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 Aiming at the problem of low control precision and small applicable scope caused by 

adjusting control parameters in Ziegler-Nichols (ZN) method, a parameter tuning method 

based on Worm algorithm (WOA) is proposed for Brushless DC motor. Firstly, the model 

of speed control is established by proportional integral method for Brushless DC motor 

with two - phase conduction and three - phase full bridge drive. Then the fitness function 

of the controller is constructed by the Integral Absolute Error (IAE). Finally, the early 

optimization process, the later movement rule and the peak extraction rule are determined 

for WOA, and the controller parameter tuning process is designed. Simulation results 

under constant and sinusoidal conditions show the effectiveness of the proposed method. 

WOA was compared with ZN, genetic algorithm (GA), differential evolution algorithm 

(DE) and particle swarm optimization algorithm (PSO) in the experiment. The 

experimental results show that the control effect (CE) of WOA under uniform speed has 

been improved by 2.56% on average, and has been improved by 16.93% on average under 

sinusoidal speed. Compared with previous methods, this method can be used for parameter 

adjustment of complex control with higher control precision.  
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1. INTRODUCTION 

 

The speed is one of the important control objects for the 

Brushless DC Motor (BLDCM). Due to the real-time and the 

coupling of the BLDCM, the traditional method with Ziegler-

Nichols (ZN) could not satisfy the operational requirements in 

the practical applications such as the cooler [1, 2] and the 

electric vehicle [3]. BLDCM not only needs more complex 

control, but also requires higher control precision in the 

control of robot. In order to reduce the adjustment difficulty 

and to improve the control accuracy under complex control 

requirements, the experts use the intelligent algorithm to adjust 

the control parameters. 

Cao [4] designed an optimization method for the direct 

drive servo system based on the genetic algorithm, and the 

method verified that it has the good dynamic response 

characteristics for the permanent magnet synchronous motor. 

Ma et al. [5] designed a control strategy of the controller based 

on the fuzzy neural network. By using the strategy, the device 

can prevent the danger of mine hoist from decelerating at low 

cost, and the safety and reliability of mine hoist are greatly 

improved. El-Wakeel et al. [6] proposed a technology to 

determine the parameters of the speed-controller for the 

permanent magnet brushless DC motor based on the hybrid 

particle swarm optimization and the bacterial foraging. It is 

concluded that the technology is more effective in improving 

the step response characteristics and achieving the expected 

performance index. Zhou et al. [7] proposed the improved 

spotted hyena optimization algorithm (ISHO) with nonlinear 

convergence factor to optimize the proportional integral 

derivative (PID) parameter for automatic voltage regulator 

(AVR). The advantages of the proposed algorithm are verified 

by experiments in terms of solution accuracy and convergence 

speed. Jing proposed a genetic fuzzy immune PID algorithm 

to achieve a constant speed in this study [8]. The results 

showed that the algorithm has a significant effect. Cui et al. [9] 

proposed an improved monarch butterfly algorithm based on 

local search and differential evolution. The experiment results 

showed that the superiority of the proposed algorithm in PID 

tuning]. Yu et al. [10] proposed an improved PSO algorithm 

that optimized the control PID parameters of a specific robot. 

The experimental results verify the effectiveness of the 

proposed method. 

In addition, parameter tuning methods based on other 

intelligent algorithms are referred to this paper. For example, 

genetic algorithm (GA) [11-13], fuzzy control algorithm [14], 

particle swarm optimization algorithm (PSO) [15], differential 

evolution algorithm (DE) [16], and fuzzy neural network [17]. 

The methods of the parameters adjusted based on the above 

intelligent algorithm can control the object effectively. 

However, the intelligent algorithms need lots of calculations 

to meet the requirements of control accuracy. Therefore, it is 

especially important to find an intelligent algorithm with fewer 

calculations and higher accuracy. The advantages of the few 

input parameters, the stable calculation result, and the fast 

convergence speed of the worm algorithm are determined by 

the unique structure and calculation method. The purpose to 

reduce the total deviation of speed control and improving the 

operating effect for BLDCM is met by establishing the speed 

control model, determining the fitness function standard of 

controller, and designing the tuning method of controller 

parameters based on the worm algorithm (WOA) [18]. 
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2. BLDCM SPEED CONTROL MODEL 

 

The premise of the experimental is to establish the model. 

