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Nonlinear hyperbolic heat conduction problems are analyzed thanks to the Cattaneo-

Vernotte model, which takes what happens at very short times into account. First, the case 

of the coupled conductive-radiative heat transfer in planar and spherical media is 

considered. The accuracy of the Lattice Boltzmann heat conduction model coupled with an 

analytical layered spherical harmonics solution of the radiative transport equation is 

investigated. The effects of different parameters such as scattering albedo on both 

temperature and conductive heat flux distributions within the medium are studied for steady 

and transient states. The present predictions agree well with literature benchmarks. It is also 

shown that the parameters have a significant effect on both temperature profile and 

hyperbolic sharp wave front. Second, the non-Fourier heat conduction in a thermoelectric 

thin layer is investigated under several boundary conditions by performing a specific 

quadrupole method. The expressions of the temperature and the heat flux of the small-scale 

thermoelectric materials are obtained and the whole matrix formulation is given explicitly. 

Good agreement is observed between quadrupole temperature predictions and analytical 

results for the Fourier heat conduction problems. 

Keywords: 

analytical layered radiative solution, non-

Fourier conduction, lattice Boltzmann 

method, quadrupole method, 

planar/spherical media, thermoelectricity 

1. INTRODUCTION

Simultaneously, transient conduction and/or radiation in 

participating media appears in many engineering systems and 

emerging technologies such as nanostructures, biological 

tissues, insulated foams, polymers, furnaces, heat pipes, 

combusting chambers and rocket propulsion, renewable 

energy applications using thermoelectric materials [1-3]. The 

amount and rate of heat, coupled to system properties and the 

surrounding govern the thermal response at both the 

microscopic and macroscopic scales. For transient heat flow 

during an extremely short period, the conduction process is 

well described by the hyperbolic heat conduction theory based 

on non-Fourier constitutive heat flux equations such as the 

Cattaneo – Vernotte heat flux equation, which implies a finite 

speed for the propagation of thermal perturbations [4-5]. In 

engineering practice, it is convenient to simulate the non-linear 

heat conduction behavior with commercial software such as 

ANSYS, FLUENT and TRNSYS [6-8]. However, it is 

interesting and suitable to develop semi analytical models for 

instance to make a thermodynamic analysis of a thermoelectric 

device [9], to estimate the maximum rate of heat pumping, to 

study the influence of one parameter, to use it for optimization 

or as an inverse model. Moreover, several modeling of the 

transient state is based on the convenient electrical analogy, 

Laplace transform and separation of the variables [10] finite 

difference/volume and the lattice Boltzmann (LBM) methods 

[11] to study thermoelectric self-cooling of devices. They are

also convenient to solve the partial differential equation for a

small time leg or for micro thermoelectric coolers [12]. 

At macroscopic scales, the time and spectral changes of 

radiative information are often considered as non-significant 

due to its very large propagation speed and gray medium 

assumption [13]. Hence, the radiation assessment involves an 

integro-differential radiative transfer equation (RTE) 

including three spatial and two angular variables. Furthermore, 

for present curvilinear shape, the differential form of the RTE 

coupled to the dependence of spatial/angular variables and the 

optically inhomogeneous complex media make the radiative 

transfer equation difficult to solve analytically except for some 

limiting cases [1, 2, 13]. Generally, the solutions of RTE found 

in the literatures are typically determined by numerical means 

and therefore, contain errors such as angular and spatial errors 

due to solution procedures. To mitigate the effects of error due 

to angular discretization, different approaches have been 

described in the literatures, including phase function 

renormalization, high order angular discretization, angular 

grid refinement [2, 11, 14-15]. However, the error due to 

spatial discretization depends to the considered approach 

around each grid node and to the selected method. In order to 

improve the accuracy of the solution, semi-analytical approach 

based on discrete ordinates has been developed recently by 

Ladeia et al. [16] for cylindrical media but limited to 

homogeneous and steady state transfer.  

