
Model based self-explanatory user interfaces

Alfonso García Frey 1, Sophie Dupuy-Chessa 2, Gaëlle Calvary 2

1. Yotako S.A.
9, Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg
alfonso@yotako.io

2. Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble France
Prenom.Nom@imag.fr

ABSTRACT. User interfaces play an important role in Information Systems, particularly for their
acceptance. But in Human Computer Interaction, perfect quality is an utopia. Despite all the
design efforts, there are always situations the user interface is not suitable for: this claims for
quality reparation. This paper explores self-explanatory user interfaces, i.e. user interfaces
capable of “rephrasing” themselves so that to make them understandable by the user. The
approach follows the principles of model-driven engineering. It consists of keeping design de-
cisions contained in models alive at runtime so that to dynamically enrich the user interface
by augmenting it with a set of possible questions and answers. Based on a problem space, this
article details how to support self-explanation for free thanks to models. It also proposes a soft-
ware infrastructure UsiExplain based on the UsiXML meta-models. An evaluation is conducted
on a case study related to a car shopping website. It confirms t h a t t h e a p proach i s relevant
especially for usage questions.

RÉSUMÉ. Les interfaces utilisateur jouent un rôle important pour les systèmes d’information,
en particulier pour leur acceptation. Or en interaction homme-machine, obtenir une qualité
parfaite est une utopie. Malgré tous les efforts qui peuvent être faits lors de la conception,
il y a toujours des situations pour lesquelles l’interface utilisateur n’est pas adéquate. Cela
nous force à envisager une réparation de la qualité. Dans ce cadre, cet article explore des
interfaces auto-explicatives c’est-à-dire des interfaces capables de "se rephraser" pour devenir
compréhensibles par les utilisateurs. Notre approche sur les principes de l’ingénierie dirigée
par les modèles consiste à garder les décisions de conception contenues dans les modèles
vivant à l’exécution pour enrichir dynamiquement l’interface utilisateur en l’augmentant par
un ensemble de questions/réponses. Basé sur un espace problème, cet article détaille comment
réaliser des auto-explication "pour rien" grâce aux modèles. Il propose aussi une infrastucture
logicielle, UsiExplain, basée sur les méta-modèles de UsiXML. Une évaluation basée sur un
cas d’étude d’un site d’achat de véhicules en ligne a été conduite. Elle confirme que l’approche
est pertinente en particulier pour les questions d’usage.

Ingénierie des systèmes d’information – no 4/2017, 129-157

130 ISI. Volume 22 – no 4/2017

KEYWORDS: user interfaces, model-driven engineering, models at runtime, self explanation

MOTS-CLÉS : interfaces utilisateurs, ingénierie dirigée par les modèles, modèles à l’exécution,
auto-explication

DOI:10.3166/ISI.22.4.129-157 c© 2017 Lavoisier

1. Introduction

User interfaces play an important role in Information Systems (IS). They constitute

the visible part of the technical IS. So they play an important role in its acceptance.

But users often find problems while interacting with user interfaces (UIs). Questions

about where an option is, how to accomplish a task, or why did something happen in

the user interface naturally arise due to the imperfect quality of the UI. This problem

of insufficient quality can be due to bad designs but, in general, this is not usually

the case. Quality problems exist because as the user is not the designer, the user

has a different understanding of the UI, so the user encounters different problems or

obstacles during the interaction process. Moreover, even if the designer intends to

achieve a good quality level in the UI, he/she cannot foresee all these problems and

obstacles at design time because each single user has his/her own understanding of the

UI. So it is impossible to provide support for all of the users at design time for all the

situations they might be in. This problem can be seen as a gap between the intended

versus perceived quality.

To limit this problem, one solution is to give explanations to users, particularly

to explain design choices. Many works have reported on the benefits of supporting

users through explanations in interactive systems (Lim, Dey, 2009; Myers et al., 2006;

Purchase, Worrill, 2002). Different theoretical and practical works and tools try to

provide users with support at runtime in order to overcome the gap (Lim, Dey, 2009;

Vermeulen et al., 2010; Myers et al., 2006; Palanque et al., 1993), and thus, the lack

of quality. However, even if a great amount of tools exist, there are still applications

without support, or if the support exists, it is rather limited or specific to a predefined

set of questions such as Frequently Asked Questions. In consequence, the coverage of

the support is a problem in turn.

The lack of good help and support in most of today softwares is mainly due to

a problem of cost. Software industry has become very competitive and one way to

reduce costs is to speed up the design process and to simplify documentation at the

minimum level (Delisle, Moulin, 2002). The existing solutions have an associated

cost as they need to integrate the help facility itself or, as in most of the cases, develop

the knowledge base that will be used to provide the explanations that support users in

order to overcome the gap. This article explains how explanations can be generated

from design models, making model-based help systems a good compromise with re-

spect to the two requirements of coverage and cost. It proposes a new problem space

for self-explanatory systems and describes our system, UsiExplain, and its evaluation

which have been publihsed in (García Frey et al., 2012; 2013).

Model based self-explanatory user interfaces 131

The article starts by describing related work in section 2. Then section 3 presents a

car shopping website to serve as a support for illustration and evaluation. Afterwards,

section 4 outlines our self-explanatory system which evaluation is reported in section

5. Finally we summarize our contribution and envision perspectives for future work.

2. Related work

This section describes work related to the support of users through explanations.

It starts by giving an overview of existing solutions before categorising them thanks

to a problem space.

2.1. Overview

During the development of computer science in the twentieth century, different

computer science domains addressed the problem of supporting users in the interaction

with the systems using some forms of explanations.

Question Answering (QA) systems have significantly contributed to the classifi-

cation of different explanation types. In 1977 and 1978, Lehnert proposed (Lehnert,

1977; 1978) one of the most used question types classification for open-domain QA

systems. Lehnert defined thirteen types of questions such as goal orientation, jud-

mental or request. Not all of them are directly useful for help systems because these

types were specifically designed for open-domain QA systems, but authors from ex-

pert systems as well as authors from closed-domain QA systems started to focus on

some particular Lehnert’s types.

According to (Jackson, 1998), an expert system is defined as "A computer sys-

tem that emulates the decision-making ability of a human expert". Expert systems

were firstly structured into two well distinguished parts: the inference engine and the

knowledge base. The inference engine is fixed and independent from the expert sys-

tem whilst the knowledge base is variable and is used by the inference engine to per-

form the reasoning. This division originated the sub-family of expert systems called

Knowledge-Base Systems (KBS). KBS, also known as Rule-Based Systems, focus on

the underlying information -or base of knowledge- represented or modelled inside the

system itself. According to Gregor and Benbasat (Gregor, Benbasat, 1999), KBSs

cover four different types of questions: What is, Why control or strategic questions

where answers provide explanations about the systems̀ control behavior, and prob-

lem solving strategy, giving an insight into the design rationale of the system logic.,

Why questions that explain the processes taken by the system to come up with its re-

sults, and Why justification questions that provide “deep explanations” about design

rationale. But the development of help systems relying on expert systems requires the

implementation of the inference engine as well as the definition of the knowledge base

for the specific application. So this implies an extra-cost.

