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The growth of human occupations in coastal areas and climate change impact have changed 

the dynamics of seagrass cover and accelerated the damage to coral reefs globally. For these 

reasons, coastal management measures need to be developed and renewed to preserve the state 

of seagrass beds and coral reefs. An example includes the improvement of spatial and 

multitemporal analyses. This study sought to analyze changes in seagrass cover and damages 

to coral reefs in Gili Sumber Kima, Buleleng Regency, Bali based on multitemporal Sentinel 

2A-MSI imagery. The algorithms of a machine learning, Random Forest (RF), and a Support 

Vector Machine (SVM) were used to classify the benthic habitats (seagrass beds and coral 

reefs). Also, a change detection analysis was performed to identify the pattern and the extent 

to which seagrass beds had changed. The multispectral classification of, particularly, coral 

reefs was used to explain the condition of this benthic habitat. The results showed +-70% to 

+-83% accuracies of estimated seagrass cover, and the change detection analysis revealed three 

directions of change, namely an increase of 27.9 ha, a decrease by 86 ha, and a preserved state 

in 157 ha of seagrass cover. The product of coral reefs mapping had an accuracy of 42%, and 

the coral reefs in Gili Sumber Kima were split almost equally between the good (1505 ha) and 

damaged ones (1397 ha). With the spatial information on seagrass beds and coral reefs in every 

region, the ecological functions of the coast can be assessed more straightforwardly and 

appropriately incorporated as the basis for monitoring the dynamics of resources and coastal 

area management. 
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1. INTRODUCTION

In Indonesia, specific data on seagrass beds and coral reefs 

are fundamental in carrying out coastal ecosystem 

management. Seagrass beds and coral reefs are natural 

resources that provide enormous ecological benefits and 

contribute substantially to the sustainability of fishery 

resources in the country. These ecosystems actively produce 

nutrients for fish, entrap sediments, dissipate current and wave 

energy, recycle nutrients, and create a highly suitable habitat 

for shallow marine organisms [1, 2]. Similar to mangroves, 

they are known to absorb carbon dioxide (CO2). According to 

the Indonesian Institute of Sciences, seagrass beds in 

Indonesia (293,464 ha) can sequester up to 1.9 to 5.8 megatons 

of CO2 per year [3]. Also, coral reefs have a very promising 

yield of fishery products [4, 5]. 

Persistently growing human activities in coastal areas and 

the effects of climate change have led to the increased 

dynamics of seagrass cover. For instance, in Indonesia, these 

dynamics are indicated by changes in the seagrass cover 

conditions, from 46% coverage in 2015 to 37.58% in 2016, 

which continued to decrease until 2019 [6]. The Decree of the 

Indonesian Minister of Environment No. 200 of 2004 

differentiates seagrass conditions into three categories based 

on percent cover of seagrasses in the region, namely healthy 

(with coverage above 60%), less healthy (30-59%), and 

unhealthy (<30%) [7]. Another decree issued by the same 

Minister, that is, No. 4 of 2001, divides the conditions of coral 

reefs into two classes, namely damaged (with coverage of 0-

49%) and healthy (50-100%) [8]. The latest record shows that 

the seagrasses in the country cover 37.58% [3] and, therefore, 

fall into the category of unhealthy. Meanwhile, the percent 

cover of coral reefs is around 67% [6], signifying a healthy 

condition. Nevertheless, these states do not rule out the 

possibility of an annual decline. As confirmed by Waycott et 

al. [2] and Zhang [9], such changes do not only occur in 

Indonesia, but up to 29% of the seagrass bed and coral reef 

ecosystems worldwide have disappeared.  

Seagrass bed and coral reef ecosystems need to continue to 

offer ecological, economic, and educational benefits for the 

community. Therefore, developing and updating coastal 

management measures are imperative as an attempt to 

preserve the conditions of these ecosystems. An example of an 

effective and efficient management tool is spatial analysis and 

multitemporal monitoring, which can be justified scientifically 

and used as a basis for managing seagrass bed and coral reef 
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ecosystems sustainably. Both spatial analysis and 

multitemporal monitoring can utilize remote sensing 

technology to provide data for identifying and analyzing the 

dynamics of seagrass cover and the condition of coral reefs in 

specific locations. Remote sensing data can be used for spatial 

analysis at various scales and periodically, so it greatly 

facilitates multitemporal coastal monitoring. Remote sensing 

enables straightforward estimates and analyses of coastal 

marine ecosystems that change periodically. Also, it assists in 

the identification and evaluation of seagrass bed and coral reef 

ecosystem management that can contribute to the growth and 

preservation of coastal marine environments.  

To be more efficient, this data is formed as a mapping model 

by utilizing the development of digital automation in the form 

of machine learning algorithms that are able to maximize the 

results of spatial analysis. This research adapts remote sensing 

technology for spatial and multitemporal analysis and machine 

learning algorithms. Especially as an initial stage to meet the 

information needs of coastal resources, especially coral reefs 

and seagrass beds, which can then be used for further analysis. 

