 (78) 

 

2 ( ) 0c  =  (79) 

 

The stress function is thus, 
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2

0

( , ) cos exp( )
2

Q
x z x z d

G



 =  − 
   (80) 

 

2

0

cos exp( )
( , )

2

Q x z
x z d

G



 −
 = 

   (81) 

 

This integral for the Love’s stress function for the 2D 

problem is divergent (does not converge). 

However, by differentiation, 

 

2 2

2 2 2

0

( , )
cos exp( )

2

x z Q
x z d

x x G



  
=  − 

     (82) 

 

2

2

0

cos exp( )
2

Q
x z d

Gx



  −
=  − 

   (83) 

 

The integral obtained for the function 
𝜕2𝛺

𝜕𝑥2
(𝑥, 𝑧) converges, 

and can be readily evaluated. 

Evaluation yields: 

 

2 2

0

cos exp( )
z

x z d
x z



 −  =
+  (84) 

 

Similarly, 

 

2

2

0

cos exp( )
2

Q
x z d

Gz



 
=  − 

   (85) 

 

3

3

0

cos exp( )
2

Q
x z d

Gz



 
= −  − 

   (86) 

 

3

2

0

cos exp( )
2

Q
x z d

Gx z



 
=   − 

    (87) 

 

4.3.2 Stresses in elastic half-plane due to line load Q 

The vertical stress field is then found using Eq. (55) as: 

 
cos exp( )

cos exp( )
zz

x z

Q
G z Q

G x z dz
G





−  − 
 

 =  
 −  −  

 0
0

2
2

2

 
(88) 

 

Simplifying, 

 

cos exp( )

cos exp( )

zz

Qz
x z dz

Q
x z dz





 = −  −


−  −






0

0

 (89) 

 

 

 

 

Evaluating the integrals, 

 
2 2

2 2 2 2 2( ) ( )
zz

Qz x z Q z

x z x z

−
 =  −

 + +
 (90) 

 

Further simplification yields: 

 
2 2

2 2 2 2 2

2( )

( ) ( )
zz

Q x z z

x z x z

 −
 = − 

 + + 
 (91) 

 

Simplifying further, 

 
2 2 2 2

2 2 2

2( ) ( )

( )
zz

Q x z z x z

x z

 − − +
 =  

 + 
 (92) 

 

Simplifying, 

 
2 3 2 3

2 2 2

)

( )
zz

Q x z z x z z

x z

 − − −
 =  

 + 
 (93) 

 

Further simplification gives: 

 
3

2 2 2

2

( )
zz

Q z

x z

−
 =

 +
 (94) 

 

Similarly, 𝜎𝑥𝑥(𝑥, 𝑧) is found from Eq. (56) is follows: 

 

0

2 (1 2 ) cos exp( )
2

xx

Q
G x z d

G

   = −  −  − + 
 

  

0

cos exp( )
2

z Q
x z d

G




  − −

   

0

2
cos exp( )

2

Q
x z d

G

  
 − 

 
  

(95) 

 

Simplifying, we have: 

 

( )
cos exp( )

cos exp( )

xx

Q
x z d

Qz
x z d





− − 
 =  − 



+   − −






0

0

1 2

 

0

2
cos exp( )

Q
x z d




 − 

   

(96) 

 

Evaluating, the integrals, we obtain: 

 

2 2

2 2

2 2 2 2 2

(1 2 )

( )

2

( )

xx

Q z

x z

Qz z x Q z

x z x z

− − 
 =

 +

 − 
+ − 
 + + 

 (97) 

 

Simplifying, 
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2 2

2 2

2 2 2 2

2

2

xx

Q Q z

x z

Qz z x Q z

x z x z

 
 = − + 

   +

 − 
+ − 

  + +

 (98) 

 

Simplifying, 

 
2 2

2 2 2 2 2( )
xx

Q z Qz z x

x z x z

 − −
 = +  

 + + 
 (99) 

 

Simplifying, 
 

2 2

2 2 2 2 2

( )

( )
xx

Q z z x z

x z x z

 −
 = − 

 + + 
 (100) 

 

Simplifying further, 

 
2 2 2 2

2 2 2

( ) ( )

( )
xx

Q z z x z x z

x z

 − − +
 =  

 + 
 (101) 

