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ABSTRACT. This paper analyzes the dissipativity of the direct form digital filters with saturation 

nonlinearity. First a (Q,S,R)-α dissipativity of direct form digital filters with saturation 

nonlinearity has been studied. Based on this existing criterion a new (Q,S,R)-α dissipativity 

criterion of direct form digital filters has been established and verified with some general 

characterization of nonlinearity. 

This paper also deals under what conditions the asymptotic stability of the digital filters can be 

assured which is very crucial for the design of robust controllers. Some numerical examples 

have been employed to demonstrate the usefulness of the theorems. The theorems in this paper 

have been verified using the suitable Lyapunov and dissipative functions. 

RÉSUMÉ. Cet article analyse la dissipativité des filtres numériques à forme directe avec une 

non-linéarité de saturation. Tout d'abord, une (Q,S,R) - une dissipativité de filtres numériques 

à forme directe avec non-linéarité de saturation a été étudiée. Sur la base de ce critère existant, 

un nouveau (Q,S,R)– un nouveau critère de dissipativité a des filtres numériques de forme 

directe a été établi et vérifié avec certain caractérisation générale de non-linéarité. 

Cet article traite également des conditions dans lesquelles la stabilité asymptotique des filtres 

numériques peut être assurée, ce qui est essentiel pour la conception de contrôleurs robustes. 

Quelques exemples numériques ont été utilisés pour démontrer l'utilité des théorèmes. Les 

théorèmes de cet article ont été vérifiés en utilisant les fonctions de Lyapunov et dissipatives 

appropriées. 
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1. Introduction  

In control systems we deal with stationary as well as the dynamical systems. The 

analysis of dynamical systems is not so easy as the state of such systems can change 

with the input supply or disturbances. Hence, the design of robust controllers for 

dynamical systems is a challenging task. The concept of dissipativity (Willems, 1972) 

can be used to synthesize robust controllers.  

The dissipative analysis for linear systems with quadratic supply rates were done 

in (Willems, 1972). Further the concepts were generalized for nonlinear systems (Hill 

and Moylan, 1977; Hill and Moylan, 1980). Also the dissipative analysis have been 

done for continuous (Xie et al., 1998) and discrete (Tan et al., 1999) systems. Further 

the concepts were extended to stochastic systems (Zhang et al., 2010). Recently, the 

dissipativity analysis has been done for static neural networks with time delay (Wu et 

al., 2012) and fuzzy – delayed systems (Su et al., 2014). In this paper we focus on the 

application of dissipativity in designing robust controllers and filters. 

Before digital filters are implemented based on computer software or digital 

hardware, it has to be divided into small filters (Tsividis, 2002; Monteiro and Leuken, 

2010). C.K Ahn handled this problem of disturbances and derived results for interfered 

1-D systems (Ahn, 2015; Ahn and Shi, 2015) and 2-D systems (Ahn, 2013; Ahn, 2014; Ahn, 

2014; Ahn, 2014; Ahn and Kar, 2015; Ahn and Kar, 2015). ( Ahn and Shi, 2016) described 

the dissipativity criteria of direct form of digital filters with saturation nonlinearity 

and also investigated whether the dissipativity criteria of interconnected digital filters 

can be assured. However, in his work system matrices of the digital filters were of 

particular form such that the output was scalar in nature.  

Also, the State space model for linear image processing has been discussed in 

(Roesse, 1975). Dissipativity analysis of 2-D systems has been discussed in (Hinamoto, 

1997; Bisiacco, 1995; Du and Xie, 2002; Kar and Singh, 1999; Kar and Singh, 2004; Ahn et 

al., 2015). Improved stability results for the uncertain discrete state-delayed systems 

have been described in (Tadepalli and Kandanvli, 2014). Dissipativity analysis for the 

discrete singular systems with time varying delay is given in (Feng et al., 2016).The 

effects of limit cycles have been described in (Ghaffari, 2009). In this paper it has been 

investigated whether dissipativity criteria of digital filters can be assured with some 

general form of nonlinearity ? How we can assure the asymptotic stability of the 

systems? Motivated by the recent works (Ahn and Shi, 2015) and (Ahn et al., 2015), this 

paper attempts to answer these questions.  

The paper  is organized as follows: 

(1) First the dissipativity criteria for direct form digital filters is presented 

(2) Based on this criterion a new dissipativity criterion of digital filters has been 

established and verified with general form of nonlinearity 

(3) The asymptotic stability of the system has also been verified. 