To avoid this extra-cost problem, model-based explanation systems can provide a

solution. They follow the same principle as the Expert systems: the knowledge base

132 ISI. Volume 22 – no 4/2017

that is used to provide such explanations are the design models of the Model-Based
approach. So decisions taken at design time are used to provide explanations thanks
to models.

An early example that employs a task model (in the form of user’s actions) for
explanation purposes is Cartoonist (Sukaviriya, Foley, 1990). Cartoonist generates
Graphical UIs (GUI) animated tutorials to show a user how to accomplish a task,
exploiting the model for providing run-time guidance.

Pangoli and Paternò (Pangoli, Paternó, 1995) allow users to ask questions such as
How can I perform this task? or What tasks can I perform now? by exploiting a task
model described in CTT. Contrary to Cartoonist, answers are provided in (Pangoli,
Paternó, 1995) in pseudo-natural language. Tasks modeled in the form of Petri Nets
are used for similar purposes by Palanque et al. in (Palanque et al., 1993), answering
questions such as What can I do now? or How can I make that action available again?

Other works report on the usage of task models as a means for creating collabora-

tive agents that help the user (Eisenstein, Rich, 2002). Behavioral models, presented
in different forms, have been also used to support Why and Why not questions in user
interfaces. In (Palanque et al., 1993) Why questions are answered using the same ap-

proach based on Petri Nets that are exploited for procedural questions. By analysing
the net it is possible to answer questions such as Why is this interaction not available?

The Crystal application framework proposed by Myers et al. (Myers et al., 2006)
uses a “Command Object model” that provides developers with an architecture and
a set of interaction techniques for answering Why and Why not questions in UIs.
Crystal improves users’ understanding of the UI and help them in determining how to
fix unwanted behavior.

Lim et al. (Lim, Dey, 2009; Lim et al., 2009) observed that why and why not
questions improve users’ understanding and confidence of context-aware systems.

(Vermeulen et al., 2010) proposes a behavior model based on the Event-Condition-

Action (ECA) paradigm, extending it with inverse actions (ECAA-1) for asking and
answering why and why not questions in pervasive computing environments.

2.2. Problem space

The previous researches show explanations based on individual models. We aim to
evaluate the suitability and added value of model-based approaches of UI, that can use
one or more different models at the same time. In particular, we want to see whether
these model-based approaches can generate more powerful explanations or have any
extra added-value with regard to the previous isolated solutions. To better understand
the differences between these model-based works, we propose the QAP (Questions,
Answers, Properties) problem space (Figure 1). Each arrow represents an analysis
axis of our problem space. For readability, colours and circles are added to categorize
axes. For example, the "Intrinsic" axis concerns the presentation of questions.

Model based self-explanatory user interfaces 133

Figure 1. The QAP problem space for Support Systems classification

The Questions section represents the input of the help system, i.e., how the user

asks the system for information. Questions can be asked in many different ways, for

instance, using some sort of natural language or tooltips among others. A question

categorizes the form (presentation) and content (abstraction) of the user’s request that

the help system must address.

The Answers section represents the output of the help system. As with questions,

answers can be provided also in different forms, such as text, images or animations.

Similarly to the questions section, an answer categorizes the form (presentation) and

content (abstraction) of the support provided by the system to the user.

The subdivision of each of the two first areas, questions and answers, into a Pre-

sentation and Abstraction sections, is motivated by the three classification methods

of explanation types identified by Gregor and Benbasat (Gregor, Benbasat, 1999). In

QAP, Abstraction represents the nature of the request that the system needs to deal

with. It can address questions about the system usage (as for instance, How can I

do this?, or Why this option is not enabled?) and the system Design rationale (for

instance, Why these elements are ordered in this way? Why this message is red?).

Presentation means how questions or user’s requests are integrated into the user

interface. The presentation can be either intrinsic or extrinsic. In the intrinsic systems

the question is added into the user interface and it uses some of its elements for the

creation of the query or questions. In the extrinsic systems, the question is formulated

via an external, non-integrated and independent interface, that does not necessarily

134 ISI. Volume 22 – no 4/2017

use elements of the user interface to specify the request. For instance, manuals and
on-line help systems are examples of extrinsic ways of asking for information.

Abstraction area represents the type of knowledge involved in the support. The
possible types are Representation, Structure, Task-Concepts, and Functionality.

Representation indicates that the type of support is related to the physical repre-

sentation of the user interface. This kind of support is normally addressed to widgets
or elementary interactors of the user interface.

Structure represents support about how the parts of the system or the user inter-

face are arranged or organized. Questions related to navigation issues are classical
examples of this axis (Where is...?).

Task-Concepts indicates answers about goals and their related concepts. This axis
covers traditional support about goals such as What can I do now?

Functionality describes answers related to the functional core of the application.
For instance, What did happen? for the questions area or “Is the result of the query”
for the answers area.

The Properties section collects some features of help systems that are relevant
in the context of this research. These properties are Extensibility, Dynamicity, and
Initiative.

Extensibility means whether the support provided by the help system can be im-

proved in some manner, for instance by adding annotations, or new sources of knowl-

edge to the system.

Dynamicity indicates if the information provided by the help system to the user
is generated at runtime, i.e., computed directly by using some source of knowledge.
Answers or explanations that are not dynamically generated rely on predefined support
that cannot be modified once the application is running, or in other words, that needs
to be rewritten and updated by hand at design time.

Finally, the Initiative axis represents if the action of providing support is started
by the system or on the contrary, it is the user who starts the supporting activity by
requiring help.

We mapped different works on QAP problem space:

– The Myers’ Crystal application framework (Myers et al., 2006) provides an ar-

chitecture and interaction techniques that allow programmers to create applications

that let the user ask a wide variety of questions about why things did and did not

happen in the user interface, and how to use the related features of the application

without using natural language. The “Why” and “Why not” questions supported by

Crystal are related to user’s actions. So Crystal supports questions about the Usage

of the system (Figure 2, blue line, axis Question-Abstraction-Usage). On the con-

trary, this system does not support questions about the Design Rationale. The ex-

planations provided by Crystal are embedded into the UI and can even use elements

Model based self-explanatory user interfaces 135

of the UI for some answers (axis Answer-Presentation-Intrinsic). The same applies
for how users ask questions (axis Question-Presentation-Intrinsic). Answers are also
extrinsic because the message support can be shown in a separated window (Answer-

Presentation-Extrinsic). Finally, Crystal uses a Command Object model to implement
all the actions. The commands the user executes are stored on a command list which
serves as a history of all the actions that have been taken, and used later for answering
“Why” and “Why not” questions about user’s actions (axis Answer-Abstration-Tasks-

Concepts).