 

Simplifying, 
 

3 2 2 3

2 2 2( )
xx

Q z zx zx z

x z

 − − −
 =  

 + 
 (102) 

 

Simplifying, 

 
2

2 2 2

2

( )
xx

Q zx

x z

 −
 =  

 + 
 (103) 

 

Hence, 

 
2

2 2 2

2

( )
xx

Qzx

x z

−
 =

+
 

0xy = , 0yz =  

(104) 

 

The stresses are expressed in terms of the 2D polar 

coordinates using the coordinate transformations: 

 
cosx r=   (105) 

 

sinz r=   (106) 

 
2 2 2x z r+ =  (107) 

 

cos
x

r
=   (108) 

 

sin
z

r
=   (109) 

 

Then, 

 

22
cos sinxx

Q

r

−
 =  


 (110) 

 

32
sinzz

Q

r

−
 = 


 (111) 

22
sin cosxz

Q

r

−
 =  


 (112) 

 

The stress components in polar coordinates are: 

 
2 2cos sin sin 2rr xx zz xz =  + +   (113) 

 
2 2cos sin sin 2zz xx xz =  + −   (114) 

 

( )sin cos cos2r zz xx xz =  −  +    (115) 

 

2

2 2
sinrr

Q Qz

r r

− −
 =  =

 
 (116) 

 

0 =  (117) 

 

0r =  (118) 

 

4.4 Strip load of finite width on the elastic half-plane 

 

For a strip load of width 2b as shown in Figure 2, the origin, 

O, and arbitrary point, H is the elastic half-plane are shown in 

the Figure 2. 

 

 
 

Figure 2. Strip load of finite width on the elastic half-plane 

 

The Fourier integral of the load p(x) is given by: 

 

1 2( ) ( ( )cos ( )sin )p x A x A x d



−

=   +     (119) 

 

where, 

 

1

0

1 2
( ) ( )cos ( )cosA p t t dt p t t dt

 

−

 =  = 
    (120) 

 

2

0

1 2
( ) ( )sin ( )sinA p t t dt p t t dt

 

−

 =  = 
    (121) 

 

For a uniformly distributed strip load of intensity q, we have: 

𝑝(𝑥) = −𝑞|𝑥| < 𝑏, 𝑝(𝑥) = 0|𝑥| > 𝑏, then, 

 

1

0

2
( ) cosA q t dt



 = 
   (122) 

 

1

0

2
( ) cos

b

A q t dt = 
   (123) 
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1

0

2 sin
( )

b
t

A q
 

 =
   

 (124) 

 

1

2 sin
( )

q b
A


 =

 
 (125) 

 

2

0 0

00

2 2
( ) sin sin

2 2 cos
sin

b

b b

A q t dt q t dt

q q t
t dt



 =  = 
 

−  
=  =

    

 



 
(126) 

 

2

2 cos
( )

q b
A

− 
 =

 
 (127) 

 

Hence, 

 

1
1 2 2

( ) 2 sin
( )

2 2

A q b
c

G G

−  − 
 = =

 
 (128) 

 

2
2 2 2 3

( ) 2 cos 2 cos
( )

2 2 2

A q b q b
c

G G G

−   
 = = =

    
 (129) 

 

The Love stress function for the case of uniformly 

distributed strip load is then: 

 

3 3

0

( , )

2 sin 2 cos sin
cos

2 2

z

x z

q b q b x
x e d

G G



−



−    
=  +  

    
 (130) 

 

Simplifying, 

 

3 3

0

cos sin cos
sin zq b b x

x e d
G



−   
 =  −       (131) 

 

Further simplification yields 

 

3

0

(cos sin sin cos ) zq b x b x
e d

G



−  −  
 = 

   (132) 

 

Using trigonometric identities, 

 

3

0

sin( ) zq x b
e d

G



− −
 = 

   (133) 

 

Simplifying, 

 

3

0

sin ( )
exp( )

q x b
z d

G



 −
 = − 

   (134) 

 

By differentiation of ( , )x z  with respect to z, we have: 

 

3

0

sin ( ) zq x b d
e d

z G dz



−  −
= 

    (135) 

Simplifying, 

 

3

0

sin ( )
( )zq x b

e d
z G



−  −
= − 

    (136) 