This leads to the possibility of developing more universal 

mapping algorithm using satellite image for rapid mapping 

and monitoring of coral reef and seagrass [10]. Therefore, this 

research is expected to be used as a reference in similar studies, 

especially by government and stakeholders, when applying 

remote sensing data for coastal monitoring for coastal 

resources information for management purposes. 

Because of its high effectiveness and efficiency, remote 

sensing has been widely used in coastal resource analysis [11-

13]. Besides, with multitemporal remote sensing applications, 

patterns of changes over a particular range of years can be 

identified [14]. Remote sensing data have been used in several 

studies of seagrass bed and coral reef cover analysis and 

confirmed to produce excellent results [15-17]. Some 

examples of previous research [18] are mapped the 

biophysical characteristics of seagrass in the form of species, 

percent cover, and biomass in Moreton Bay using a variety of 

multispectral and airborne hyperspectral imagery. Lyons et al. 

[13] mapped percent of seagrass cover multi-temporal in 

Eastern Banks, Moreton Bay, Australia using OBIA. 

Roelfsema et al. [19] conducted a coral hierarchical mapping 

of coral reefs with different information scales. The hierarchy 

consists of reef, reef type, geomorphic zone and benthic 

community using object-based classification (OBIA) using 

IKONOS (4 m) and Quickbird (2.4 m) imagery. Roelfsema et 

al. [20] conducted a multi-temporal mapping of seagrass cover, 

species and biomass in Moreton Bay using a semi-automated 

object-based image analysis approach and had accurate results. 

Joyce and Phinn [21] developing spectral index for mapping 

live coral cover using multispectral and hyperspectral imagery 

integrated with a coral spectral library, and performing 

Spectral transformation, Water depth optical modeling, and 

Derivative analysis. Eastwood et al. [22] application of global 

protocols for quantitative coral reef health monitoring by 

considering the influence of increased tourism activities by 

utilizing Google Earth as a technology to accommodate reef 

check survey points. Wicaksono et al. [10] applied machine 

learning and cross validation approaches for mapping benthic 

habitats with high accuracy results. Previous research has 

shown that mapping coastal resources is very important for the 

sustainability of regional development and environmental 

management. 

This research took place in Gili Sumber Kima, Buleleng 

Regency, Bali. This small island has potential seagrass bed and 

coral reef ecosystems and, at the same time, a somewhat 

massive development of tourism activities. There have been 

no inventories of seagrass beds and coral reefs around Gili 

Sumber Kima to date, and consequently, management 

activities are less than optimal. In response to this, the study 

sought to analyze changes in seagrass cover and damages to 

the coral reef in Gili Sumber Kima using a multitemporal 

approach and Sentinel 2A-MSI imagery. This multitemporal 

analysis is expected to be able to identify the spatial or 

temporal patterns of change in seagrass cover over a specific 

period and pinpoint the contributing factors. The research 

implications include the production of data on seagrass bed 

and coral reef ecosystems (inventory) that can be used as the 

basis for monitoring and managing coastal ecosystems. 

 

 

2. METHODOLOGY 
 

2.1 Study area 

 

The research focused on Gili Sumber Kima, a very small 

island in Buleleng Regency, Bali Province, Indonesia (Figure 

1). Geographically, it is located between 8°, 111598-8°, 

130138 S and 114°, 598284-114°, 629114 E. It is one of the 

areas in Buleleng Regency that have abundant coastal 

resources, including seagrass beds, coral reefs, and fishery 

products. 

 

 
 

Figure 1. Study area 

 

2.2 Satellite image 

 

Sentinel-2A MSI (10 m), a satellite belonging to the 

European Space Agency (ESA), has nine channels consisting 

of different spectral and spatial resolutions, namely 10 m, 20 

m, and 60 m. This study used Sentinel-2A MSI images with a 

spatial resolution of 10 m, which has four channels, i.e., blue, 

green, red, and near-infrared (Table 1). This type of image was 

selected because each of its channels has a range of 

wavelengths that can accommodate the application of remote 

sensing for mapping objects in shallow coastal waters [23]. 

 

2.3 Data analysis 

 

The data processing consists of several steps. The first step 

was image corrections, followed by field data acquisition, 

image classification, bathymetry modelling, change detection, 

coral condition mapping and map validation (Figure 2). 
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Table 1. Sentinel-2A MSI image characteristics [24] 

 
Sentinel-2A MSI 

Spatial Resolution (m) 10 

Radiometric Resolution 12-bit 

Temporal Resolution 5 - day 

Spectral Wavelength Bands 

Blue 0.45-0.52 

Green 0.54-0.58 

Red 0.65-0.68 

Near-infrared 0.78-0.90 

 

 
 

Figure 2. Research flow chart 

 

2.3.1 Radiometric correction 

Remote sensing imagery contains several interferences 

from the atmosphere and the sensor during the recording. 

These interferences produce noises that can affect the process 

of object identification and image analysis and, consequently, 

decrease the accuracy of the products. For these reasons, 

satellite images need prior corrections to minimize the noises. 