The present research is concerned: (1) firstly with the 

development of an analytical solution for radiation analysis in 

optically complex media of inhomogeneous graded index. The 

spherical harmonics method is then used for the development 
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of an analytical radiative transfer solution. The non-linear 

hyperbolic heat conduction with temperature dependent 

thermal conductivity has been investigated through the lattice 

Boltzmann and finite volume methods; (2) and secondly with 

the complete one-dimensional transient hyperbolic heat 

transfer equation solved semi-analytically in order to obtain 

explicit expressions of the temperature and also of the heat 

flux in a thermoelectric layer. A quadrupole formulation of the 

hyperbolic partial differential equation taking the Thomson 

effect into account is then proposed for thin thermoelectric 

layer or medium considered at very short times. 

 

 

2. PROBLEM STATEMENTS  

 

2.1 Coupled conductive-radiative heat transfer in semi-

transparent media 

 

The local energy balance describes the transient conduction 

heat transfer in a medium:  

 

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
= −∇(𝑞𝐶 + 𝑞𝑅)                                                             (1) 

 

where 𝜌  is the density,𝐶𝑝  is the specific heat at constant 

pressure, 𝑞𝐶  is the conductive heat flux; 𝑇  the temperature 

field at time 𝑡 > 0 and 𝑞𝑅  represents the radiative flux. The 

constitutive equation for conductive heat flux is stated by 

Cattaneo and Vernote through the expression [4-5] 

 

𝑞𝐶(𝑟, 𝑡 + 𝜏𝑐𝑣) ≈ 𝑞𝐶(𝑟, 𝑡) + 𝜏𝑐𝑣(𝑇)
𝜕𝑞𝐶

𝜕𝑡
= −𝑘𝐶(𝑇)𝛻𝑇         (2) 

 

The thermal conductivity of the material is considered in the 

form 𝑘𝐶(𝑇) = 𝑘0𝑢(𝑇)  where 𝑘0  represent the reference 

thermal conductivity. The temperature dependent time lag 

𝜏𝑐𝑣(𝑇)  is related to the constant speed 𝐶𝑣  by 𝜏𝑐𝑣(𝑇) =
𝛼(𝑇)/𝐶𝑣

2. The boundary conditions of the thermal problem are 

known temperatures 𝑇0  for left boundary, 𝑇𝐿  for right 

boundary, 𝑇∞ is the initial temperature distribution. For 

combined mode of radiation and conduction, the radiative 

source is ∇𝑞𝑅 = 𝜅𝑒(1 − 𝜔) [4𝑛
2𝜎𝐵𝑇

4 − 2𝜋 ∫ 𝐼(𝑟, 𝜇)𝑑𝜇
1 

−1
] 

[2], where the parameter 𝜅𝑒 is the extinction coefficient, 𝜎𝐵 is 

the Stefan Boltzmann constant and  𝜔 is the single scattering 

albedo. The function  𝐼(𝑟, 𝜇) is the radiative intensity known 

from RTE where the boundary conditions are [17, 18] 

 

𝐼1(𝜏0, 𝜇) = �̅� (𝜖0𝐼𝑏(𝑇0) + 2(1 − 𝜖0) ∫ 𝐼1(𝜏0, −𝜇
′)𝜇′𝑑𝜇′

1

0
) +

𝑏𝐼1(𝜏0, −𝜇)                                                                            (3a) 

 

𝐼𝑁𝐿(𝜏𝐿 , 𝜇) = 𝜖𝐿𝐼𝑏(𝑇𝐿) + 2(1 − 𝜖𝐿) ∫ 𝐼𝑁𝐿(𝜏𝐿 , 𝜇
′)𝜇′𝑑𝜇′

1

0
    (3b) 

 

where 𝜖 is the emissivity and 𝑏 taking the value 1 for slab or 

hollow sphere and 0 for solid sphere (�̅� = 1 − 𝑏).  