The model of the BLDCM with the two-phase conduction is 

universal and representative, which is shown in Figure 1. 

 

 
 

Figure 1. Equivalent circuit of brushless DC motor 

 

As shown in Figure 1, the BLDCM adopts Y-type 

connection mode, and there is two-phase conduction in each 

state during the operation. The voltage balance equation is 

obtained without considering the influence of the eddy current 

effect and the hysteresis while the excitation current and the 

motor compensation are supposed in an ideal state. 
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In the formular, uA, uB and uC are the phase voltage of stator 

winding (V); r is the resistance of each phase (Ω); IA, IB and IC 

are the stator phase winding current (A); d is the differential 

operator; eA, eB, and eC are the reverse electromotive force of 

the stator phase winding (V); l is the self-inductance of the 

winding (H). 

Eq. (1) can be simplified as: 

 

𝑢𝐴(𝑡) = 𝑟𝐴𝐼𝐴(𝑡) + 𝑙𝐴

𝑑𝐼𝐴(𝑡)

𝑑𝑡
+ 𝑒(𝑡) (2) 

 

In the formular, uA is the armature voltage (V), e is the 

reverse potential (V), IA is the armature current (A), rA is the 

winding resistance (Ω), lA is the armature inductance (H). 

The relationship between the reverse potential and the 

rotational speed is shown in Eq. (3). 

 

 𝑒(𝑡) = 𝑘𝑒𝑛(𝑡) (3) 

 

In the formula, ke is the back electromotive force 
(𝑉. 𝑚𝑖𝑛 𝑟⁄ ) the speed of BLDCM(𝑟 𝑚𝑖𝑛⁄ )he electromagnetic 

torque equation (Te) of the BLDCM is shown in Eq. (4). 

 

 𝑇𝑒(𝑡) =
𝑒𝐴𝐼𝐴 + 𝑒𝐵𝐼𝐵 + 𝑒𝐶𝐼𝐶

𝑛
= 𝑘𝑡𝑖𝑑(𝑡) (4) 

 

In the formula, kt is the torque constants(𝑁. 𝑚 𝐴⁄ ), Te is the 

electromagnetic torque (𝑁. 𝑚). 

The mechanical motion equation is as follows: 

 

𝐽
𝑑𝑛𝑡

𝑑𝑡
= 𝑇𝑒(𝑡) − 𝑏𝑣 (5) 

In the formula, J is the moment of inertia (kg·m2), bv is 

viscosity coefficient (N.m.s). 

Open loop transfer function of BLDCM transformed by 

Laplace method: 

 

𝐺(𝑠)𝐻(𝑠) =
𝑘𝑡𝑘𝑒

𝑙𝑎𝐽𝑠2 + (𝑟𝑎𝐽 + 𝑙𝑎𝑏𝑣)𝑠 + 𝑟𝑎𝑏𝑣

 (6) 

 

In the formula: ke is the back electromotive force constant 
(𝑉. 𝑚𝑖𝑛 𝑟⁄ ). kt is the motor torque constant (𝑁. 𝑚 𝐴⁄ ), J is the 

moment of inertia (kg·m2), bv is the viscosity coefficient 

(N.m.s), ra is the winding resistance of the BLDCM (Ω), la is 

the armature inductance (H). 

When the load torque is 0, the open-loop function of 

BLDCM speed with PI control by Laplace method is obtained. 

 

𝐺𝐺(𝑠)𝐻(𝑠) =
𝑘𝑡𝑘𝑒𝐾𝑝(𝑇𝑖𝑠 + 1)

𝑇𝑖𝑠(𝑙𝑎𝑠 + 𝑟𝑎)(𝐽𝑠 + 𝑏𝑣)

=
𝑘𝑡𝑘𝑒𝐾𝑝𝐾𝑖

𝑠(𝑙𝑎𝑠 + 𝑟𝑎)(𝐽𝑠 + 𝑏𝑣)
 

(7) 

 

In the formula, kp is the proportion gain coefficient, Ti is the 

integral time, and 𝐾𝑖 = 𝐾𝑝 𝑇𝑖⁄  is the integral gain coefficient. 