– Vermeulen’s PervasiveCrystal system keeps the idea of the previous Crystal
framework but adapts it to pervasive environments. The authors state that there is
no pervasive computing frameworks available that supports why and why not ques-

tions about the behaviour of the system. Moreover, existing desktop implementations
such as the previous Crystal system cannot be easily integrated into pervasive comput-

ing frameworks, since the assumptions underlying these implementations rarely hold
in pervasive computing. For instance, pervasive environments usually rely on multiple
machines from which events originate. As an example, consider the situation where
the user starts playing a movie on the TV and the lights go out. The system involves
at least, the TV, the lights of the room, the sensors, and the system processing such
events.

– Sukaviriya’s Cartoonist system automatically generates help for explaining how
to accomplish tasks. The explanations given by Cartoonist are provided in the form
of animations. Cartoonist employs a task model (in the form of user’s actions) for
generating such animations. The animations constructed by Cartoonist show how to
invoke the commands of an application. The mouse pointer is explicitly represented
by a graphic. This graphic moves around the user interface, picking the objects from
a panel of elements, and setting them up to complete specific t asks. The questions
supported by Cartoonist are then related to the Usage of the user interface. As the
answers supported by Cartoonist cover information about “How can I ...” questions,
this systems relies on the Tasks-Concepts axis.

– Lim et al. propose the Intelligibility Toolkit for asking several questions about
user interfaces in the context of ubiquitous computing. According to (Lim, Dey,
2010), “The Intelligibility Toolkit makes it easier for developers to provide many
explanation types in their context-aware applications. This ease also allows devel-

opers to perform rapid prototyping of different explanation types to discern the best
explanations to use and the best ways to use them.” The Intelligibility Toolkit tries
to make context-aware applications intelligible by “automatically providing explana-

tions of application behavior”. To this end, the toolkit provides automatic generation
of eight explanation types (Inputs, Outputs, What, What If, Why, Why Not, How To,
Certainty) for four different decision model types (rules, decision trees, naiive Bayes,
hidden Markov models). All the Wh- explanation types along with the Outputs and
Certainty types are related to the behaviour of the application. For instance, “What if”
explanations “allow users to speculate what the application would do given a set of
user-set input values”, and the “Why” explanations inform users “why the application
derived its output value from the current (or previous) input values”.

136 ISI. Volume 22 – no 4/2017

Figure 2 shows the resulting overlapping of the precedent works. This overlapping
gives a global overview of where most of the works have currently focused for sup-

porting users. Three main areas of interest have been identified as they are uncovered
by the reviewed literature.

Figure 2. Overlapping the related work

In term of coverage, the first area of interest concerns the fact that most systems

have a dedicated purpose. There is an implicit problem of unification. In fact, each

of the reviewed model-based works such as Crystal or PervasiveCrystal addresses a

specific type of questions, but we are not aware of any work that currently unifies

different types of explanations at the same time. An approach for asking questions

either for the usage or design rationale in a homogeneous way becomes necessary

for supporting different question types simultaneously. In the same way, providing

different types of answers require to uniform the way in which these answers are

computed.

Secondly, we note a lack regarding the Design rationale of the user interface. The

axis is not covered by any work. We did not identify any previous research able

to provide questions about the design rationale of the user interface, that can help

users to better understand “Why” the user interface is the way it is. Design rationale

Model based self-explanatory user interfaces 137

questions can also be potentially useful for specific learning purposes in, for instance,

a user interface design training course. To address this particular area, we will try in

this research to enrich help systems, i.e., the types of questions that users can ask, with

information related to the design decisions that are made at design time.

Finally, the third area of interest concerning coverage is the Structure. Information

about the structure of the user interface is not usually provided. Structural information

about the user interface can help to explain how the parts of the system or of the user

interface are arranged or organized, so for instance, navigational questions could be

finally supported in a model-based approach. In the context of this research we will

explore how we can extract structural information from models to better support the

user with this type of information.

Another uncovered axis is related to the Initiative. Initiative has widely been cov-

ered by agents as shown in the state of the art. For this reason, we will not directly

address this issue from a model-based point of view but, instead, we will study what

types of questions can take benefit from active help systems, to open other potential

research questions.

Moreover some systems allow developers to choose the Presentation of Answers

either in an Intrinsic or Extrinsic way. However, this is not the case for Presentation

of the Questions, imposing one of both alternatives to the design of the user interface.

In (García Frey et al., 2012), we have explored how to overcome this limitation so

designers and developers can fully customize how both questions and answers are

integrated into the system.

So in the remainder of this paper, we will show how we address the coverage

problem. The description of our work, will be based on a case study described in the

next section.

3. Case study

Figure 3 illustrates a car shopping website where the user can select the type of

vehicle (for instance, break, coupe or cabriolet) and configure the selected type of

vehicle (engine options, colours, equipement...). After this process, the selected ve-

hicle is shown according to the configured options (Figure 3, left side). One problem

in this car shopping website is that the process does not always show the car as the

result of the previous steps (Figure 3, right side). Moreover, in these situations there

is no feedback to help users to understand what the problem is and/or how to fix it.

As a consequence, users do not know if the selected configuration is not compatible

with the car model, if they just missed one (or more) required configuration options, if

some of the configuration options are not compatible with each other, or any other pos-

sible reason that avoids the selected and configured car to be displayed. In addition,

some extra equipment is simply added by default with certain car models whereas with

other car models the same options can be either available or not, and it is no longer

the system that chooses these options but the user instead. For instance, selecting the

138 ISI. Volume 22 – no 4/2017

“Sport Design” version of the “Cabriolet” will add the “Bluetooth interface” for mo-

bile phones but will suppress the “Sport Leather” option of the wheels. In this UI, the
bluetooth option can be added regardless the version of the model car, but the second
cannot.

Moreover, novice users could miss the meaning of some concepts that are used in
the UI as for instance, what is the “Servotronic Direction at variable assistance”.

Figure 3. The car shopping website

4. Self-Explanations thanks to Model-Driven Engineering

This section presents the model driven approach we promote for producing self-

explanatory user interfaces by design for free. It is illustrated on the case study.

4.1. Principles

Our approach to generate self-explanation consists of using the models done at

design time to compute questions and answers at runtime that complement the UI

(Figure 4). In its current version, it does not accomodate designer-defined question

but it generates questions and answers from design models. The generated questions

and answers constitute the self-explanation automatically generated at runtime. The

self-explanatory facilities generated with our approach are responsible for:

– Generating the set of questions. We consider those questions that the help sys-

tem “knows” how to answer by inspecting the underlying models of the UI. For this

reason, it is convenient to generate these questions as well. By doing this, designers

can propose to users the questions for which the system knows an answer.