(4) Finally some numerical examples have been employed. 



Stability of filters with satuation nonlinearity     557 

2. Direct form digital filters  

During hardware implementation, digital filters suffer from nonlinearities this 

eventually leads the filters towards instability and poor performances. 

Consider the digital filter of the direct form given by (Ahn and Shi, 2015): 

𝐺(𝑧) = ℎ0𝑧−𝑛 + ℎ1𝑧−(𝑛−1) + ⋯ + ℎ𝑛                          (1) 

𝐺(𝑧): transfer function of the digital filter 

where: 

 y(r): Output signal of  G(z)  

 𝑓(𝑦(𝑟))+u(𝑟): input signal of 𝐺(𝑧)  

𝑢(𝑟): External input  

𝑓(∙): ℜ → ℜ  Saturation overflow arithmetic employed on the output signal of 

𝐺(𝑧)  

Saturation overflow arithmetic has been defined as  

                                             (2) 

 

Figure 1. Saturation overflow arithmetic 

where 

𝑓(0) = 0, 𝑎𝑛𝑑 0 ≤
𝑓(𝑦(𝑟))

𝑦(𝑟)
≤ 1                                   (3) 

If we assume the stability of the infinite –precision counterpart of filter (1) then 

The digital filter (1) can also be expressed as: 

𝑥(𝑟 + 1) = 𝐴𝑥(𝑟) + 𝐵𝑓(𝑦(𝑟)) + 𝐵𝑢(𝑟)                            (4) 
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And y(r) = HTx(r) + hnu(r)                                   (5) 

 

Figure 2. Saturation nonlinearity over output 

Where A, B, H and u(r) are matrices of appropriate dimensions: 

𝐴 = [
0 … 0
⋮ 𝐼𝑛−1 ⋮
0 … ⋯

]

𝑛𝑥𝑛

𝐵 = [
0
⋮
1

]

𝑛𝑥1

                                     

𝐻 = [
ℎ0

⋮
ℎ𝑛−1

]

𝑛𝑥1

 𝑥(𝑟) = [
𝑥1(𝑟)

⋮
𝑥𝑛(𝑟)

]

𝑛𝑥1

                               (6) 

𝐼𝑛−1: represents an Identity matrix. 

The dimension of 𝑥(𝑟 + 1) will be nx1 and that of y(r) will be 1x1∀𝑛 ∈ 𝑍. 

2.1. Dissipativity criteria for direct form digital filters 

For the given constant scalars 𝛼 ≥ 0 and matrices Q, S and R, digital filter (4)-(5) 

is (Q,S,R)-𝛼 dissipative  if it satisfies the following inequality: 

∑ 𝑄𝑇
𝑟=0 𝑦2(𝑟) + 2 ∑ 𝑆𝑦(𝑟)𝑢(𝑟) +𝑇

𝑟=0 ∑ 𝑅𝑢2𝑇
𝑟=0 (𝑟) ≥ 𝛼 ∑ 𝑢2𝑇

𝑟=0 (𝑟)      (7) 

under the zero initial condition, where T>0 and 𝛼 is the Dissipativity Performance 

bound. 

The (Q, S, R )-𝛼 dissipativity criteria for the direct digital filters (3)-(4) is given 

as following:  

Theorem1 (Ahn and Shi, 2016): 

Digital filter (1) is (Q,S,R)-𝛼 dissipative if for given scalar 𝛼 ≥0 there exist  a 

matrix variable  

𝑃 = 𝑃𝑇 > 0 and scalar variables 𝛿 > 0 𝑎𝑛𝑑 𝑚 > 0 

Such that the LMI, 
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[

Γ1,1 ∗ ∗

Γ2,1 Γ2,2 ∗

Γ3,1 Γ3,2 Γ3,3

] < 0                                      (8) 