Image correction comprises several stages, namely conversion 

of digital number (DN) to Top of Atmosphere (TOA) radiance, 

conversion of TOA radiance to TOA reflectance, and 

atmospheric correction to produce images with a surface 

reflectance level. Sentinel-2 MSI imagery has incorporated the 

first two stages (TOA reflectance), meaning that the products 

only require an atmospheric correction. Generally, 

atmospheric correction consists of a variety of methods 

(FLAASH, 6S, Dark Object Subtraction (DOS), Regression). 

This study employed the Dark Object Subtraction because, 

compared with the other methods, it is the most 

straightforward and efficient. So far, the other atmospheric 

correction methods have exhibited no significant effects on the 

results of the analysis [25, 26]. 

 

2.3.2 Sunglint correction 

Sunglint is a glassy reflection effect on the surface of calm 

water due to the influence of sunlight. This effect causes pixel 

error in remote sensing imagery, especially when the images 

are used in the mapping of shallow or deep waters with 

inherent optical properties. Sunglint complicates the 

identification process because the image is blocked by a 

specular reflection on the surface of the water. Sunglint needs 

to be minimized or corrected so as to improve the quality of 

the maps produced. This study used the method developed by 

Hedley et al. [27] because it is simpler, and it produces better 

results than other sunglint correction methods [28]. 

 

Rvis’ = Rvis – bi (RNIR – Rmin(NIR)) (1) 

 

Rvis’: de-glint bands 

Rvis: visible bands 

bi: Training sample gradient regression between NIR with 

visible bands  

RNIR: NIR band 

Rmin(NIR): minimum pixcel value of NIR band 

 

2.3.3 Water column correction 

Water column correction, an approach in image processing, 

minimizes the influence of electromagnetic energy attenuation 

in the water column. This correction is usually applied to 

remote sensing images used in the detection of objects in 

optically shallow waters because it can improve the accuracy 

of the maps produced [29]. For water column correction, this 

study employed the method developed by Lyzenga [30], which 

is among the simplest methods that can give better results [31]. 

 

Ij(Yiij) = ln(Li) - [(Ki/Kj).ln(Lj)] (2) 

 

Ij(Yij): Water column corrected band 

ln(Li): Deglint band logs with a lower wavelength 

Ki/Kj: attenuation coefficient  

ln(Lj): Deglint band logs with a higher wavelength     

 

a=(σi-σj)/σij (3) 

 

 Ki⁄kj= a+√(〖(a〗^2+1)) (4) 

 

σi: A band variant with a lower wavelength 

σj: A band variant with a higher wavelength 

σij: Covariance between i and j band 

a: The value obtained from the Eq. (3) 

 

2.4 Field data acquisition 

 

The data in the field were collected by photo transect [12, 

18]. This technique is known to be very efficient in terms of 

time, energy, cost, and the amount of the data acquired. Photos 

of benthic habitats were captured with underwater cameras 

while snorkeling in optically shallow waters. These cameras 

were set at the same time to enable the geotagging process 

between photos and the GPS coordinates of the captured 

objects using DNR Garmin software. The collected-samples 

were recorded as point, and each photo was interpreted using 

CPCe 4.0 software. For each photo, 24 points were randomly 

placed across the photo. 

 

2.5 Satellite image classification 

 

According to the Indonesian National Standard (SNI) 7716: 

2011, there are four major classes of benthic habitats, namely 

substrate, coral reef, seagrass, and macroalgae. This scheme of 

classification was applied to each year of available images to 

estimate the areas and distributions of seagrass and coral reef. 

The area of the two benthic habitats in each year was used as 

the basis in the analysis of changes or dynamics of seagrass 

distribution. Meanwhile, the distribution of coral reefs was 

used to describe the condition of coral reefs in Gili Sumber 

Kima. The supervised classification was processed with two 

algorithms, which were Random Forest (RF) and Support 
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Vector Machine (SVM). Both RF and SVM were run using 

EnMAP-Box. Machine-learning techniques such as SVM and 

RF are more suitable to accommodate these issues and have 

also been adapted and showed promising accuracy result [10] 

Recently, application of machine learning classification 

algorithms such as SVM and RF have been adapted and show 

promising accuracy. The use of the SVM and RF algorithms 

is not only limited to finding the suitable classification 

algorithm, but also finding the most suitable map modeling to 

adapt the models at the other area. The main purpose of 

applying machine learning is to build an automation model for 

mapping coral reefs and seagrasses with the consideration of 

more complex data sets to be more consistent and widely 

usable. The hope is that this development can facilitate the 

acquisition of blue carbon information, to assess and maintain 

coastal ecosystem services [32].  