 

2.2 Non-Fourier conduction in thermoelements 

 

Consider a single thermoelectric leg of length 𝐿 and cross-

sectional area A. An electrical current I = JA enters uniformly 

into the element. As the thermoelectric material considered 

here is a thin thermoelectric layer, it is necessary to consider 

the hyperbolic law instead of the parabolic law of heat 

conduction [19]. The governing equation in a thin 

thermoelectric leg is the partial differential hyperbolic 

equation: 

 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝜏𝑐𝑣

𝜕2𝑇

𝜕𝑡2
) =

𝜕

𝜕𝑧
(𝑘𝐶

𝜕𝑇

𝜕𝑧
) +

𝐽2

𝜎
− 𝜏𝐽

𝜕𝑇

𝜕𝑧
                      (4) 

 

The relevant properties are the electrical conductivity 𝜎, the 

Thomson coefficient 𝜏 and finally 𝜏𝑐𝑣  is the relaxation time. 

To obtain the hyperbolic equation for a thermoelectric material, 

the steps are clearly detailed for instance in [20]. 

 

 

3. SOLUTION METHODOLOGIES  

 

The first solution approach consists to solve the radiation 

transfer using the spherical harmonics in order to build the 

solution of Eq. (1) from Lattice Boltzmann method. Secondly, 

a specific quadrupole method is developed to solve the energy 

equation relative to a thin layer applied to thermoelectricity. 

 

3.1 A layered radiative solution  

 

The inhomogeneity and angular redistribution of radiative 

intensity increase the difficulties to build the analytical 

solution of the radiation equation. In order to construct a semi-

analytical solution, the media is assumed to be a set of sub-

layers with constant factor 1/𝜏 . In such case, the radiative 

intensity in a single layer can be written as 

 

𝜇
𝜕𝐼𝑘

𝜕𝜏
+ (1 − 𝜇2)

𝑎

𝜏

𝜕𝐼𝑘

𝜕𝜇
+ 𝐼𝑘 − [1 − 𝜔]𝐼𝑏(𝑇) =

𝜔

2
∫ Φ(𝜇′ →
1 

−1

𝜇)𝐼𝑘(𝜏, 𝜇
′)𝑑𝜇′                                                                        (5) 

 

where 𝐼𝑏 = 𝑛2𝜎𝐵𝑇
4/𝜋  is the blackbody intensity; 𝜏 = 𝜅𝑒𝑟 

being the optical depth; 𝜇 = cos (𝜃)  is the polar direction 

cosine; and Φ is the scattering phase function. For the constant 

𝑎 = 0 and 1, the equation pertains to that for the slab and the 

spherical enclosure, respectively. 

The radiative problem in each layer is solved using the 

spherical harmonics or PN method. Therefore, the radiative 

intensity is expanded as [2, 18] 

 

𝐼𝑘(𝜏, 𝜇) ≈ ∑ 𝐼ℓ,𝑘(𝜏)𝑃ℓ(𝜇)
𝑁
ℓ=0                                                   (6) 

 

where 𝐼ℓ,𝑘  are the radiative intensity moments to be 

determined and 𝑃ℓ  are the Legendre polynomials. Hence, 

applying recursive expression of 𝜇𝑃ℓ(𝜇)  and combined to 

orthogonality condition of Legendre polynomials, the RTE is 

reduced to the matrix- vector form as  

 

𝐴
𝑑𝐹𝑘

𝑑𝜏
+ (𝐶 +

𝑎

𝜏𝑘
𝐵)𝐹𝑘 = 𝐷𝑘 ; 𝐹𝑘 = [𝐼0,𝑘, 𝐼1,𝑘 , ⋯ , 𝐼𝑁,𝑘]

𝑇
     (7) 

 

and the component of matrices 𝐴, 𝐵  and 𝐶  are given, 

respectively, by 

 

𝐴ℓℓ′ =
1

2ℓ′+1
[ℓ′𝛿ℓ+1,ℓ′ + (ℓ

′ + 1)𝛿ℓ−1,ℓ′]                          (8a) 

 

𝐵ℓℓ′ =
ℓ′(ℓ′+1)

2ℓ′+1
[𝛿ℓ+1,ℓ′ − (ℓ

′ + 1)𝛿ℓ−1,ℓ′]                            (8b) 

 