Where the matrix terms  

𝛤1,1 = 𝐴𝑇𝑃𝐴 − 𝑃 − 𝑄𝐻𝐻𝑇 + 𝛿𝐻𝐻𝑇            

𝛤2,1 = 𝐵𝑇𝑃𝐴 + 𝑚𝐻𝑇  

𝛤2,2 = 𝐵𝑇𝑃𝐵 − 2𝑚 − 𝛿  

𝛤3,1 = 𝐵𝑇𝑃𝐴 − 𝑄ℎ𝑛𝐻𝑇 − 𝑆𝐻𝑇 + 𝛿ℎ𝑛𝐻𝑇  

𝛤3,2 = 𝐵𝑇𝑃𝐵 + 𝑚ℎ𝑛  

𝛤3,3 = 𝐵𝑇𝑃𝐵 − 𝑄ℎ𝑛
2 − 2𝑆ℎ𝑛 − [𝑅 − 𝛼] + 𝛿ℎ𝑛

2
  

Remark 1: It is possible to obtain the Optimal Dissipativity Performance Bound 

𝛼∗ by optimizing the following problem (Ahn and Shi, 2015) 

Maximize α subject to 𝛤 < 0, 𝑃 > 0, 𝛿 > 0, 𝑚 > 0 

Remark 2: If the system is unforced then  

𝑢(𝑟) = 0 

∆𝑉(𝑥(𝑟)) − 𝑄𝑦2(𝑟) < 0  

This implies 

 ∆𝑉(𝑥(𝑟)) < 𝑄𝑦2(𝑟) 

Now if 𝑄 ≤ 0 ⇒  ∆𝑉(𝑥(𝑟)) ≤ 0  

Hence, the system is asymptotically stable. 

3. Saturation nonlinearity of the general form 

We can say that the direct form of digital filter (4)-(5) is dissipative. Also we can 

say that with zero input the system is asymptotically stable. So with this result we can 

obtain the robust controllers for the filters to withstand various nonlinearities. 

Now we are going to test whether the direct form of digital filters (4)-(5) is 

dissipative and stable against some general form of nonlinearity. 

Let 𝜒  be the nonlinear characterization for the saturation nonlinearity to be 

imposed on the system (4)-(5) (Tadepalli and Kandanvli, 2014) 

𝜒 = ∑ 2[𝑦𝑖

𝑛

𝑖=1

(𝑘) − 𝑓(𝑦𝑖(𝑘))] [ ∑ {(𝛼𝑖𝑗

𝑛

𝑖=1;𝑗≠1

+ 𝛽𝑖𝑗)𝑓𝑖(𝑦𝑖(𝑘) + (𝛼𝑖𝑗 − 𝛽𝑖𝑗) 𝑓𝑗(𝑦𝑗(𝑘)}] 

= 𝑦𝑇(𝑘)𝐶𝑓(𝑦(𝑘)) + 𝑓𝑇(𝑦(𝑘))𝐶𝑇(𝑦(𝑘)) − 𝑓𝑇(𝑦(𝑘))(𝐶 + 𝐶𝑇)𝑓(𝑦(𝑘)) (9) 
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Where the saturation non-linearity is given as: 

                      (10) 

Let 𝐶 = [𝐶𝑖𝑗] ∈ 𝑅𝑛𝑥𝑛  denote a matrix (Kandanvli and Kar, 2013; Kar 2007; 

Tadepalli et al., 2014) 

Where 

𝑐𝑖𝑖 = ∑ (𝛼𝑖𝑗 + 𝛽𝑖𝑗

𝑛

𝑗=1;𝑗≠𝑖

), 𝑖 = 1,2,3 … . 𝑛                          (11) 

𝑐𝑖𝑗 = (𝛼𝑖𝑗 − 𝛽𝑖𝑗); 𝑖, 𝑗 = 1,2 … . 𝑛(𝑖 ≠ 𝑗)                        (12) 

𝛼𝑖𝑗 > 0; 𝛽𝑖𝑗 > 0; 𝑖, 𝑗 = 1,2. . 𝑛(𝑖 ≠ 𝑗)                         (13) 

For  𝑛 = 1 C corresponds to a scalar 𝜇 > 0 

We now propose a new Dissipativity Criteria with Nonlinearity given by (9)-(13). 

3.1. Dissipativity criteria for direct form digital filters with general form of 

nonlinearity 

For the given constant scalars 𝛼 ≥ 0, identity matrix I and matrices Q, S and R 

digital filter (4)-(5) is (Q,S,R )-𝛼 dissipative  if it satisfies the following inequality: 

                               (14) 

Under the zero initial condition, where T>0 , and  𝛼  is the Dissipativity 

Performance bound. 