– Generating answers. Once the user asks a question to the help system, the sys-

tem needs to compute an understandable explanation or answer. This is done through

the following three steps:

- Selecting the Explanation Strategy. In this phase the help system selects the

explanation strategy that will be used for such a question (Figure 7). The explanation

Model based self-explanatory user interfaces 139

strategy is selected according to the type of the question, meaning that the explanation

strategy responsible for answering “How” questions, will probably inspect different

models, retrieving different information, from the explanation strategy responsible for

answering “Why” questions.

- Inspecting the models. Each explanation strategy will inspect one or more

models to retrieve the elements that have been defined for each strategy. These ele-

ments will be used to compose the information that the user is requesting for.

- Composing the answer. Once all the elements of the models have been re-

trieved, the answer can be composed and prepared to be presented.

– Presenting the answer. The computed answer must be provided to the user in

an understandable way. For the moment, we use a limited subset of natural language

for questions and answers. We do not study their presentation, but we focus on their

feasibility (are the question and answer computable?) and their functional utility.

Figure 4. Principles of model-based explanations

4.2. Reference models

We use the models at all the levels of abstraction of the Cameleon reference frame-

work. Cameleon (Calvary et al., 2003) “characterizes the models, the methods, and

the process involved for developing user interfaces for multiple contexts of use, or

so-called multi-target user interfaces”. Cameleon is composed of four main levels of

abstraction (Figure 5):

– Task and Concepts level that represents the tasks that the user can perform using

the UI. The tasks manipulate domain concepts, also represented at this level.

– Abstraction level (with Abstract User Interfaces - AUI) that groups the tasks in a

modality independent way, i.e., without taking into account the details of the platform

or platforms where the user interface will be running after being generated.

140 ISI. Volume 22 – no 4/2017

– Concrete level (with Concrete User Interfaces - CUI) that defines how the user

interface will be rendered. For instance, for Graphical User Interfaces, the Concrete

UI defines what widgets are necessary for each element of the abstract user interface.

– Final UI level (with Final User Interfaces - FUI) that corresponds to the source

code.

Figure 5. Models from the Cameleon Reference Framework and design rationale
captured with QOC models

An example of Cameleon Reference Framework models for the self-explanatory

system is given in Figure 6. A task model describes how the interactive system can

answer a question. The identified tasks and their sequencing are transformed into

an Abstract User Interface (AUI) model. Here the model is simple: for answering a

question, only one interaction space is necesary; it contains a subspace for asking a

question and another one for answering it. Then the AUI is in turn transformed into

a Concrete User Interface (CUI) model representing the interactors or widgets. In the

example, the interactors are a textfield for the question and a label for the answer. The

Final User Interface (FUI) is derived from the CUI.

Inside the Cameleon’s levels of abstraction, we use mainly models based on those

from the UsiXML language1, which preserves the four levels of abstraction, from the

Tasks level (for the sake of simplicity, we use CTT in this paper at the task level) to the

1. For more information about the language, please visit http://www.usixml.org and http://www.usixml.eu

Model based self-explanatory user interfaces 141

Figure 6. Models from the Cameleon Reference Framework for the car shopping
website

142 ISI. Volume 22 – no 4/2017

FUI, reviewing their models and meta-models, and it extends the Cameleon Reference
Framework with new models that add new functionality. In particular, we can note
that the classical models of Cameleon are augmented with a QOC meta-model which
supports design rationale based on the QOC (Questions, Options, Criteria) notation
(MacLean et al., 1991) and the Quality meta-model that we propose (García Frey
et al., 2011) to provide means for integrating quality criteria into the design process
of the user interface. Indeed, design decisions are usually not arbitrarily taken. The
QOC model allows to capture these design decisions inside the model and justify them
through quality criteria if required. We also capture the way models are transformed
along the four levels of abstraction modeling the Mappings between models.

Our help system is built from models. So it is independent from the domain, but
its scope is determined by the models used. If models contain semantic information
such as in QOC, questions can also be focused on semantic. In the same manner, if
a model, for instance a CUI model, is related to an interaction style, this information
can be used for generating questions. In its current version, only some models are
used using the strategies presented in the next subsection.

4.3. Self-Explanation Strategies

Given a question, the self-explanatory user interface needs to retrieve the neces-

sary information from the underlying models of the user interface, and compose the
answer based on that information. This is the role of the Explanation Strategies pre-

sented in this section. An explanation strategy is responsible for computing the answer
that corresponds to one specific type of q uestion. In consequence, different types of
questions are then managed by different explanation strategies.

4.3.1. Determining the Appropriate Explanation Strategy

We define different explanation s trategies, one for each of the different types of
questions supported by our self-explanatory help system. These questions are also
generated by the self-explanatory facility. We currently support six different types of
questions that have been reiteratively used by one or more approaches as shown in the
state of the art. We built all these explanation strategies upon the main models of the
Cameleon Reference Framework. The question types are summarized in Table 1.

Table 1. Question types

Question type Question Example

Procedural How How to select car packs"

Purpose or What is it for What is the "Optional Equipment"

Functional button for?

Localization Where . Where is the tuner DAB?

Availability What can I do now. What can I do now?

Behavioural Why/Why not Why I cannot visualize the car?

DesignRationale Design rationale of the UI Why the engines are ordered by price?

Model based self-explanatory user interfaces 143

Once the user asks a specific question, the self-explanatory facility will automati-

cally retrieve the type of the question to determine which explanation strategy needs

to be launched, and thus, what models will be inspected.

Figure 7 gives an overview of the different models that are involved in the genera-

tion of the questions with their respective answers. For instance, procedural questions

such as “How to select a car?” are all generated using the task model, which is rep-

resented with the link between the Procedural box on the left side of the image, and

Task Model in the centre. Answers to procedural questions are computed by using ele-

ments of the Mapping, Tasks, Abstract UI, and Concrete UI models, as represented in

the image with the four links from the procedural box on the right side of the image to

each model in the centre. In this way, our approach is not limited to web sites and can

be used for any UI described in term of Mapping, Tasks, Abstract UI, and Concrete

UI models.

Figure 7. Models used for generating questions (left) and answers (right)

144 ISI. Volume 22 – no 4/2017

In the following, we detail the different explanation strategies that we have devel-

oped for each of the six question types. For each of them, we provide an explanation
of how the questions of such type are generated, and how the answers are computed.