 

Further simplification yields: 

 

2

0

sin ( ) zq x b
e d

z G



− −  −
= 

    (137) 

 

Differentiation of Eq. (137) again with respect to z yields: 

 

2

2 2

0

sin ( ) zq x b
e d

G zz



−  −  − 
= 
    (138) 

 

Simplifying, 

 

2

2 2

0

sin ( )
( )zq x b

e d
Gz



−  −  −
= −  
   (139) 

 

Simplifying, 

 

2

2

0

sin ( ) zq x b
e d

Gz



−   −
= 
    (140) 

 

By differentiation of Eq. (140) with respect to z, we have; 

 

3

3

0

sin ( ) zq x b
e d

G zz



−   − 
= 
     (141) 

 

Simplifying, 

 

3

3

0

sin ( )
( )zq x b

e d
Gz



−   −
= − 
    (142) 

 

Further simplification yields: 

 

3

3

0

sin ( ) zq
x b e d

Gz



− 
= −  − 
   (143) 

 

Differentiation of the Love stress function with respect to x 

yields: 

 

3

0

1
sin ( ) zq

x b e d
x G x



− 
=  − 

     (144) 

 

Simplifying, 

 

3

0

cos ( ) zq x b
e d

x G



−   −
= 

    (145) 

 

By differentiation of Eq. (145), we have: 
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2

2 2

0

cos ( ) zq x b
e d

G xx



−    −
= 
    (146) 

 

Simplifying, 

 

2

2 2

0

sin ( ) zq x b
e d

Gx



−  −  −
= 
   (147) 

 

Simplifying, 

 

2

2

0

sin ( ) zq x b
e d

Gx



−  −  −
= 
    (148) 

 

Differentiation of Eq. (148) with respect to z yield: 

 

3

2 2

0

sin ( ) zq x b d
e d

G dzx z



−  −  −
= 
    (149) 

 

Simplifying, 

 

3

2

0

sin ( )
( )zq x b

e d
Gx z



−  −  −
= − 
     (150) 

 

Simplifying, 

 

3

2

0

sin ( ) zq
x b e d

Gx z



− 
=  − 
    (151) 

 

Differentiation of Eq. (138) with respect to x yields: 

 

3

2

0

sin ( ) zq x b
e d

G xx z



−    −
= 
      (152) 

 

Simplifying, 

 

3

2

0

cos ( ) zq x b
e d

Gx z



−    −
= 
     (153) 

 

Simplifying, 

 

3

2

0

cos ( ) zq
x b e d

Gx z



− 
=  − 
    (154) 

 

Stress fields for strip loads 

Evaluating the integrals and using the Love stress functions, 

the stress fields for strip heads are obtained as follows: 

 

1

2 2 2
1

2 2 2 2 2 2

tan

2 ( )
tan

( ) 4

zz

z

x bq

z bz x z b

x b x z b b z

−

−

   
   −

  =
− −   

− −   + + − + 

 
(155) 

1

2 2 2
1

2 2 2 2 2 2

tan

2 ( )
tan

( ) 4

xx

z

x bq

z bz x z b

x b x z b b z

−

−

   
   −

  =
− −   

− +   + + − + 

 
(156) 

 
2

2 2 2 2 2 2

4

( ) 4
xz

q bxz

x z b b z

 
 =  

 + − + 
 (157) 

 

or, in simplified trigonometric forms, 

 

( sin cos( 2 ))zz

q
 =  +   + 


 (158) 

 

( sin cos( 2 ))xx

q
 =  −   + 


 (159) 

 

(sin sin( 2 ))xz

q
 =   + 


 (160) 

 

where, the angles,  and  are defined as shown in Figure 3. 