Let system matrices of digital filters (4)-(5): 

𝑥(𝑟 + 1) = 𝐴𝑥(𝑟) + 𝐵𝑓(𝑦(𝑟)) + 𝐵𝑢(𝑟)  

And y(r) = HTx(r) + hnu(r)  

are given by: 
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𝐴 = [

𝑎11 … 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 … 𝑎𝑛𝑛

]

𝑛𝑥𝑛

𝐵 = [
𝑏11 … 𝑏1𝑛

⋮ ⋱ ⋮
𝑏𝑛1 … 𝑏𝑛𝑛

]

𝑛𝑥𝑛

 

 𝐻 = [
𝐻11 … 𝐻1𝑛

⋮ ⋱ ⋮
𝐻𝑛1 … 𝐻𝑛𝑛

]

𝑛𝑥𝑛

ℎ𝑛 = [
ℎ11 … ℎ1𝑛

⋮ ⋱ ⋮
ℎ𝑛1 … ℎ𝑛𝑛

]

𝑛𝑥𝑛

𝑥(𝑟) = [
𝑥1(𝑟)

⋮
𝑥𝑛(𝑟)

]

𝑛𝑥1

   (15) 

Clearly, 

𝑦(𝑟): 𝑛𝑥1 ; 𝑓(𝑦(𝑟)): 𝑛𝑥1 are the respective dimensions. 

Clearly with the general form of nonlinearity the criteria for dissipativity of the 

system (4)-(5) will be slightly changed. So we propose new criteria for the (Q, S, R) -

α dissipativity of the system (4)-(5) in the following theorem: 

Theorem 2: Digital filter (4) –(5) is (Q, S, R )-𝛼 dissipative if for given scalar  

𝛼 ≥0 there exist  a matrix variable 𝑃 = 𝑃𝑇 > 0 and variable matrix elements of C, 

i.e 

𝛼𝑖𝑗 > 0; 𝛽𝑖𝑗 > 0; 𝑖, 𝑗 = 1,2 … . . 𝑛(𝑖 ≠ 𝑗) 

Such that the LMI, 

Γ = [

Γ1,1 ∗ ∗

Γ2,1 Γ2,2 ∗

Γ3,1 Γ3,2 Γ3,3

] < 0                                    (16) 

Where:  

𝛤1,1 = 𝐴𝑇𝑃𝐴 − 𝑃 − 𝑄𝐻𝐻𝑇   

𝛤2,1 = 𝐵𝑇𝑃𝐴 + 𝐶𝑇𝐻𝑇   

𝛤2,2 = 𝐵𝑇𝑃𝐵 − 𝐶 − 𝐶𝑇  

𝛤3,1 = 𝐵𝑇𝑃𝐴 − 𝑄ℎ𝑛𝐻𝑇 − 𝑆𝐻𝑇   

𝛤3,2 = 𝐵𝑇𝑃𝐵 + 𝐶ℎ𝑛  

𝛤3,3 = 𝐵𝑇𝑃𝐵 − 𝑄ℎ𝑛
2 − 2𝑆ℎ𝑛 − [𝑅 − 𝛼𝐼]  

∗ represents Symmetrical terms 

Proof: If we impose the nonlinearity as given by (9)-(13) in system   

Then  

𝐽(𝑥(𝑟)) ≜ 𝛥𝑉(𝑥(𝑟)) − 𝑄𝑦2(𝑟) − 2𝑆𝑦(𝑟)𝑢(𝑟) − [𝑅 − 𝛼𝐼]𝑢2(𝑟) + 𝜒[20]   

(17) 
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Where the Lyapunov function:  

𝑉(𝑥(𝑟)) ≜ 𝑥𝑇(𝑟)𝑃𝑥(𝑟)  

Now the forward difference is: 

𝛥𝑉(𝑥(𝑟)) ≜ 𝑉(𝑥(𝑟 + 1)) − 𝑉(𝑥(𝑟))=𝑥𝑇(𝑟 + 1)𝑃𝑥(𝑟 + 1) − 𝑥𝑇(𝑟)𝑃𝑥(𝑟) 

By defining:  

𝜓(𝑟) = [ 𝑥𝑇(𝑟) 𝑓𝑇(𝑦(𝑟)) 𝑢𝑇(𝑟)]𝑇 

Now similar to theorem (1) by putting the values of 𝑥𝑇(𝑟 + 1); 𝑥(𝑟 + 1);𝑦(𝑟) and 

𝜒 

from (4), (5) and (9) in (17) we have : 