 

 

3. METHOD 

 

The controller parameters with good control effect, high 

control accuracy, high reliability and strong identification are 

obtained by tuning the parameters of BLDCM. 

 

3.1 WOA controller parameter optimization 

 

The best control effect of the speed is the key of tuning the 

parameters of the controller for the BLDCM. Because of the 

short length in coding, the strong ability in searching and the 

stable direction in optimizing. The decimal coding is adopted: 

 

𝐾 = {𝐾𝑝, 𝐾𝑖} (8) 

 

In the formula, K is the optimal individual of the algorithm, 

and it is the overall control parameter of the controller also. kp 

and ki are the dimensions of the optimal individuals. kp is used 

to increase the control sensitivity, to improve the regulation 

speed and to reduce the steady-state error. ki is used to 

eliminate steady-state error and to improve control accuracy. 

 

3.2 Determination of fitness function 

 

There are many evaluation indexes for the control effect of 

the motor speed. The method proposed in this paper is to 

reduce the total deviation of the BLDCM during the operation. 

Therefore, the Integral of Absolute Error (IAE) [19, 20] is used 

as the quantitative standard of the effect for the speed control 

(fitness function). 

 

𝐹𝐼𝑇 = ∫ |𝑒(𝑡)| 𝑑𝑡
∞

0

 (9) 

 

In the formula: FIT is the quantitative value of the effect for 

the speed control; ∫ |𝑒(𝑡)| 𝑑𝑡
∞

0
 is the sum of absolute deviation 

among the actual speed and the expected speed during the 

operation time. Obviously, the value of FIT representative the 
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adaptability of evolutionary individual K in the WOA. The 

smaller FIT, the better adaptive ability of evolutionary 

individuals. It shows that the stronger the adaptive ability of 

the evolutionary individual, the better the control effect of the 

controller on the BLDCM. 

 

3.3 Rules of design 

 

The rules of WOA are composed by early optimization rules, 

later moving rules and peak extraction rules [21]. The specific 

rules of WOA are designed as follows: 

Early optimization rules. The early optimization can find all 

the peaks in the interval and lay the foundation for the later 

optimization. The convergence speed and the computational 

efficiency of the WOA are improved by comparing the control 

effect (fitness value) of individual current position with that of 

adjacent individual. The parameter of the movement is set to 

0 when the control effect of central individual is better than 

that of adjacent individual, otherwise the parameter of the 

movement is set to 1. The early optimization rule satisfied as: 

 

𝐾𝑝(𝑙) = (𝐾𝑝(𝑀𝐴𝑋) − 𝐾𝑝(𝑀𝐼𝑁))

∗
(𝑙 − 1)

(𝑚 − 1)⁄ (𝑙 = 1,2, ⋯ , 𝑚) 

𝐾𝑖(𝑗) = (𝐾𝑖(𝑀𝐴𝑋) − 𝐾𝑖(𝑀𝐼𝑁))

∗
(𝑗 − 1)

(𝑛 − 1)⁄ (𝑗 = 1,2, ⋯ , 𝑛) 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐾(𝑙, 𝑗)) = 𝐹𝐼𝑇 (𝐾𝑝(𝑙), 𝐾𝑖(𝑗))

{
𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝑙, 𝑗) = 0    𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐾(𝑙, 𝑗))𝑖𝑠 𝑀𝐴𝑋

𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝑙, 𝑗) = 1    𝑒𝑙𝑠𝑒

 

(10) 

 

In the formula, the proportional gain coefficient and the 

integral gain coefficient of the algorithm individual K are 

𝐾𝑝(𝑙)and 𝐾𝑖(𝑗) when the position is (l, j); the maximum and 

minimum values of the proportional gain coefficient are 

𝐾𝑝(𝑀𝐴𝑋)  and 𝐾𝑝(𝑀𝐼𝑁) ; 𝐾𝑖(𝑀𝐴𝑋)  and 𝐾𝑖(𝑀𝐼𝑁)  are the 

maximum and minimum values of the integral gain factor; m 

and n are the number of individual values in the dimensions of 

the proportional and the integral; the control effect of 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐾(𝑙, 𝑗)) is as the individual K(l, j) for the BLDCM 

(Fitness Value); 𝐹𝑜𝑟𝑤𝑎𝑟𝑑(𝑙, 𝑗) is the moving coefficient of 

the individual K(l, j). 