4.3.1.1. Procedural Questions - How

This section explains how to develop an explanation strategy to support How ques-

tions (Figure 8). How questions are requests that ask for the way in which a task can
be accomplished. For instance, for the car shopping website a user can ask “How to
select Packs?”. The information that the user expects is the description of the proce-

dure to accomplish the task, in the example, the instructions that show the user how to
select different packs for a car.

Figure 8. Explanation Strategy for answering How questions

We use the CTT notation in which there are four kinds of tasks: User tasks, System

tasks, Abstract tasks and Interaction tasks. During the interaction with the system,

users perform interactive tasks by using the elements of the UI. In other words, an

interactive task is always mapped to one or more interactors at the CUI level during

the transformation process. It makes then sense to generate questions of the form:

How to + Task.name + ?

where the task is an abstract or an interaction task.

To generate this type of questions, the explanation strategy can then explore the

task model recursively from the root to the leaves. For each node representing an

interaction task, the explanation strategy creates a question in a textual form according

to the previous grammar. For instance, from a task tree, with a task “Configure the

car” decomposed into two subtasks “Select Packs” and “Select Extra-Equipment”,

there are three generated questions: how to configure the car? how to select packs?

how to select extra-equipments?

A possible way of answering a procedural question is then to indicate to the user

what are the interactors that he/she needs to interact with in order to accomplish the

Model based self-explanatory user interfaces 145

requested task. A possible way of answering a procedural question is then by retriev-

ing through the models transformation the interactors in the CUI model, starting from

the requested task at the task level. The composition of the answer is done according

to the following grammar:

Use the + CUI-element.name + CUI-element.type [+, CUI-element.name + CUI-
element.type]*

By construction, there is always at least one CUI element an interaction task is

transformed into. For example, a computed answer for the “How to select packs”

question using this approach is:

Use the Packs tab

where the CUI-element.name is “Packs” and the CUI-element.type is “tab”.

Note that the answer can be completed with the information about the localization

of the widget, which is computed later in the Where questions. In this way, a more

elaborated answer for CUI elements that were not directly visible from users can be

composed as follows:

Use the + CUI-element.name + CUI-element.type + in the + CUI-element.parent.name
+ CUI-element.parent.type

where an example is:

Use the Pack Connected Drive checkbox button in the Packs tab

Here, the CUI-element.parent.name is “Packs” and the CUI-element.parent.type is

“tab”.

4.3.1.2. Purpose/Functional Questions - What is it for

The purpose questions generated in the prototype were of the form:

’What is the + CUI-element.name + CUI-element.type + for?’

An example of a purpose question is:

What is the ’Optional Equipment’ button for?

To compute these questions, we iterate through the CUI model of the UI, adding a

question for each new element. We added questions for all the CUI elements except

for layouts, as they are the only CUI elements that are not directly visible by the user.

Answers where computed as follows. First we inspect the mapping model between

the AUI and the CUI models to retrieve the AUI element from which the CUI element

has been generated. Once we have the AUI element, we retrieve the task originating

this AUI element, i.e., the source of the transformation chain. Once the task has been

retrieved, we directly provide the name of the task, answer is computed using the name

of the task in the following grammar:

To + task.name

146 ISI. Volume 22 – no 4/2017

As in the example:

To ’Select the optional equipment’

Even if this question is mostly useful for images or icons that have an unclear

meaning, we also generated the questions and answers for the rest of the CUI elements,

even if they presented textual information that made clear the purpose of the object.

4.3.1.3. Localization Questions - Where

The generated Where questions are of the form

’Where is the + CUI-element.name + ?’

As in the example:

’Where is the Tuner DAB?’

The process of generating these types of question is quite similar to the previous

purpose questions. We only considered CUI elements having textual information, i.e.,

labels, any kind of textual buttons such as normal buttons, checkboxes or radio buttons,

menus, menu options, and window titles. The reason for avoiding other types of

widgets like images is that we did not want the user to describe such widgets and thus,

asking open questions that the system could not understand. Answers were computed

by finding the direct parent or container of the CUI element. This is, we first locate the

CUI element in the CUI model and then we retrieve its parent, avoiding again layouts

that are not visible for the user. For the Where question given in the previous example,

the Tuner DAB refers to a checkbox button located on the ’Optional Equipments’

panel. Thus, the grammar generating the answer is:

’The + CUI-element.name + is on the + CUI-element.parent + CUI-element.type’

So the answer given by the system is:

The Tuner DAB is on the Optional Equipment Panel

4.3.1.4. Availability Questions - What Can I Do Now

The “What can I do now?” question provides information about what tasks are

currently available to the user regarding its current situation in the UI, i.e., depending

on the current task that the user is currently performing at the moment of asking the

question. As not all the tasks are always available at the time, answers for the same

question can vary in time. The presented question is then always of the form:

What can I do now?

The computation of the answer relies on the task model. We first retrieve the

current task in the task model. From the current task in the task tree, we compute

which sister tasks are available regarding the LOTOS operators used by CTT. We add

the name of each available task to answer. We then recursively iterate from the current

task to the root task of the tree, adding all the available tasks. We finally add the

Model based self-explanatory user interfaces 147

available sub-tasks. The final answer is then a list of tasks shown according to the

next grammar:

You can + task-1.name + ... + task-N.name

For example, when the user accesses to the Optional Equipment panel, the answer

to What can I do now? is:

You can select the external equipment, select the internal equipment, select the
internal decorations, select the functional equipment, select the on-board electronics,
select the wheel rims, select the maintenance contract.

4.3.1.5. Behavioural questions - Why I cannot

Behavioral questions were generated under the form:

Why I cannot + task-N.name + ?

Where the task task-N is unreachable from the current task. For instance:

Why I cannot Visualize the car?

To compute questions we proceed as for What can I do now?, locating the current

task in the task tree first. We then locate all the unreachable tasks in a similar process,

i.e., locating unreachable sister tasks (due to the CTT LOTOS operators) and traveling

the task tree to the root and to the leaves. For instance, a task B enabled with informa-

tion from a task A (A []» B) is unreachable until the information is received. Questions

are added for all the unreachable tasks following the previous grammar. Answers are

computed by finding the path that enables the given task. If a task is not reachable it

means that some task or tasks need to be done. We find these tasks by traveling the

sister and mother tasks (up to the root), locating the LOTOS operators that enable the

desired task. For instance, for the task ’Visualize the car’, the task was reachable by

selecting the model of the vehicle first, so the provided answer is:

You need to Select the model

which conforms to the grammar we used:

You need to + task-1.name [+, task-N.name]*

4.3.1.6. Design rationale questions

We included a QOC model to compute questions and answers about the design

rationale of the UI. The proposed questions were directly retrieved from the QOC

model. Answers were supported by one ergonomic criterion. The answers were com-

puted according to the quality criteria supported by each option of the QOC model as

shown in the following example:

Why the engines are ordered by price?