 

2.5.1 Random Forest 

Random Forest is a machine learning in which the 

classification process is based on tree set units. Each tree unit 

determines the class of a satellite image pixel based on the 

sample data inputted to the classification [33]. Random Forest 

is a combination Regression Tree algorithm that performs 

predictions based on independent random sample dependence 

[33]. Random Forest predicts the model by generalizing errors, 

through correcting errors repeatedly in each tree, to fix 

(random split) the model to consistently produce high 

accuracy results [34]. The use of Random Forest in mapping 

is able to provide good results and reduce noise and outlayers 

in random split samples [35]. The parameter function used in 

RF is the EnMAP-Box default setting using 100 Number of 

trees, feature square root and Gini coefficient for impurity 

function. The algorithm of Random Forest was used in the 

study because it has been proven to produce high accuracy 

compared to other classification algorithms [9, 36]. 

 

2.5.2 Support vector machine 

Support Vector Machine (SVM) is a non-parametric 

algorithm of supervised classification. SVM works by finding 

a hyperplane that can separate several datasets inputted to the 

algorithm into a predetermined number of classes [9]. SVM 

has two kernels, the setting of the kernel width and the 

polynomial degree. The kernel can be set to control the 

acceptable margin of error of the classification [9, 37]. The 

parameters used in SVM are the EnMAP-Box default setting 

using the Gaussian RBF kernel with 3 numbers of folds cross 

validation. The study employed the SVM algorithm because 

in coastal resource mapping applications, including seagrass 

beds and coral reefs, the SVM algorithm is increasingly being 

used because it is able to provide high accuracy compared to 

other algorithms [38-40]. 

 

2.6 Change detection 

 

Multitemporal aspects (time series) are the pivot of analysis 

of change because they incorporate initial or before (t1) and 

after (t2) conditions. Changes are defined from the transition 

of the distribution of dominant objects between t1 and t2 [41]. 

t1 in this study is 2015 and t2 is 2019. Benthic habitat maps 

obtained in 2015 and 2019 were then analyzed for change 

detection to determine which benthic composition had 

changed. This study used a Change Analysis Modeler to find 

out any changes in seagrass cover from 2015 until 2019. 

 

2.7 Accuracy assessment 

 

In this study, the accuracy test, i.e., a confusion matrix [42], 

sought to determine the accuracy of the maps produced. The 

input of a confusion matrix is the validation set outside the 

training data that is analyzed against the image classification 

results to describe the precision of the classification model. 

Meanwhile, the outcomes are accuracy and kappa values. 

Accuracy is the ratio of the correctly classified validation data 

to the total validation data. Kappa values represent the 

proportion of the accurately classified validation data based on 

the accumulation of agreement values in each class. 

 

 

3. RESULT AND DISCUSSION 
 

3.1 Benthic habitat mapping 

 

The benthic habitats were mapped using the major classes 

proposed by the Indonesian National Standard (SNI) and the 

technical guidelines for benthic habitat mapping issued by the 

data managers of P2O LIPI. Here, the major classes are 

substrate, coral reef, macroalgae, and seagrass. Benthic habitat 

maps were created by the multispectral classification of 

images that went through sunglint and water column 

corrections using the RF and SVM algorithms. The maps 

processed from images in two different years present different 

distributions and areas (Figure 3). From 2015 until 2019, the 

benthic habitats were experiencing some changes in their 

distributions and areas. The most noticeable change was the 

substrate. In 2015, the substrate cover was significantly wider 

than in 2019. This area reduction is believed to be the effect of 

climate, wave energy, current, and highly dynamic coastal 

waters [43, 44]. The same case applies to seagrass and coral 

reef covers. However, there was a misclassification in 2015 

because the reflection of the coral reef was very similar to that 

of seagrass. Also, in 2019, the area of macroalgae had 

decreased, although not significantly. 

Each classification result had different values of accuracy. 

RF algorithm with water column-corrected images as the 

channel input produced a classification of the 2019 data with 

the highest accuracy, 68.3%, and a kappa value of 52.89%. 

Meanwhile, in 2015, the highest accuracy (62.94%, with a 

kappa value of 42.25%) was produced by the SVM algorithm 

with sunglint-corrected images as the channel input (Table 2). 

The difference in accuracy was caused by the validation data 

that were sourced from 2019, meaning that when they were 

applied to the 2015 data, many validation points were either 

mismatched or non-existent. There was a high possibility that 

one point showed a benthic object in 2015 but a different one 

in 2019. As a result, the accuracy of the classification model 

in 2015 was lower than in 2019. This study is limited by the 

absence of temporal validation data for the year 2015. It 

assumed that the 2019 data could represent the appearance of 

benthic objects in 2015, as evidenced by the insignificant 

difference between the accuracies of the 2015 and 2019 

classifications, i.e., 5-6%. The results of the experiment on 

benthic habitat classification are presented in Table 2. 

Judging from the producer and user accuracies (Figure 4), 

seagrass cover from the best benthic habitat map in each year 

can be classified at high accuracy. In 2015, the map of the 

seagrass cover, which was produced using the SVM algorithm 

and sunglint-corrected images, had an accuracy of +-70%. 

Meanwhile, in 2019, through the RF algorithm and water 
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column-corrected images, the mapped seagrass cover had an 

accuracy of +-83%. These figures demonstrate the ability of 

Sentinel-2A MSI as a data source that can classify marine 

objects correctly. 