 

 
 

Figure 3. Uniformly distributed vertical infinitely long strip 

load of width 2b acting on the surface of an elastic semi-

infinite soil mass 

 

tan(90 )
z

x b
−  =

−
 (161) 

 

tan 90 ( )
z

x b
−  +  =

+
 (162) 

 

190 tan
z

x b

−  
−  =  

 −
 (163) 

 

190 ( ) tan
z

x b

−  
−  +  =  

 +
 (164) 

 

90 (90 ( )) 90 90 ( )−− − + = −− + +  

=  +  −  =   
(165) 

 

1 1tan tan
z z

x b x b

− −   
 = −   

   − +
 (166) 

 

The results are presented in non-dimensional forms in 

Tables 1, 2, and 3 for the various loading cases considered in 

this study. The results are further validated in Table 3 which 

compared the present results with previous results and 

illustrates the agreement of present results with the previous 

results of Das [2] and Onah et al. [13]. 
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Table 1. Non-dimensional vertical stress influence values for line load on elastic half-plane  

Values of zz/q, xx/q, and xz/q for vertical strip loading 

 

x/b z/b zz/q xx/q xz/q x/b z/b zz/q xx/q xz/q 

0 

0 

0.5 

1.0 

1.5 

2.0 

2.5 

1.000 

0.9594 

0.8183 

0.6678 

0.5508 

0.4617 

1.000 

0.4498 

0.1817 

0.0803 

0.0410 

0.0228 

0 

0 

0 

0 

0 

0 

1.5 

0.25 

0.5 

1.0 

1.5 

2.0 

2.5 

0.0177 

0.0892 

0.2488 

0.2704 

0.2876 

0.2851 

0.2079 

0.2850 

0.2137 

0.1807 

0.1268 

0.0892 

0.0606 

0.1466 

0.2101 

0.2022 

0.1754 

0.1469 

          

0.5 

0 

0.25 

0.5 

1.0 

1.5 

2.0 

2.5 

1.000 

0.9787 

0.9028 

0.7352 

0.6078 

0.5107 

0.4372 

1.000 

0.6214 

0.3920 

0.1863 

0.0994 

0.0542 

0.0334 

0 

0.0522 

0.1274 

0.1590 

0.1275 

0.0959 

0.0721 

2.0 

0.25 

0.5 

1.0 

1.5 

2.0 

2.5 

0.0027 

0.0194 

0.0776 

0.1458 

0.1847 

0.2045 

0.0987 

0.1714 

0.2021 

0.1847 

0.1456 

0.1256 

0.0164 

0.0552 

0.1305 

0.1568 

0.1567 

0.1442 

          

1.0 

0.25 

0.5 

1.0 

1.5 

2.0 

2.5 

0.4996 

0.4969 

0.4797 

0.4480 

0.4095 

0.3701 

0.4208 

0.3472 

0.2250 

0.1424 

0.0908 

0.0595 

0.3134 

0.2996 

0.2546 

0.2037 

0.1592 

0.1243 

2.5 

0.5 

1.0 

1.5 

2.0 

2.5 

0.0068 

0.0357 

0.0771 

0.1139 

0.1409 

0.1104 

0.1615 

0.1645 

0.1447 

0.1205 

0.0254 

0.0739 

0.1096 

0.1258 

0.1266 

 

Table 2. Dimensionless influence values for uniformly distributed strip load on elastic half-plane 

 

zz/q 

(x/b) 

(z/b) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.00 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 