Later movement rules. The later movement is used to find 

the better parameters of the controller under the results of the 

early optimization. The excellent individuals in the early 

search process are moved in a certain way at the later stage. 

K(l, j) is treated as a central individual during the later 

movements. The rules of the movement rules are used for 

adjacent individuals K(l-1, j), K(l+1, j), K(l, j-1) and K(l, j+1) 

to approach a central individual. The movement rules are as 

follows. 

 

𝐾𝑝
′ (𝑞) = 𝐾𝑝(𝑞) +

𝐾𝑝(𝑙) − 𝐾𝑝(𝑞)

2

𝐾𝑖
′(𝜔) = 𝐾𝑖(𝜔) +

𝐾𝑖(𝑗) − 𝐾𝑖(𝜔)

2
(𝑞 = 𝑙 − 1, 𝑙 + 1; 𝜔 = 𝑗 − 1, 𝑗 + 1)

 (11) 

 

In the formula: 𝐾𝑝
′ (𝑞) and 𝐾𝑖

′(𝜔) are the coordinates to be 

reached by the next convergence of the adjacent individuals; 

𝐾𝑝(𝑞)  and 𝐾𝑖(𝜔)  are the current coordinates of adjacent 

individuals; the coordinates of 𝐾𝑝(𝑙) and 𝐾𝑖(𝑗) as the central 

individuals; q and 𝜔 means that the center coordinate point 

corresponds to the left or right in space, and the adjacent 

individuals up or down. 

In order to ensure that the central individual of the subgroup 

is always the local optimal value, and the adjacent individuals 

always move to the local optimal value. The central individual 

is replaced by the adjacent individuals when the fitness value 

of the adjacent individuals better than central individual in the 

process of moving. 

The extractive rules of the peak. Through the early 

optimization rules, the local peak area of the function is 

surrounded by the central individual and the adjacent 

individual. The central individual with high fitness is 

approached by the adjacent with low fitness when the central 

individual and the adjacent individual are on the same side of 

the same peak. The adjacent individuals move to the centre 

before the fitness exceeds the central individual when the 

central individual and the adjacent individual are on different 

sides of the same peak. According to the post move rule, the 

adjacent individuals are close to the centre individuals until 

they reach the peak. The optimization process is completed 

after G cycles, and the individual with the best fitness is the 

best controller. 

 

3.4 Parameter setting process 

 

The steps to tune the parameters of the speed controller 

based on the WOA is shown as Figure 2. 

The number of the initial individuals are selected to m*n in 

the defined interval and their fitness values were calculated. 

According to the early optimization rules, the move parameter 

is set to 0 when the fitness value of the individual is higher 

than that of its neighbors, otherwise the move parameter is set 

to 1. 

Individuals K(l, j) with a movement parameter of 0 form a 

subgroup with their neighbors as the central individuals. The 

subpopulation individuals move towards the centre through 

the later movement rules. 

The central individual of the current subpopulation is 

replaced by the individual with the largest adaptation value to 

ensure that the adaptation of the central individual is always 

greater than that of its neighbors. 

When the number of the iterations is the maximum number 

of the evolutionary generations (G), the individual with the 

maximum adaptation value is output as the optimal individual 

through the extractive rules of the peak, and the calculation is 

terminated. 

 

 
 

Figure 2. Flow chart of worm algorithm 
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4. SIMULATIONS, EXPERIMENTS, RESULT AND 

DISCUSSION 

 

4.1 Simulations of BLDCM 

 

The experiments were conducted by the Robomaster 

M2006 P36 series BLDCM (Figure 3). The torque constant kt 

was 1.4(𝑁. 𝑚
𝐴⁄ ),the winding inductance la was 64.22(𝜇𝐻), 

the moment of inertia of J was 0.0008 (kg·m2), the winding 

resistance 𝑟𝑎 was 461 (mΩ), the viscous coefficient of bv was 

0.001 (N.m.s), back emf constant for ke was 32.96(𝑟
𝑉⁄ ), the 

simulation time was 0.2 s, the population number was 20, the 

number of iterations was 20 and the evaluation standard used 

IAE. 