 

 

 
 

Figure 3. Benthic habitat map 

 

Table 2. Benthic habitat map accuracy result 

 

Tahun Band 
Machine Learning 

Algorithm 
OA (%) Kappa 

2015 

DII 
RF 42.66 3.42 

SVM 46.85 0.00 

Deglint 
RF 62.24 42.63 

SVM 62.94 42.25 

Tahun Band 
Machine Learning 

Algorithm 
OA (%) Kappa 

2019 

DII 
RF 68.39 52.89 

SVM 38.06 -2.86 

Deglint 
RF 58.06 38.44 

SVM 63.23 48.50 

 

Based on the overall results of benthic habitat maps, DII 

bands have the lowest accuracy result. The benthic mapping 

concept emphasizes the variation aspects of pixel values on 

each object so the model can run optimally. Thus, when the 

pixel variation is very low, the model will saturate and cause a 

large error. In the DII band, the image pixel shows the object 

index value. Because each benthic object has similar DII 

values to another (low pixel variation). Thus, when the model 

is applied, saturation occurs, which produces high error in the 

maps. Another thing that affects the low accuracy of the 2015 

benthic habitat map is the decreases of image quality when 

water column correction (DII) is applied (technical factors). 

The use of Sentinel-2 MSI images in very good clarity 

conditions, there is no need for additional correction or 

transformation treatments such as DII because it can worsen 

the pixel value of the image and decrease the accuracy [45]. 

 

 

 
 

Figure 4. Seagrass producer's (PA) and user's accuracy (UA) 

map 

 

Using a machine-learning algorithm, it is very possible to 

include various datasets as classification inputs, in order to 

obtain an accurate benthic habitat map. Thus, the machine-

learning algorithm may produce a classification result at the 

maximum image descriptive resolution. Regarding the 

machine learning classification algorithm, variations in the 

function parameters of both SVM and RF do not have a 

significant difference in results. This can be proven through a 

similar study using RF and SVM. [46] conducted an RF 

experiment for mapping seagrass beds. The scenarios used are 

five number of trees scenario, 25, 50, 75, 100, and 500. In 

addition, functions features, i.e., Square root of all features and 

Log of all features, and impurity in a node, i.e., Gini coefficient 

and Entropy. Based on the RF experiments, the results 

obtained are not very significant, its only differed 0.8 to 5.8% 

of the overall accuracy. This indicates that RF is a more 

consistent machine learning classification algorithm. 

For the SVM algorithm, if the image quality is in very good 

condition, the results obtained will not have significant 

accuracy with RF. Both after applying kernel variations and 

the number of folds used. What is found in this research is that 

SVM is very sensitive with poor image quality (high noise). 

Therefore, the results obtained have lower accuracy than RF. 

However, RF provided more consistent performance in terms 

70

52.24

72.31 70.15

46.85

100

74.6 70.15

UA PA UA PA UA PA UA PA

RF DII RF Deglint SVM DII SVM Deglint

2015

85.71 83.08
88.57

47.69

26.92

10.77

88.24

46.15

UA PA UA PA UA PA UA PA

RF DII RF Deglint SVM DII SVM Deglint

2019
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of spatial distribution and its similarity to the field condition 

compared with SVM [10]. As a suggestion for further research, 

especially machine learning algorithms so that they can be 

widely used. It is very important to pay attention to the band 

used. For instance, the quality of the corrected image of the 

water column is very subjective and depends on the condition 

of each area's waters. When the conditions are not favorable, 

the resulting model tends to give less good results. So that the 

best input band to use is Surface reflectance and deglint bands. 
 

3.2 Seagrass change detection 
 

Change detection helps to identify changes in seagrass 

cover from 2015 until 2019. This analysis can 

straightforwardly pinpoint the direction of the observed 

changes. Figure 4 shows that the estimated seagrass cover had 

an accuracy of +-70% in 2015 and +-83% in 2019. The 

classifications of seagrass cover had different accuracies 

because of many factors. From the data source, the 

contributing factors may include resolution, correction, data 

quality, and algorithm. The circumstances in the field may also 

be a factor, such as water clarity, seagrass depth, seagrass 

density, and sand substrate in the background.  

In clear shallow waters, the sand substrate can simplify the 

identification process and improve the accuracy of the 

seagrass cover classification [13]. Sand and seagrass in clear 

shallow waters have contrasting reflections. The former has a 

light expression, while the latter is dark. With these 

characteristics, the seagrass and sand objects in the study area 

can be distinguished; therefore, the classified seagrass cover 

had high accuracy. Figure 5 shows the different distribution 

patterns of seagrass cover in 2015 and 2019. In the middle of 

the study area close to the sandbar, a significant difference was 

detected. In 2015, this point was a sand substrate, but in 2019, 

it had transformed into seagrass. The seagrass cover decreased 

from 243.3 ha in 2015 (including misclassification) to 185.2 

ha in 2019. This decline illustrates significant changes in 

seagrass cover. 