1.10 

1.20 

1.30 

1.40 

1.50 

1.60 

1.70 

1.80 

1.000 

1.000 

0.997 

0.990 

0.977 

0.959 

0.937 

0.910 

0.881 

0.850 

0.818 

0.787 

0.755 

0.725 

0.696 

0.668 

0.642 

0.617 

0.593 

1.000 

1.000 

0.997 

0.989 

0.976 

0.958 

0.935 

0.908 

0.878 

0.847 

0.815 

0.783 

0.752 

0.722 

0.693 

0.666 

0.639 

0.615 

0.591 

1.000 

0.999 

0.996 

0.987 

0.973 

0.953 

0.928 

0.899 

0.869 

0.837 

0.805 

0.774 

0.743 

0.714 

0.685 

0.658 

0.633 

0.608 

0.585 

1.000 

0.999 

0.995 

0.984 

0.966 

0.943 

0.915 

0.885 

0.853 

0.821 

0.789 

0.758 

0.728 

0.699 

0.672 

0.646 

0.621 

0.598 

0.576 

1.000 

0.999 

0.992 

0.978 

0.955 

0.927 

0.896 

0.863 

0.829 

0.797 

0.766 

0.735 

0.707 

0.679 

0.653 

0.629 

0.605 

0.583 

0.563 

1.000 

0.998 

0.988 

0.967 

0.937 

0.902 

0.866 

0.831 

0.797 

0.765 

0.735 

0.706 

0.679 

0.654 

0.630 

0.607 

0.586 

0.565 

0.546 

1.000 

0.997 

0.979 

0.947 

0.906 

0.864 

0.825 

0.788 

0.755 

0.724 

0.696 

0.670 

0.646 

0.623 

0.602 

0.581 

0.562 

0.544 

0.526 

1.000 

0.993 

0.959 

0.908 

0.855 

0.808 

0.767 

0.732 

0.701 

0.675 

0.650 

0.628 

0.607 

0.588 

0.569 

0.552 

0.535 

0.519 

0.504 

1.000 

0.980 

0.909 

0.833 

0.773 

0.727 

0.691 

0.662 

0.638 

0.617 

0.598 

0.580 

0.564 

0.548 

0.534 

0.519 

0.506 

0.492 

0.479 

1.000 

0.909 

0.775 

0.697 

0.651 

0.620 

0.598 

0.581 

0.566 

0.552 

0.540 

0.529 

0.517 

0.506 

0.495 

0.484 

0.474 

0.463 

0.453 

0.000 

0.500 

0.500 

0.499 

0.498 

0.497 

0.495 

0.492 

0.489 

0.485 

0.480 

0.474 

0.468 

0.462 

0.455 

0.448 

0.440 

0.433 

0.425 

 

Table 3. Variation of zz/(q/z) with x/z 

 

x/z Present study zz/(q/z) Reference [2, 13] zz/(q/z) x/z Present study zz/(q/z) Reference [2, 13] zz/(q/z) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

0.637 

0.624 

0.589 

0.536 

0.473 

0.407 

0.344 

0.287 

0.237 

0.194 

0.159 

0.130 

0.107 

0.637 

0.624 

0.589 

0.536 

0.473 

0.407 

0.344 

0.287 

0.237 

0.194 

0.159 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

2.2 

2.4 

2.6 

2.8 

3.0 

0.088 

0.073 

0.060 

0.050 

0.042 

0.035 

0.030 

0.025 

0.019 

0.014 

0.011 

0.008 

0.006 

 

 

0.060 

 

 

 

 

0.025 

 

 

 

 

0.006 
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5. DISCUSSION 

 

The Fourier integral method was successfully used in this 

work to determine the normal and shear stress fields in an 

elastic half-plane under line and strip loads applied on the 

boundary. The elastic half-plane is made of soil that is 

assumed linear elastic, isotropic, homogeneous and of semi-

infinite extent with −∞ ≤ 𝑥 ≤ ∞, 0 ≤ 𝑧 ≤ ∞. The governing 

equations of the elastic half-plane problem are the differential 

equations of equilibrium, the stress compatibility equation, the 

geometric (strain –displacement) relations and the boundary 

conditions. Stress formulation of the equations was adopted 

and the Beltrami – Michell stress compatibility equation was 

formulated for the two dimensional elastic half-plane problem 

considered. The Fourier integral transformation method was 

applied to the governing Beltrami – Michell stress 

compatibility equation in Eq. (46) to transform the problem 

from a boundary value problem to a fourth order linear 

ordinary differential equation (Eq. (49)) in terms of the stress 

functions in the Fourier integral transform space variable. The 

fourth order ODE was solved using methods for solving ODEs 

to obtain the stress function in the Fourier integral space in 

terms of four integration constants as Eq. (50). By inversion of 

Eq. (50), the stress function was obtained in the physical 

domain space variables as Eq. (51) which contained four 

unknown integration constants, c1(), c2(), c3() and c4(), 

which in general are functions of the Fourier integral 

parameter . The requirements for boundedness of the stresses 

and hence the stress functions were used to obtain solutions to 

two of the unknown constants of integration as Eqns. (52) and 

(53); thus, simplifying the unknown stress function as 

Equation (54) which had two unknown integration constants. 