148 ISI. Volume 22 – no 4/2017

The provided answer, which follows the grammar “Because the ergonomic crite-

rion is + criterion.description”, is:

Because the ergonomic criterion "Items of any select list must be displayed either
in alphabetical order or in any meaningful order for the user in the context of the
task".

Currently, these six types of questions (how, what is it for, where, what can I
do now, why I cannot, design rationale) are implemented in our system for self-

explanatory user interfaces, UsiExplain. Even if other types of questions can be added,
the goal is to show the feasibility and the interest of the approach. Further researcher
would be required to provide a complete taxonomy of question types.

4.4. Conceptual Architecture

The conceptual architecture (Figure 9) for self-explanatory UIs implements the
explanation strategies described before and generates the self-explanatory UI. The
generated UIs form a model-based help system -or self-explanatory facility- which
completes the user interface of the target application. Both user interfaces are model-

based, so they are both composed of the user interface models that are used to generate
the user interface, plus the functional core, as depicted in Figure 9.

[t]

Figure 9. Generic architecture for model-based self-explanatory help systems

In this architecture, the UI of the application as well as the UI of the help system

have their own Controller. The three vertical arrows in Figure 9 represent the access

to the different model-related elements. For instance, the Controller of the application

can access to the models, meta-models, and transformations of the user interface of

Model based self-explanatory user interfaces 149

the application in order to generate the UI. In the same way, the Controller of the help

system can also access the models, meta-models, and transformations of the UI of

the help system for generation purposes. The functional core of the help system can

access to any model-related element of both application UI and help UI, in order to

find those elements that are necessary to compute the requested explanation.

From the end user’s point of view there is only one UI. The question renderer is

in charge of providing the user with a mechanism for asking questions. This could be

completed by entering the question in natural language. For the moment, it is realized

by selecting the desired one from a list of questions. When the user requests sup-

port, the help controller receives the request and passes it to the interpreter in charge

of understanding the question. This interpreter could, for instance, parse the natural

language input of the user or even recognise the gesture triggering the question with a

gesture recognition system. The interpreter says to the processor what support infor-

mation needs to be computed such as the type of the question and its parameters. The

processor computes such information by accessing the models at runtime, according

to the explanation strategy that has been specified for such type of question. This can

be done by applying special help transformations that query the models at runtime,

or by accessing the models via a special API as explained in the next section. The

processor can query all the models independently if they belong to the application or

the help system, and using exactly the same help transformations. This is possible

because all the models conform to the same meta-models. Once the information has

been retrieved from models and computed by the processor, it is prepared for the end

user by the answers renderer. The answers renderer can update the UI with the de-

sired information so the user can use it. The answers renderer is then responsible for

managing how the information is presented. For instance, it could propose some text

or voice using natural language, or an animation of the mouse cursor showing some

procedure.

The architecture is prepared to extend the set of generic questions, according to

the principles and the design of explanation strategies introduced in previous section.

4.5. Implementational Architecture

The conceptual architecture has been implemented in UsiExplain. UsiExplain is

based on UsiComp (García Frey et al., 2012), which supports models at design time

and at runtime (Figure 10). UsiComp consists of a design module and a runtime mod-

ule, both sharing common resources as meta-models and models. The design module

includes a visual editor for designing and prototyping purposes. For the purpose of

this paper we focus on the runtime side, that offers the following features:

– The Transformer Service is a generic transformation service that can apply any

transformation to any model or models, producing models or text (code) as output.

– The Application Controller manages the transformations, their order of execu-

tion and their related models and meta-models, calling the Transformer Service as

many times as needed. Its goal is to produce the UI.

150 ISI. Volume 22 – no 4/2017

– The Application Controller weaves the Functional Core of the application into
the UI, embedding the calls from and to the UI.

Figure 10. Implementation of UsiExplain with the UsiComp framework

UsiComp has been extended with features to generate a help system. A Help System

Controller derives all the support requests from users to the Help System functional

core, which applies the convenient explanation strategy and computes the answer ac-

cordingly, which is in turn resent back to the user.

The different elements of UsiExplain are implemented in Java, as OSGi services2

to make it easier to incorpporate a multitude of different devices and ease the dis-

tributability of UsiExplain. Services include services for modeling with EMF3, for

transforming models with ATL transformation language4. The code of the resulting

UIs, obtained by transformation, is pure Vaadin/Java framework.

2. http://www.osgi.org/

3. http://www.eclipse.org/modeling/emf/

4. http://www.eclipse.org/atl/

Model based self-explanatory user interfaces 151

5. Qualitative evaluation

We conducted an experiment to evaluate the added value of model-based self-

explanations. This evaluation has been published in (García Frey et al., 2013). So we

only summarize here its results to show that we have validated our working hypothesis.

5.1. Summary of the protocol

The experiment was conducted with a total of 20 participants, all between 23 and

39 with an average age of 27.4. From the 20 participants, 12 were male and 8 fe-

male. We recruited individuals regardless of their experience with interactive systems

because the possible added value of model-based explanations can vary regarding the

experience of each profile.

The experiment consists in using the improved car shopping web site with self-

explanations. First we asked them to complete 10 different tasks in an established

order. We asked the participants to "Think aloud": they verbalize their thoughts, spe-

cially the questions they would like to ask to the system and the problems that they

find when accomplishing the tasks.

Then the prototype including a self-explanatory dialog that contained one type of

question at a time is presented. The six questions (how, what is it for, where, what can I

do now, why I cannot and design rationale questions) were presented one after another

again in a randomized order. For each type of question, the dialog box showed all the

possible questions that the participants could ask. Every time we showed a new type

of question, we asked the participants their opinion about it, including the possible

advantages and disadvantages of asking that question to the UI. We asked as well if

the given type of question could be useful in the previous phase of the experiment.

At the end of this phase, all the types of questions were shown together into the same

self-explanatory dialog, and we asked some more general questions.

5.2. Findings

The last phase of the study revealed that questions of types How and Where were

identified by most of the users (15/20) as useful and helpful with statements such as

"It could be very helpful for locating all the options of the vehicle in a faster way".

This last statement refers also to a gain of time, which was also identified as a positive

value by a total of 10/20 users. The good acceptance of How questions contrasts how-

ever with the low number of verbatims. This suggests that users find the information

useful but they are not thinking of asking it. The help UI could encourage/propose

questions in these situations. The What is it for and Why questions were also identi-

fied as useful by an important number of participants, but less useful than the previous

ones. This was mainly due to the fact that subjects did not find useful to ask for

the purpose of some elements of the UI, such as check-boxes or labels, that already

contain clear information about what they are currently doing. In the case of Why

152 ISI. Volume 22 – no 4/2017

questions, the results did not show a good acceptation by the participants as in the re-

sults found by (Lim, Dey, 2009; Myers et al., 2006). This was due to the fact that the
questions proposed by our algorithms did not cover all the possible range of questions
that the participants asked. Finally, the What can I do now and design rationale related
questions were found to be useless by most of the participants (16/20).