The change detection analysis produced three directions of 

change, namely decreasing, increasing, and unchanging 

(Figure 6). In the case of seagrass, the area of coverage was 

decreased by 86 ha and increased by 27.9 ha, whereas no sign 

of changes was found in the other 157 ha. The unchanging 

state represents seagrass habitats with preserved conditions 

that are protected from coastal processes and dynamics. 

However, the total loss of the seagrass area (changed into sand 

substrates) was approximately three times greater than the 

increase. Unless mitigated soon, this situation will negatively 

affect marine ecosystems. In 2015, the spatial distribution of 

the seagrass cover was better than in 2019. These changes are 

attributable to the hydrodynamic effects of waves and currents, 

as well as the influence of human activities. Cage culture and 

many other aquaculture practices, excessive exploitation of 

shellfish (clams), and blast fishing [47, 48] significantly affect 

the growth and development of seagrass cover in shallow 

waters. In the study area, many fish ponds have been built 

close to seagrass beds and coral reefs, and their number 

continues to grow. In the long term, this form of aquaculture 

brings about damages to seagrass cover, coral reefs, and fish 

habitats and deteriorates the quality of the waters. The 

interviews with the local community revealed that clam 

exploitation by bombs and crowbars were the leading cause of 

the damages in Gili Sumber Kima. According to the fishers, 

the perceived environmental damages included loss of fish and 

other marine organisms. This adversity reduced the total 

fishery products and threatened the continuity of fisher 

livelihoods. If this issue continues in the future, it will cause 

severe negative impacts on shallow-water habitats, especially 

seagrass cover. 

 

 

 
 

Figure 5. Seagrass cover map of 2015 and 2019 

 

 
 

Figure 6. Seagrass change detection map 

 

Changes in seagrass cover are also attributable to climatic 

factors (wind, waves, strong currents) [15]. When severe 

weather occurs, it causes direct physical damage to the 

seagrass cover as it stirs up the sediments and mixes them with 

the chemical waste from the residential and lodging areas. In 

this case, seagrass cover cannot grow optimally. According to 

[2, 48], there is a positive correlation between the extent of 
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land-use conversion to built-up environments and the 

significance of the seagrass cover shrinkage. In the future, to 

avoid the emergence of negative impacts, the condition of the 

waters and benthic habitats needs to be preserved so as to 

allow seagrass beds to grow and develop optimally. A 

sustainably healthy ecosystem is believed to bring a variety of 

rare aquatic organisms, such as turtles and dugongs that highly 

depend on seagrass as their source of food. Provided that any 

human activities that worsen the condition of these 

environments are significantly reduced, the existence of these 

sea creatures can stabilize the marine environments. Another 

positive impact of a healthy ecosystem is that coral reefs can 

improve their state of health and natural functions as fish 

habitats. In the future, similar research is expected to be able 

to develop or utilize data on ecosystems and shallow-water 

biodiversity to observe the development trend or pattern 

periodically [13]. 

 

3.3 Coral condition mapping 

 

The maps of coral reef cover created in this study have high 

accuracy. The SVM and RF algorithms produced the 

accuracies of 77-80% and 60-70%, respectively (Figure 7). 

These percentages indicate that 60-80% of the estimated 

seagrass cover is closely similar to the actual condition in the 

field. The area of cover produced by the SVM algorithm has 

high accuracy and shows a similar distribution to the actual 

condition. Therefore, it was used as the boundary in the 

analysis of coral reef condition. 

 

 
 

Figure 7. Graphic of Coral Reef Condistion Class Producer’s 

(PA) and User’s Accuracy (UA) 

 

Based on the classification scheme, the mapping was 

carried out using two classes of coral reefs, namely damaged 

and healthy coral reefs. Either class was decided by comparing 

the percent of live coral reef cover with the dead one. If the 

percent of live coral reef cover is greater than the dead one, the 

object is classified as healthy. On the contrary, if the percent 

of dead coral reef cover is higher than the live one, the object 

falls into the category of damaged. The coral reef conditions 

were mapped using Sentinel-2 MSI images, whose level of 

correction already includes surface reflectance. At this level, 

the pixel value of the image can represent different coral reef 

conditions in the field, and in that year, the primary data were 

collected in the field. The results of the water column 

correction on Sentinel-2 MSI images were not used in the 

mapping because this correction would change the value of the 

image into the depth invariant index. The depth invariant index 

is not suitable for the mapping of coral reef conditions because 

it is significant in different types of objects. For instance, the 

damaged and healthy coral reefs in water column-corrected 

images have similar index values. Therefore, discriminating 

between the two states of health would be difficult. Meanwhile, 

using surface reflectance imagery, the conditions of coral reefs 

can be distinguished easily because the reflections correspond 

to the actual conditions of the objects in the field. Using a 

rather strong water column correction can cause damages or 

severe noises on the image and lead to a complex identification 

process and reduced accuracy [45]. 