 

 
 

Figure 3. Brushless DC motor 

 

The performance of speed control was analyzed for the 

constant speed and the sinusoidal speed. In the simulation, the 

load torque was 3 N.m, and the load generation time was 0.1 s. 

The Constant speed was 300 rpm. The upper limit of the 

Sinusoidal Speed was 300 rpm, the lower limit was 100 rpm, 

and the frequency was 100 rad/s. In order to make the result 

clearer, the Relative Error curve (𝑅𝐸𝑊𝑂𝐴−𝑗(𝑡))of (a) - (d) and 

the Cumulative Error curve (𝐶𝐸𝑊𝑂𝐴−𝑗(𝑡)) of (a1) - (d1) in 

Figure 4 are satisfied: 

 

𝑅𝐸𝑊𝑂𝐴−𝑗(𝑡) = |𝐸𝑊𝑂𝐴(𝑡)| − |𝐸𝑗(𝑡)|

𝐶𝐸𝑊𝑂𝐴−𝑗(𝑡) = ∫ 𝑅𝐸𝑊𝑂𝐴−𝑗(𝑡)𝑑𝑡
𝑡

0

(𝑗 = 𝑍𝑁, 𝐺𝐴, 𝐷𝐸, 𝑃𝑆𝑂)

 (12) 

 

In the above equation, 𝐸𝑊𝑂𝐴(𝑡) is the error between WOA 

and the set speed; 𝐸𝑗(𝑡) is the difference between 𝑗 and the set 

speed. The positive of the 𝑅𝐸𝑊𝑂𝐴−𝑗(𝑡) shows that WOA is 

better than j. 𝐶𝐸𝑊𝑂𝐴−𝑗(𝑡) is positive, and means that WOA is 

better than j up to time t. Figure 4 and Figure 5 show the motor 

speed response curves of the five algorithms under setting the 

speed as Constant and Sinusoidal speed respectively. 

The following information can be obtained from Figure 4: 

(i) the difference value between maximum and minimum of 

the Relative Error curve are -32.0 rpm, -16.2 rpm, -9.5 rpm 

and -7.5 rpm respectively. (ii) Among the Cumulative Error 

curve, only the WOA-PSO is positive during 0 s to 0.1 s; the 

range are -356.0 rpm, -326.1 rpm, -226.5 rpm and -202.4 rpm 

respectively. (iii) The final values are -179.3 rpm, -272.6 rpm, 

-175.3 rpm and -48.56 rpm respectively. The data show that: 

(i) the maximum value of WOA fluctuation is the minimum; 

(ii) the steady-state value of WOA is slightly less close to the 

expected value than that of PSO, and better than that of other 

methods; (iii)the sum of absolute error of WOA is minimum. 

 
 

Figure 4. Tracking performance for constant speed under 

simulation 

 

 
 

Figure 5. Tracking performance for sinusoidal command 

speed under simulation 
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It can be seen from Figure 5: (i) the difference value 

between maximum and minimum of the Relative Error curves 

are 6.8 rpm, -1.1 rpm, 11.2 rpm and 4.7 rpm respectively. (ii) 

Among the Cumulative Error curve, only the WOA-ZN is 

positive during 0 s to 0.02 s; the range are -190.0 rpm, -153.5 

rpm, -114.1 rpm and -213.7 rpm respectively. (iii) The final 

values are -104.7 rpm, 129.7 rpm, -85.49 rpm and -148.1 rpm 

respectively. The above data show that: (i) the maximum 

fluctuation range of each algorithm is similar; (ii) The 

restraining load of WOA is better than other methods; (iii) the 

sum of absolute error of WOA is minimum. 

Characteristic values include the Mean Variation (MV), the 

IAE, the Standard Deviation (SD) and the Control Effect (CE). 

Among them, the MV is the error between BLDCM and the 

set speed in unit time; the IAE is the anti-interference ability 

of the motor; the SD is the discrete situation of the motor speed. 