When we presented the help UI with all the types of questions together, the study
revealed that in general, model-based self-explanatory facilities were identified as
“useful” and “helpful” by most of the participants (16/20). The study also revealed
question types that were not supported by our current implementation. The analysis
of the collected data suggests that our model-based self-explanatory UI, with minor
design enhancements for major usability improvements, could have the potential to
easily help the users.

5.3. Work limitations

5.3.1. Unsupported types of questions

We identified other types of questions not explicitly supported by our s ystem. A
minor number of them referred to What if questions. Even if most of these verba-

tims come from users that showed a trial and error approach to understand the con-

sequences of their actions in the UI (i.e., they do not know the consequences of an
action but they explore anyway to see what happens), 2 users out of 20 did not use
options from the UI because they did not know their possible side-effects (“I have fear
of loosing all the options”). Supporting What if questions can help this minority of
users to feel more comfortable with the UI. These kinds of questions can probably
be answered by analyzing the operators of the task model and how they are trans-

formed to CUI elements, (what elements of the CUI model become active/inactive as
we enable/disable new tasks.

We also identified a high number of verbatims requesting confirmation and vali-

dation from the UI. For instance, “does the car already have a navigation system?”,
“are the options included in the price?”, were recurrent expressions used by the par-

ticipants. This observation suggests that the feedback provided by the site was not
enough for the users.

A third group of questions not supported by the self-explanatory dialog concerns
definitions. Most of these questions were about specific car-related terminology and
concepts such “What is the Tuner DAB?” or “What does Cabriolet stand for?”. To
support these questions, the proposed model-based approach needs to be extended
with semantic information, either by adding new models or by connecting the UI with
sources of semantic information (internet). Semantic information may be also neces-

sary for answering questions about differences that we identified in a minor number
of verbatims, for instance, What is the difference (or similarities) between the packs?
.

Model based self-explanatory user interfaces 153

5.3.2. Usability Suggestions and Improvements

During the last phase of the experiment, where participants were confronted to the

self-explanatory dialog, 14 out of 20 suggested that they would like to type the whole

question directly instead of clicking on a predefined answer inside a list. 13 out of 20

would like to access questions by typing keywords in a text area, and 4 proposed to

use a vocal interface instead. These observations sustain some of the design principles

for help systems of the literature, in particular, “Help should be accurate, complete

and consistent” (Shneiderman, Plaisant, 2010; Dix et al., 1998), and “Help should not

display irrelevant information” (Horton, 1994). 6 participants suggested to classify

questions not only by question types but following the categories of the underlying

site, for instance, grouping them by equipment or car models. Regarding the answers,

some participants argued that they do not like to read explanations, specially those that

have a significant length. With the models used in this approach, the information given

in the answers can be represented in non textual forms. Finally, some participants

proposed that it would be preferable to use the questions not as a means to know how

to find a specific option, but to "get there". This suggests that self-explanatory UIs

could be used as software agents to overcome the usability issues of a UI not only

by explaining to the user how to solve the issue, but solving it directly if possible.

For instance, navigating to the desired website instead of explaining what website the

user should navigate to. This observation opens new research questions: can self-

explanatory UIs benefit from agents? If so, what other models are needed and how

this can be done?

5.3.3. Scalability of the approach

We did not evaluate how the proposed solution performs in large scale applications

with a high number of models. As the list of questions that the self-explanatory facility

is able to answer, as well as the answers that it is able to provide, rely all of them on

the underlying models using some parts of such models in the computation of the

explanation strategies, a high number of models could have a significant impact in

the performance of the help system. This potential problem is related not only to

the self-explanation solution proposed in this thesis but to model-driven approaches

in general. The scalability problem is not only related to the number of models but

also to the com- plexity of them. For instance, the instance of CUI model containing

thousands of objects could perform sensibly worse than an instance with less than a

hundred objects.

6. Conclusion and perspectives

This paper studies to which extent models containing design decisions are suitable

for supporting users in the interaction process by proposing explanations based on

such models.The proposed approach is generic as new types of models can be con-

sidered in the explanation strategies without modifying our principles and the generic

architecture supporting them. Moreover once explanation strategies are defined, they

can be easily applied in different applications. But to be efficient, the approach re-

154 ISI. Volume 22 – no 4/2017

quires to design models precise enough to contain useful information. In its current
version, our system could be improved in terms of usability and types of questions
covered. It also need to be tested on larger systems.

If we consider the two requirements, coverage and cost, we can say that the goal is
achieved. Considering coverage, we have shown how to include the design rationale
and the structure questions, which had never been implemented so far (Figure 11).
Moreover thanks to explanations strategies, all types of questions are unified and we
can easily add new types of questions.

Figure 11. Comparison of our proposal to related work in QAP problem space

For the cost, help is free by construction as the system reuses design models. How-

ever this means that the models need to be complete or to be slightly adapted to the

system to provide a good help.

Further research needs to be done to understand the specific efforts and burdens

added for end users that could potentially hinder the adoption of the solution. We

need to study the costs and the benefits for and users. We can explore what is the

best presentation and integration of the proposed questions and their related answers.

Improving the usability of the help system will lead to a better use of the help system

and, in consequence, to a better experience with the target application. This research

Model based self-explanatory user interfaces 155

will probably involve techniques for filtering questions out with regard to the user’s

profile, user’s actions, or user’s experience. The presentation of the answers should

also be investigated, integrating techniques for exploiting answers in different ways.

For instance, answers about localisation could take benefit of the model structure to

directly propose the desired element to the user instead of providing the path that the

user needs to follow to locate such element. The adaptation of the answer to each user

should consider as well the use of different vocabulary if necessary, reviewing the

quantity and nature of information provided to each particular user (more information

for novice users, less for experts).

We also think about improving the quality of the UI by tracking what questions

are asked by the users of a user interface. For instance, in the experiment presented in

the previous chapter, almost 120 questions were related to navigational issues. This

means that users did not find the option they were looking for easily. The user interface

designers could study what question types are asked and at what precise moment, so

they can later improve the user interface based on this information.

We can imagine to go a step further by letting the users’ creating his/her own help

system. From a model-based approach, the questions and answers presented by a self-

explanatory UI could be considered as an extra-UI because they provide a different

representation of the underlying models. End-user programming from a model-based

perspective (e.g. as in (Dittmar et al., 2012)) will help to explore other representations,

eventually providing access to the full models of the UI if the user is an expert, or not

only providing explanations about the UI but directly helping users to manipulate the

models with an appropriate extra-UI with self-explanation support.