𝐽(𝑥(𝑟)) = 𝜓𝑇(𝑟)𝛤𝜓(𝑟)  

Now  

𝛤 < 0 ⇒ 𝐽(𝑥(𝑟)) < 0  

So we have: 

𝐽(𝑥(𝑟)) ≜ 𝛥𝑉(𝑥(𝑟)) − 𝑄𝑦2(𝑟) − 2𝑆𝑦(𝑟)𝑢(𝑟) − [𝑅 − 𝛼𝐼]𝑢2(𝑟) + 𝜒 < 0  

Hence  

𝐽(𝑥(𝑟)) ≜ 𝛥𝑉(𝑥(𝑟)) − 𝑄𝑦2(𝑟) − 2𝑆𝑦(𝑟)𝑢(𝑟) − [𝑅 − 𝛼𝐼]𝑢2(𝑟) < −𝜒   (18) 

Now as the quantity 𝜒 is non-negative (Tadepalli et al. 2014) [28]  

So we have 

𝜒 ≥ 0                                                         (19) 

So from (18) and (19) we have: 

𝐽(𝑥(𝑟)) ≜ 𝛥𝑉(𝑥(𝑟)) − 𝑄𝑦2(𝑟) − 2𝑆𝑦(𝑟)𝑢(𝑟) − [𝑅 − 𝛼𝐼]𝑢2(𝑟) < 0   (20) 

Similar to theorem (1) of (Ahn and Shi, 2015) if we take the summation from 

0 𝑡𝑜 (𝑇 − 1) we have: 

∑ 𝑄

𝑇

𝑟=0

𝑦2(𝑟) + 2 ∑ 𝑆𝑦(𝑟)𝑢(𝑟) +

𝑇

𝑟=0

∑[𝑅−𝛼𝐼]𝑢2

𝑇

𝑟=0

(𝑟) > 𝑉(𝑥(𝑇 + 1) − 𝑉(𝑥(0)) 

Assuming zero initial conditions we obtain (14). 
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This completes the proof. 

Remark3: we optimize the performance bound by maximizing α subject to  

𝛤 < 0, 𝑃 > 0, 𝑎12 > 0, 𝑎21 > 0, 𝑏12 > 0, 𝑏21 > 0  

Where 𝑎12, 𝑎21, 𝑏12, 𝑏21 

 are the elements of matrix C. 

3.2. Dissipativty in the case of scalar nonlinear function 

If we Substitute 

𝐶 = 𝐶𝑇 = 𝜇                                                     (21) 

Now if we put the substitute value (21) in theorem 2 then we get the following 

result which is similar to Theorem1 which can be given as: 

Corollary 1: 

Digital filter (4) –(5) is (Q, S, R )-𝛼 dissipative if for given scalar  𝛼 ≥0 there exist  

a matrix variable 𝑃 = 𝑃𝑇 > 0 and scalar matrix 𝜇 > 0 

Such that the LMI, 

Γ = [

Γ1,1 ∗ ∗

Γ2,1 Γ2,2 ∗

Γ3,1 Γ3,2 Γ3,3

] < 0                                     (22) 

Where: 

𝛤1,1 = 𝐴𝑇𝑃𝐴 − 𝑃 − 𝑄𝐻𝐻𝑇   

𝛤2,1 = 𝐵𝑇𝑃𝐴 + 𝜇 𝐻𝑇  

𝛤2,2 = 𝐵𝑇𝑃𝐵 − 2 𝜇  

𝛤3,1 = 𝐵𝑇𝑃𝐴 − 𝑄ℎ𝑛𝐻𝑇 − 𝑆𝐻𝑇   

𝛤3,2 = 𝐵𝑇𝑃𝐵 + 𝜇ℎ𝑛  

𝛤3,3 = 𝐵𝑇𝑃𝐵 − 𝑄ℎ𝑛
2 − 2𝑆ℎ𝑛 − [𝑅 − 𝛼]  

Remark 4:  

Optimize the performance bound α subject to 𝛤 < 0, 𝑃 > 0, 𝜇 > 0 , then we 

obtain the optimal dissipativity performance bound 𝛼∗ 
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Remark 5:  

If the system is unforced then  

𝑢(𝑟) = 0  

So from (20) 

∆𝑉(𝑥(𝑟)) − 𝑄𝑦2(𝑟) < 0  

⇒ ∆𝑉(𝑥(𝑟)) <  𝑄𝑦2(𝑟)  

Now if 𝑄 ≤ 0 ⇒ ∆𝑉(𝑥(𝑟)) < 0 so the system is asymptotically stable with zero 

input. 