IAE is the most concerned indicator. The smaller MV and SD 

are under the premise of the smallest IAE, the better the curve 

control effect will be. The CE satisfies Eq. (13). 

 

𝐶𝐸 = 0.6 ∗ |𝐼𝐴𝐸| + 0.2 ∗ |𝑀𝑉| + 0.2 ∗ |𝑆𝐷| (13) 

 

The indexes of each curve after calculation are shown in 

Table 1. 

 

Table 1. Performance indicators for BLDCM simulation 

 
Algorithm IAE MV SD CE 

Step speed command     

ZN 7.1656 -0.8092 1.4385 4.4252 

GA 7.6322 -1.0826 1.4346 4.6497 

DE 7.1457 -0.9414 1.3697 4.3731 

PSO 6.5119 -1.4496 1.3264 3.8825 

WOA 6.2691 -0.8890 1.2964 3.8429 

Sinusoidal speed 

command 
    

ZN 5.3156 -0.1508 1.1243 3.3841 

GA 5.4405 2.5787 1.1160 4.0032 

DE 5.2197 2.2151 1.1106 3.7969 

PSO 5.5325 2.4983 1.1475 4.0486 

WOA 4.7922 0.5697 1.1272 3.2147 

 

The information of the indicators for WOA can be obtained 

from Table 1: (i) The IAE and SD are better than other 

algorithms, and the MV is only worse than ZN under the 

constant speed. (ii) At sinusoidal speed; IAE is better than 

other algorithms; MV is only worse than ZN; SD is better than 

PSO and slightly inferior to ZN, GA and the DE. (iii) In terms 

of the overall control effect (CE), the speed setting constant is 

increased by 13.16% (ZN), 17.35% (GA), 12.12% (DE) and 

1.02% (PSO), with an average increase of 10.89%; when the 

speed is set as sinusoidal speed, it is increased by 5.00% (ZN), 

19.70% (GA), 15.33% (DE) and 20.60% (PSO) respectively, 

with an average increase of 15.16%. Through the above 

analysis, when the set speed is constant speed: (i) the steady 

state value of WOA is slightly less than the expected value; (ii) 

there is a small amplitude oscillation near the steady-state 

value; (3) the sum of absolute oscillation error is the smallest. 

When the set speed is sinusoidal speed: (i) the steady-state 

value of WOA is slightly higher than the expected value; (ii) 

there is a small amplitude oscillation near the steady-state 

value; (iii) the sum of absolute oscillation error is the smallest. 

Therefore, the overall control effect of WOA is the best. 

 

 

4.2 Experiments of BLDCM  

 

 
 

Figure 6. Tracking performance for Constant command 

speed under experimental 

 

 
 

Figure 7. Tracking performance for sinusoidal command 

speed under experimental 
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In the experiment of the BLDCM, the setting Constant 

speed was 300 rpm, and the setting Sinusoidal speed was 10 

rad/s with the upper limit of 300 rpm and the lower limit of -

300 rpm. The response curves of the error for the motor speed 

based on ZN, GA, DE, PSO and the WOA are shown in Figure 

6 and Figure 7. 

Experimental results are shown in Figure 6 and Figure 7. It 

can be seen from Figure 6 that: (i) the range of the Relative 

Error curves are 0.2 rpm, -3.6 rpm, -1.1 rpm and 1.2 rpm 

respectively. (ii) Among the Cumulative Error curve, the 

WOA-ZN and the WOA-PSO are positive during 0 s to 1 s; 

the range are -41.1 rpm, -162.0 rpm, -95.9 rpm and -0.8 rpm 

respectively. (iii) The final values are -65.17 rpm, -170.8 rpm, 

-98.53 rpm and -16.33 rpm respectively. It shows that: (i) the 

fluctuation range of WOA is larger than that of ZN and PSO, 

and smaller than that of GA and DE. (ii) the above data shows 

that the rising speed of WOA is only lower than that of Zn and 

PSO. (iii) the sum of absolute error of WOA is minimum. 