References

Calvary G., Coutaz J., Thevenin D., Limbourg Q., Bouillon L., Vanderdonckt J. 2003. A

unifying reference framework for multi-target user interfaces. Interacting With Computers
Vol. 15/3, pp. 289-308.

Delisle S., Moulin B. 200210. User interfaces and help systems: from helplessness to intelligent

assistance. Artificial Intelligence, Vol. 18, No. 2, pp. 117–157. http://dx.doi.org/

10.1023/A:1015179704819

Dittmar A., García Frey A., Dupuy-Chessa S. 2012. What can model-based UI design offer

to end-user software engineering? In Proceedings of the 4th ACM SIGCHI symposium

on Engineering interactive computing systems, pp. 189–194. New York, NY, USA, ACM.

http://doi.acm.org/10.1145/2305484.2305515

Dix A., Finley J., Abowd G., Beale R. 1998. Human-computer interaction (2nd ed.)Human-

computer interaction (2nd ed.). Upper Saddle River, NJ, USA, Prentice-Hall, Inc.

Eisenstein J., Rich C. 2002. Agents and GUIs from task modelsAgents and guis from task

models. In Proceedings of the 7th international conference on Intelligent user interfaces, pp.

47–54. New York, NY, USA, ACM. http://doi.acm.org/10.1145/502716.

502727

156 ISI. Volume 22 – no 4/2017

García Frey A., Calvary G., Dupuy-Chessa S. 2012. Users need your models! Exploiting De-

sign Models for Explanations. In Proceedings of HCI 2012, Human Computer Interaction,

People and Computers XXVI, The 26th BCS HCI Group conference (Birmingham, UK)..

García Frey A., Calvary G., Dupuy-Chessa S., Mandran N. 2013. Model-Based Self-

Explanatory UIs for free, but are they valuable? In Proceedings of the 14th IFIP TC13

Conference on Human-Computer Interaction (INTERACT’13), 2-6 September 2013, Cape

Town, South Africa. Springer.

García Frey A., Céret E., Dupuy-Chessa S., Calvary G. 2011. QUIMERA: a Quality Metamodel

to Improve Design Rationale. In Proceedings of the third ACM SIGCHI Symposium on

Engineering Interactive Computing Systems (EICS 2011), p. 265-270. ACM Press. http:

//dl.acm.org/citation.cfm?id=1996534

García Frey A., Céret E., Dupuy-Chessa S., Calvary G., Gabillon Y. 2012. UsiComp: an

extensible model-driven composerUsicomp: an extensible model-driven composer. In Pro-

ceedings of the 4th ACM SIGCHI symposium on Engineering interactive computing sys-

tems, pp. 263–268. New York, NY, USA, ACM. http://doi.acm.org/10.1145/

2305484.2305528

Gregor S., Benbasat I. 199912. Explanations from intelligent systems: theoretical foundations

and implications for practice. MIS Q., Vol. 23, No. 4, pp. 497–530. http://dx.doi.

org/10.2307/249487

Horton W. 1994. Designing and writing online documentation: hypermedia for self-supporting

products. Wiley. http://books.google.fr/books?id=qc9o_kV40NsC

Jackson P. 1998. Introduction to Expert SystemsIntroduction to expert systems (3rd ed.).

Boston, MA, USA, Addison-Wesley Longman Publishing Co., Inc.

Lehnert W. 1977. The process of question answering. Yale. http://books.google.fr/

books?id=J3e4AAAAIAAJ

Lehnert W. 1978. The Process of Question Answering: A Computer Simulation of Cognition.

Erlbaum. http://books.google.fr/books?id=iupQAAAAMAAJ

Lim BY., Dey AK. 2009. Assessing demand for intelligibility in context-aware applications.

In Proceedings of the 11th international conference on Ubiquitous computing, pp. 195–

204. New York, NY, USA, ACM. http://doi.acm.org/10.1145/1620545.

1620576

Lim BY., Dey AK. 2010. Toolkit to support intelligibility in context-aware applications.

In Proceedings of the 12th ACM international conference on Ubiquitous computing, pp.

13–22. New York, NY, USA, ACM. http://doi.acm.org/10.1145/1864349.

1864353

Lim BY., Dey AK., Avrahami D. 2009. Why and why not explanations improve the intelli-

gibility of context-aware intelligent systems. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, pp. 2119–2128. New York, NY, USA, ACM.

http://doi.acm.org/10.1145/1518701.1519023

MacLean A., Young RM., Bellotti VME., Moran TP. 199109. Questions, options, and criteria:

elements of design space analysis. Hum.-Comput. Interact., Vol. 6, No. 3, pp. 201–250.

http://dx.doi.org/10.1207/s15327051hci0603\&4_2

Model based self-explanatory user interfaces 157

Myers BA., Weitzman DA., Ko AJ., Chau DH. 2006. Answering why and why not questions

in user interfaces. In CHI ’06: Proceedings of the SIGCHI conference on Human Factors

in computing systems, pp. 397–406. New York, NY, USA, ACM.

Palanque P., Bastide R., Dourte L. 1993. Contextual Help for Free With Formal Dialogue

Design.

Pangoli S., Paternó F. 1995. Automatic generation of task-oriented helpAutomatic generation

of task-oriented help. In Proceedings of the 8th annual ACM symposium on User interface

and software technology, pp. 181–187. New York, NY, USA, ACM. http://doi.acm.

org/10.1145/215585.215971

Purchase HC., Worrill J. 200204. An empirical study of on-line help design: features and

principles. Int. J. Hum.-Comput. Stud., Vol. 56, No. 5, pp. 539–567. http://dx.doi.

org/10.1006/ijhc.1009

Shneiderman B., Plaisant C. 2010. Designing the User Interface: Strategies for Effec-

tive Human-Computer Interaction. Addison-Wesley. http://books.google.fr/

books?id=2CfROgAACAAJ

Sukaviriya P., Foley JD. 1990. Coupling a UI framework with automatic generation of context-

sensitive animated help. In Proceedings of the 3rd annual ACM SIGGRAPH symposium

on User interface software and technology, pp. 152–166. New York, NY, USA, ACM.

http://doi.acm.org/10.1145/97924.97942

Vermeulen J., Vanderhulst G., Luyten K., Coninx K. 2010. PervasiveCrystal: Asking and

Answering Why and Why Not Questions about Pervasive Computing Applications. In

Proceedings of the 2010 Sixth International Conference on Intelligent Environments, pp.

271–276. Washington, DC, USA, IEEE Computer Society. http://dx.doi.org/

10.1109/IE.2010.56

	blanche.pdf
	Revue des sciences et technologies de l’information séries DN, ISI, RIA, TSI
	Comité scientifique de RSTI

	INGÉNIERIE DES SYSTÈMES D’INFORMATION
	Page vierge
	Page vierge