The map of the coral reef conditions showed a fairly unique 

distribution. The damaged coral reefs were located in shallow 

waters, whereas the healthy ones were in deep waters (Figure 

9). With 42% accuracy and a kappa value of 0.38, this map 

had a relatively low precision. This result is caused by the lack 

of sample size that causes some points to be misclassified 

during the calculation of the accuracy. Besides this is due to 

the similarity of pixels between coral reefs with different 

percent cover. The different depths also affected the value of 

the coral reef pixels. The deeper the coral reef, the lower the 

pixel reflectance and identified as a high coral live cover, and 

vice versa. The coral percent cover mapping results have 

accuracy and other problems that are comparable to those 

found in some studies [21]. Until now, coral percent cover 

mapping has rarely been attempted due to the low accuracy of 

the results. Based on the distribution pattern, the estimated 

state of the coral reefs resembled the actual condition—i.e., the 

damaged reefs were found in shallow waters but the healthy 

ones were in deep waters. A total of 1397 ha of coral reefs 

were damaged, while the healthy ones covered an area of 1505 

ha (Table 3). In other words, almost 50% of the coral reefs 

around the waters of Gili Sumber Kima are damaged. 

 

Table 3. Area of coral cover condition 

 

Coral Class Area (ha) 

Healthy Coral 1505.56 

Dead Coral 1397.27 

 

 

 
 

Figure 8. Coral condition: a) Healthy coral; b) Dead coral 

source: Field data (2019) 

 

Massive human activities in coastal areas are known to 

cause damages to coral reefs. Humans affect their 

surroundings through the rapidly growing tourism activities, 
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land-use conversion to settlements and tourism services, 

aquaculture, marine traffics, construction of infrastructure, 

and destructive fishing [49, 50]. The distribution of the 

damaged coral reefs in the shallow waters (Figure 8) seems to 

associate with the floating net cages, which cover a relatively 

large area close to the coral reefs. The intensive activities in 

this form of aquaculture affect the surrounding aquatic 

environments, leading to stressed and eventually damaged 

coral reefs. Also, most floating net cages are anchored or tied 

to coral reefs to prevent them from drifting. Aside from this 

cage culture, damages to coral reefs are induced by clam 

overexploitation and severe weather. Coral reefs are home to 

kima or giant clams that are protected and have high economic 

values. Around the waters of Gili Sumber Kima, these clams 

are harvested massively by damaging the coral reefs using 

crowbars. Consequently, many coral reefs are damaged in the 

process, especially in the north. 

 

 
 

Figure 9. Coral condition map 

 

Severe weather that hits the northern coast of Bali has 

caused many changes in the coastal region. Gili Sumber Kima, 

part of the northern coast, has to suffer a considerable impact, 

particularly on the sustainability of its coastal ecosystems. 

Severe meteorological phenomena accumulate sediments in 

shallow waters, and sediments are known as one of the biggest 

enemies of coral reefs. Sediments block the sunlight from 

reaching the polyps on top of the coral reefs and, thereby, 

prevent the process of photosynthesis and hinder the search of 

nutrients for the growth of the coral skeleton. Over time, the 

coral reefs are damaged, and eventually, die [5]. Damages to 

coral reefs around the waters of Gili Sumber Kima 

demonstrate that the direction of the changes in coastal water 

environments and ecosystems is negative. These negative 

changes are, for instance, decreased values of biodiversity and 

fishery products, deteriorated quality of the aquatic 

environment, and the loss of objects that can dissipate the 

wave and current energy. All of these problems arise because 

coral reefs can no longer function as the primary ecosystem 

that supports coastal waters [44]. Unlike the northern coast, 

the waters in the east are dominated by healthy coral reefs 

because they are located far from the location of human 

occupations (i.e., cage culture). Moreover, in these protected 

waters, clam exploitation and diving tourism are restricted, 

allowing the coral reefs to grow sustainably without any 

threats of damages. Mapping the condition of coral reefs 

provides an abundant amount of information that acts as the 

basis for determining the priority areas for coral reefs 

monitoring and management [4, 9]. It also assists the 

stakeholders in taking actions straightforwardly according to 

the prepared conservation programs. 

 

3.4 Bathymetry mapping 

 

The topographic conditions of the shallow waters of Gili 

Sumber Kima are divided into four morphological forms of 

coral reef, namely reef flat, reef crest, fore reef, and patch reef. 

Reef flats are dominated by substrate, seagrass, and 

macroalgae, while reef crests, fore reefs, and patch reefs are 

dominated by coral reefs. These forms can be identified by 

calculating and characterizing the depth of the coastal waters. 