It can see from Figure 7 that: (i) the range of the Relative 

Error curves are -4.1 rpm, 2.0 rpm, 0.8 rpm and -0.8 rpm 

respectively; (ii) among the Cumulative Error curve, the 

WOA-GA is positive during 0 s to 0.6 s; the range are -212.2 

rpm, -53.0 rpm, -145.3 rpm and -91.5 rpm respectively; the 

final values are -214.6 rpm, -55.4 rpm, -145.3 rpm and -93.7 

rpm respectively. The above data show that: (i) the maximum 

fluctuation amplitude of WOA is only less than GA and DE; 

(ii) the rising speed of WOA in the initial stage is only slightly 

less than GA, (iii) the overall control effect of WOA is the best. 

 

Table 2. Performance indices for BLDCM 

 

Algorithm IAE MV SD CE 

Step speed 

command 
    

ZN 16.8061 -16.3392 3.7719 7.5702 

GA 17.3376 -17.3085 3.7855 7.6980 

DE 16.9764 -16.9381 3.7911 7.5564 

PSO 16.5675 -16.5325 3.7574 7.3855 

WOA 16.4837 -16.4579 3.7818 7.3550 

Sinusoidal speed 

command 
    

ZN 3.8790 -0.6615 0.4405 2.2832 

GA 3.0828 -0.3708 0.3982 1.8551 

DE 3.5322 -0.5317 0.4157 2.0961 

PSO 3.2747 -0.6303 0.4347 1.9257 

WOA 2.8060 -0.4138 0.4137 1.6836 

 

Compared with other algorithms, the following information 

of WOA can be obtained from Table 2: (i) when following 

constant speed: the IAE is better than other algorithms, MV is 

worse than ZN, SD is slightly worse than ZN and PSO. (ii) 

When following the sinusoidal speed: the IAE is better than 

other algorithms, MV and SD are only better than GA. (iii) 

The SD of different algorithms is similar. Through the above 

analysis, when the set speed is constant speed: (i) the steady 

state value of WOA is slightly less than the expected value; (ii) 

there is a small amplitude oscillation near the steady-state 

value; (3) the sum of absolute oscillation error is the smallest. 

When the set speed is sinusoidal speed: (i) the steady-state 

value of WOA is slightly less than the expected value; (ii) 

there is a small amplitude oscillation near the steady-state 

value; (iii) The sum of absolute oscillation error is the smallest. 

Therefore, the overall control effect of WOA is the best. This 

paper takes IAE as the main criterion, because the input signal 

of single-chip microcomputer is discrete signal, the positive 

selected speed of Brushless DC motor is a combination of 

several constant speeds. Compared with the constant speed 

simulation of Brushless DC motor we get the conclusion that 

the experiment is basically consistent with the simulation. 

 

 

5. CONCLUSION 

 

This paper proposes a parameter tuning method for the 

controller of BLDCM based on WOA. The two groups of 

simulations and experiments show that the method follows the 

Constant speed and Sinusoidal speed well. By comparing with 

the other methods, the CE of WOA increases by 2.84% (ZN), 

4.46% (GA), 2.67% (DE), 0.41% (PSO), with an average 

increase of 2.56% under the Constant speed, and increases by 

26.26% (ZN), 9.24% (GA), 19.68% (DE), 12.57% (PSO), with 

an average increase of 16.93% under the Sinusoidal rotation 

speed. 

The experimental results show that the speed control of 

BLDCM is improved obviously by the proposed method, but 

further research is needed. (i) In the experiment of constant 

speed of BLDCM, there is no significant difference in the 

accuracy of each algorithm due to the inability to add a fixed 

load. (ii) In the sinusoidal speed experiment, the proposed 

algorithm improves the motor control accuracy greatly, but 

there is still a large space for improvement. (iii) The 

experiment has only been verified by one kind of Brushless 

DC motor, and the proposed method has not been studied the 

control effect of different kinds motor. 

Experiments show that this method is more accurate than 

the traditional algorithm, and the control accuracy is improved 

obviously in the complex speed requirement. With the 

increasing requirement of Brushless DC motor, the control 

mode of BLDCM will be more complicated. Therefore, the 

self-tuning method to parameters proposed in this paper may 

be a promising parameter processing algorithm to improve the 

accuracy of complex motor control. Future work also needs to 

pay attention to the universality and interpretability of self-

tuning method to parameters. 
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