Love stress functions for plane elasticity problems given as 

Eqns. (55) – (60) were used to obtain the expressions for the 

Cartesian stress components. The general problem of 

distributed load p(x) applied to the surface of the elastic half-

plane was considered and the equilibrium of internal vertical 

stresses and the external (applied) stresses on the surface z = 0 

was used to obtain the boundary conditions as Eq. (64). The 

enforcement of the boundary conditions gave the values of the 

two unknown integration constants for the bounded stress 

functions as Eqns. (68) and (69). For the case of line load of 

intensity Q, described mathematically as Eqns. (72) and (73), 

the unknown integration constants were found as Eqns. (76) 

and (77) or (78) and (79). The bounded Love stress function 

for the case of line load of intensity Q was then found as Eq. 

(81). The obtained expression for the Love stress function for 

line load was then used in Eqns. (55) – (60) to obtain the 

Cartesian stress components respectively as Eqns. (94) and 

(104). The stresses were expressed in terms of plane polar 

coordinates to obtain Eqns. (110) – (112). 

For the case of strip load of intensity q and finite width 2b, 

considered as shown in Figures 2 and 3, the equilibrium of the 

internal vertical stresses and the external stresses on the z = 0 

plane was used as the boundary condition to obtain the 

unknown integration constants as Eqns. (128) and (129). The 

bounded Love stress functions for the finite strip load of 

uniform intensity was thus obtained as Eq. (134). The Love 

stress function expressions Eqns. (55 – 60) were used to obtain 

the Cartesian stress components for the elastic half-plane 

problem under finite strip load as Eqns. (155) for zz, (156) for 

xx, and (157) for xz. The stresses were presented in 

trigonometric forms respectively as Eqns. (158 – 160). 

It was observed that the expressions obtained for the 

Cartesian stress field components xx, zz and xz were identical 

for the two particular cases considered – line load and finite 

width strip load of uniform intensity – to the expressions 

obtained by Das [2], Onah et al. [13] and other researchers, 

who solved the elastic half-plane problem using other methods 

such as the displacement based approach, or Airy stress 

function method. Eqns. (155-157) were calculated for different 

various values of x/b and z/b and the influence values for the 

normal and shear stresses for strip load of finite width (2b) 

presented as Tables 1 and 2. Similarly, the influence values for 

vertical stress due to line load of constant intensity Q were 

evaluated and presented for various values of x/z as Table 3. 

 

 

6. CONCLUSION 

 

The conclusions of the present work are as follows: 

(i) The Fourier integral method has been successfully used 

in this work to obtain general solutions for bounded Love 

stress functions, and normal (xx, zz) and shear stresses xz in 

a linear elastic, isotropic, homogeneous elastic half-plane in 

the xz coordinate for -∞≤x≤∞; 0≤z≤∞ under distributed 

boundary load p(x). 

(ii) The Fourier integral method has been successfully used 

in this work to obtain solutions for bounded Love stress 

functions, Cartesian stress field components xx, zz, xz is an 

elastic half-plane due to line load of uniform intensity Q 

applied on the surface. 

(iii) The Fourier integral transform method has been used in 

this work to obtain bounded Love stress functions, and 

Cartesian stress field components xx, zz and xz in elastic half-

plane problems due to finite width strip loads of constant 

intensity applied on the boundary. 

(iv) The Fourier integral method transforms the elastic half-

plane problem expressed in stress formulation using Beltrami 

– Michell stress compatibility equations to a linear ordinary 

differential equation in terms of the unknown stress function 

�̄�(𝛽, 𝑧) expressed in terms of the Fourier integral transform 

space variables. 

(v) The stress formulation method adopted in this work 

simplified the elastic half-plane problem to a problem of 

finding a suitable biharmonic stress function (x, z) that 

satisfies the boundary conditions of the particular (given) 

elastic half-plane problem expressed by the equilibrium of 

internal vertical stresses and the external stresses/load at the 

z=0 plane. 

(vi) The resulting solutions obtained for the Love stress 

functions and the Cartesian stress field components satisfy the 

boundedness conditions at z→, and are bounded solutions. 