The spatial data on water depth, or commonly called 

bathymetry, can be extracted from remote sensing imagery 

using various modeling methods. These methods rely on 

primary data (measurement in the field) and/or qualitative 

estimates, which are based on the characteristics of the depth 

range identifiable from remote sensing images. Bathymetry 

modeling can be performed using many techniques, including 

band ratio, single band, and Relative Water Depth Index 

(RWDI) [51]. Because the bathymetry information is not 

available in the study area, single band and band ratio are 

therefore inapplicable. To produce the spatial data of relative 

bathymetry, the research employed RWDI. The principle of 

RWDI is the spectral response of objects at the bottom of the 

water to visible and near-infrared channels. RWDI produces 

bathymetry with relative depth information, as indicated by the 

ratio of 0 (shallow waters) and 1 (deep waters) [52]. The 

bathymetry model showed that shallow waters dominated the 

coastal waters of Gili Sumber Kima. The shallow waters are 

shown in red to yellow, while deep waters are depicted in cyan 

to bluish color (Figure 10). 

 

 
 

Figure 10. Relative water depth index (RWDI) map 

 

The 3-dimensional visualization proved that the bathymetry 

model corresponded to the actual depth in the field. There were 

slightly different morphological appearances in the 3-

dimensional view of the eastern waters. Patch reefs, where 

coral reefs grew, were dominant in these waters. 

Topographically, their form resembled small hills that were 

separated from each other (Figure 11). There was a slight error 

in the modeling results, especially on a small island in the 

middle of the shallow water. The waters around the small 

island had a very clean sand substrate, and the field survey 

showed that they were 0.3 to 1 m in depth. However, because 

the pixel values were severely bright, the RWDI model read 
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these features as very shallow waters. Another error was found 

in waters with depths of >10 m because the RWDI model read 

these features as the saturation of the pixel values. If viewed 

from satellite images, deep waters produce a similar spectral 

response. In this case, the RWDI model reads the response as 

saturation and perceives the pixel values as having a relatively 

similar depth (1). 

 

 
 

Figure 11. 3D Visualization of RWDI Bathymetry 

 

The cross-sectional profile of the modeled bathymetry 

(Figure 12) was formed with a transect from shallow to deep 

waters. It depicted the topographical conditions of this 

segment. In this study, the transect was an imaginary line 

cutting through the northern part of the shallow waters in Gili 

Sumber Kima, as shown in Figure 11. This part of the waters 

was selected because the field survey was carried out 

intensively in this location. In other words, verifying the 

results of the modeling with the actual conditions would be 

straightforward. The cross-sectional profile of the bathymetry 

of shallow waters in Gili Sumber Kima is presented in Figure 

12. 

 

 

 
 

Figure 12. Bathymetry cross-profile: a) transect a and b) 

transect b 

 

 

 

According to the cross-sectional profile, the morphological 

zonation of the coral reefs is in line with the discussion at the 

beginning of Point 3.4. The morphology is divided into four 

forms, namely reef flat, reef crest, fore reef, and patch reef. 

Reef flats have a relatively flat topography, while reef crests 

are the transition zone between reef flats and deep waters 

(cliff). Fore reefs are indicated by steep topography 

overlooking open sea waters. Patch reefs have similar 

topography to a small hill with a hilltop that is not too high 

(Figure 11). So far, bathymetry mapping using remote sensing 

imagery has been able to produce accurate data, with the 

standard errors ranging between 0.79 and 1.05 m [53-55]. The 

spatial information of bathymetry is essential in coastal area 

management and planning. Bathymetry shows which waters 

have the potential for fisheries using the habitat approach. 

Also, it functions as supporting data in navigation and port 

development plans and identifies safe locations for the ship’s 

mooring. Therefore, rapid acquisition of bathymetric data 

from remote sensing imagery is one of the breakthroughs in 

coastal area management and development. 

 

 

4. CONCLUSIONS 

 

The maps of seagrass cover and coral reefs produced in this 

study have high accuracy. The accuracies of the seagrass cover 

are +-70% in 2015 and +-83% in 2019, while the accuracy of 

the coral reef cover is up to 82%. These percentages indicate 

that the estimated seagrass cover and coral reefs are reliable 

and can be used for analyzing shallow-water ecosystems, 

including the analysis of changes in seagrass cover and 

damages to coral reefs. Based on the multitemporal analysis of 

seagrass cover in 2015 and 2019, there are significant changes 

between the two years. In 2015, the seagrass cover was 

significantly wider than in 2019. In terms of area, the seagrass 

cover was increased by 27.9 ha and reduced by 86 ha, while 

the other 157 ha showed no changes. The transformation of 

seagrasses to sand substrates appears to dominate these 

changes. Seagrass covers that tend to change are located close 

to the cage culture and not protected from the hydrodynamic 

process of marine waters. The estimated condition of coral 

reefs has low accuracy, that is, 42%, due to the lack of sample 

size on damaged coral reefs. The produced maps show that, 

spatially, 1397 ha of the coral reefs in Gili Sumber Kima is 

damaged, while the healthy coral reefs cover an area of 1505 

ha. These findings show that the coral reefs are split almost 

equally (50%) between the damaged and the healthy ones, or 

in other terms, the coral reefs seem to have suffered massive 

damages. Damages to the coral reefs are attributable to human 

activities, such as aquaculture, tourism, clam exploitation, 

destructive fishing, municipal waste from the surrounding 

residential and lodging areas, and severe weather. 
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