4. Numerical examples 

To demonstrate the usefulness of the theorems following examples have been 

employed: 

Example 4.1 

Consider the system (4) and (5) with  n=2,  

𝐴 = [
0 1
0 0

] 𝐵 = [
0
1

] ; 𝐻 = [
−0.43
0.37

]  𝑄 = −0.2 , 𝑆 = 0.1 , 𝑅 = 0.6  

 and ℎ2 = 0.51. 

Optimization using Remark 1: Now we optimize the performance bound according 

to Remark 1 

The Optimal Dissipativity performance Bound is obtained as  

𝛼∗ = 0.1631 

Asymptotic stability using Remark 2: Also here 

𝑄 = −0.2 < 0, 

so according to Remark 2 this ensures the asymptotic stability of the system under 

zero input. 

Optimization using Remark4: 

The Optimal Dissipativity performance Bound is obtained as  

𝛼∗ = 0.1631 

Which is same as that of Remark 1 

Asymptotic stability using Remark 5: Also here 𝑄 = −0.2 < 0 
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so according to Remark 5 this ensures the asymptotic stability of the system under 

zero input. 

Example 4.2 

Consider the system given by (4) and (5) 

With 𝐻 = [ ℜ2

−2ℜ𝑐𝑜𝑠𝜔𝑇
] 𝐴 = [

0 1
0 0

] 𝐵 = [
0
1

] ;  𝑄 = −0.01, 𝑆 = 0.2 , 𝑅 =

0.3 ℜ = 0.6 and 𝑤𝑇 =
𝜋

3
 

then we have: 𝐻 = [
0.36
−0.6

] 

Optimization using Remark1: 

The optimal dissipativity performance bound is obtained  

as  

𝛼∗ = 0.0183 

Asymptotic Stability using Remark 2: Also here 𝑄 = −0.01 < 0, so according to 

remark 2 this ensures the asymptotic stability of the system under zero input. 

Optimization using Remark4: 

Again  according to Remark 4 

The Optimal Dissipativity performance Bound is obtained as  

𝛼∗ = 0.0183 

same as that of Remark 1 

Asymptotic stability using remark 5: Also here 

𝑄=−0.01<0 so according to remark (5) this ensures the asymptotic stability of the 

system under zero input. 

Example 4.3 

 Consider the direct form of digital filters (4) and (5)  

Also consider the non-linearity of the form of   (18)-(22) 

Clearly with this form of non-linearity   system matrices will have some new 

dimensions: 

So according to (24) for n=2 we consider 

𝐴 = [
0.1 0.2
0.3 0.4

]  𝐵 = [
0.5 0.5
0.6 0.6

]                                     

𝐻 = [
−0.4 0.3
0.3 −0.4

] ℎ2 = [
0.5 0.2
0.2 0.5

]                                         
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𝑄 = [
−0.1 0

0 −0.1
] 𝑆 = [

0.1 0
0 0.1

]                                           

𝑅 = [
0.6 0
0 0.6

] 𝐼 = [
1 0
0 1

]                                                        

   

Optimization using Remark 3: 

The optimal dissipativity Performance bound is obtained as: 𝛼 = 0.6023 

Asymptotic stability using Remark 5: 𝑄 = [
−0.1 0

0 −0.1
] < 0 i.e.𝑄 is negative 

definite matrix so according to Remark 5 the system is asymptotically stable under 

unforced condition. 

The above simulation results have been obtained using YALMIP, SeDuMi and 

MATLAB. 

7. Conclusion 

A new theorem has been proposed with different characterization of nonlinearity 

and it has been found that the system is also dissipative and asymptotically stable. 

The proposed theorem is more general with generalized system matrices which 

can be reduced to that of the existing theorem. The proposed theorem contains less 

terms so it has less numerical complexity than the existing theorem. Also the digital 

filters considered in the examples are dissipative with optimal dissipativity 

performance bound. Under no input conditions the digital filters are asymptotically 

stable which is very crucial for robust controller design. 
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