(vii) The Fourier integral method is an integral 

transformation method which transforms the governing 

Beltrami – Michell stress compatibility equation, a biharmonic 

partial differential equation in terms of the stress function to 

an ordinary differential equation (ODE) which would be more 

amenable to closed form mathematical solutions. 
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NOMENCLATURE 

 

2D two dimensional 

ODE Ordinary Differential Equation 

ODEs Ordinary Differential Equations 

x, y, z Cartesian coordinates 

2a (or 2b) width of a finite strip load 

xx  normal strain in the x direction 

yy  normal strain in the y direction 

zz  normal strain in the z direction 

u displacement component in the x 

direction 

v displacement component in y 

direction 

w displacement component in z 

direction 

, ,xz yz xy    normal strains 

, ,

, ,

xy yz xz

xz yz xz

  

  
 

shear stresses 

G shear modulus 
  Lamé’s constant 

fx, fy, fz body force components 

E Modulus of elasticity 

tx, tz tractions 

nx, nz  direction cosines 

V potential function for the body 

forces 

( )C   parameter defined in terms of   

for plane stress and plane strain 

elasticity 

, ,
x y z

  

  
 

partial differential operators with 

respect to x, y and z respectively 

a1, a2, a3, a4 integration constants 

( ), ( ), ( ), ( )c c c c   1 2 3 4  four unknown functions of the 

Fourier integral tranform 

,c c1 2  constants used in defining Fourier 

integral tranforms of the Airy 

stress function ( , )x z  

p(x) distributed load on the boundary 

of elastic half plane 

( ), ( )A A 1 2  constants used in defining the 

Fourier integral tranform of the 

distributed load p(x) 

t dummy variable of integration for 

integrals in respect of the 

distributed load 

  small quantity used in defining 

the line load 

q intensity of uniformly distributed 

strip load 

 

Greek symbols 

 

2  Laplace differential operator 

  Poisson’s ratio 

( , )x z  Airy stress function for elasticity 

problems in the xz coordinate 

plane 

4  biharmonic differential operator 

  gradient operator 

  Fourier integral tranform 

parameters 
( , )x z  Airy stress potential function 

adopted for the 2D elasticity 

problem studied 

( , )z   Fourier integral transform of the 

stress function adopted for the 2D 

elasticity problem studied 
,   angles defined for the strip load 

problem shown in Figure 3. 

 

 

APPENDIX I 

 

2 2

0

cos( )y y
e d

x y



 −
  =

+  

2 2

0 0

cos( ) cosy yd d y
e x d e x d

dy dy x y

 

  − 
   =   =  

+    

2 2 2 2

0 0

sin cosy yd d y d y
e x d e x d

dx dx dxx y x y

 

 − − −   
   =   = =   

+ +    
 

3

2

0
2

sin exp( )
Q

x z d
Gx z



 
= −  − 

    

2 2

2 2 2

0

cos exp( )
( )

x z
x z d

x z



−
−  −  =

+  

 

Then, for line load  of infinite extent, the stress field are: 
 

2

2 2 2

2

( )
xx

Q x z

x z

−
 =

 +
 

3

2 2 2

2

( )
zz

Q z

x z

−
 =

 +
 

2

2 2 2

2

( )
xz

Q xz

x z

−
 =

 +
 

 

 

APPENDIX II 

 

Solution to Eq. (49) 

 
4 2

2 4

4 2
2 0( , ) ( , ) ( , )

d d
z z z

dz dz
  −    +   =  

 

By the method of trial functions, the unknown ( , )z   is 

assumed to be an exponential function of z of the form: 

 

( , ) expz z  =   

 

where,   is a parameter sought to enable the assumed trial 

exponential function be the desired solution. 

Then, 

 

( , ) exp
d

z z
dz

  =  
2

2

2
 

( , ) exp
d

z z
dz

  =  
4

4

4
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Then the equation becomes 

 

( )exp z −   +  =4 2 2 42 0  

 

For nontrivial solutions, exp ,z  0  and 

 

( ) −   + =  − =4 2 2 4 2 2 22 0  

 =   (twice) 

 

The basis of solutions are: 

 

exp , exp , exp( ), exp( )z z z z z z  − − −  

 

The general solution is the superposition of the linearly 

independent solution basis. 

Thus, 

 

( , ) ( )z z z zz a e a ze a e a ze  − −  = + + + −1 3 2 4  

( , ) z z z zz a e a ze a e a ze  − −  = + + −1 3 2 4  

( , ) z z z zz a e a ze a e a ze  − −  = + + +1 3 2 4  

 

where, , , ,a a a a a a a a= = = = −1 1 2 2 3 3 4 4  

( , ) ( ) ( )z zz a a z e a a z e −  = + + +1 3 2 4  
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