𝐶ℓℓ′ = 𝛿ℓℓ′ (1 −
𝜔𝒶ℓ

2ℓ+1
)                                                               (8c) 

 

where 𝛿  is the Kronecker symbol; the components 𝐷ℓ
𝑘 =
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𝛿0ℓ[1 − 𝜔(𝜏)]𝐼𝑏(𝑇)  and 𝒶ℓ is the scattering phase function 

coefficient. The Marshak boundary conditions are used in this 

study and written in matrix-vector form 𝐴0𝐹
1(𝜏0) = 𝐷0  for 

inner and 𝐴𝐿𝐹
𝑁𝐿(𝜏𝐿) = 𝐷𝐿  for outer boundary [11, 18]  

For transient heat transfer, the analytical solution of Eq. (7) 

for a single homogeneous and isothermal layer is similar to 

that developed by Ymeli and Kamdem [11] and Kamdem et al. 

[21] for planar media using double spherical harmonics 

method and discrete ordinates methods, respectively. The 

solution in each sub-layer is constructed by setting 𝐹𝑘(𝜏) =
ℛ𝑘𝑊𝑘(𝜏) , where ℛ𝑘  is the matrix of real eigenvector and 

𝑊𝑘(𝜏)  is the vector of the characteristics intensity to be 

determined. Therefore, Eq. (7) is reduced to 

 
𝑑𝑊𝑘

𝑑𝜏
+ 𝛬𝑘𝑊𝑘 = 𝑆𝑘 = (𝐴ℛ𝑘)−1𝐷𝑘                                        (9) 

 

with 𝛬𝑘 , the matrix of non-zero real eigenvalues   𝜆  of the 

system. Each decoupled component of characteristics 

radiative intensity 𝑊𝑘 can be solved analytically and 

independently as [21] 

 

𝑊𝑘(𝜏) = 𝑒𝑥𝑝[𝜆𝑘(𝜏𝐵
𝑘 − 𝜏)]𝐶𝑘 + 𝑒𝑥�̃�[𝜆𝑘(𝜏𝐵

𝑘 − 𝜏)]𝑆𝑘        (10) 

 

with 𝜏𝐵
𝑘 = 𝜏𝑙

𝑘 + (1 − 𝑘𝑎)(𝜏𝑟
𝑘 − 𝜏𝑙

𝑘) 2⁄ , where 𝜏𝑙
𝑘  and 𝜏𝑟

𝑘  are 

the optical depth of the left and right interfaces of the 𝑘𝑡ℎ layer. 

The constant 𝑘𝑎 is |𝜆𝑘| 𝜆𝑘⁄  and the diagonal matrices exp and 

exp̃ are defined as 

 

exp (𝜆𝑘(𝜏𝐵
𝑘 − 𝜏)) = 𝑑𝑖𝑎𝑔 (𝑒𝜆0

𝑘(𝜏𝐵
𝑘−𝜏), … , 𝑒𝜆𝑁

𝑘 (𝜏𝐵
𝑘−𝜏))        (11) 

 

𝑒𝑥�̃�[𝜆𝑘(𝜏𝐵
𝑘 − 𝜏)] = (𝛬𝑘)−1. (𝕀 − 𝑒𝑥𝑝{𝜆𝑘(𝜏𝐵

𝑘 − 𝜏)})          (12) 

 

where 𝕀 is the identity matrix with the same size with 𝑒𝑥𝑝. The 

determination of the constant 𝐶𝑘  from boundary conditions 

and continuity condition is reduced to the linear system 

ℳ𝒳 = 𝒩 [11] where components are given by 

 

ℳ𝑖,𝑗 =

{
 
 

 
 

𝐴0ℛ
1exp[𝑥1(𝜏)]               𝑖 = 𝑗 = 1

ℛ𝑗exp[𝑥𝑗(𝜏)]𝛿𝑖−1,𝑗 − ℛ
𝑗+1exp[𝑥𝑗+1(𝜏)]𝛿𝑖,𝑗

𝐴𝐿ℛ
𝑁𝐿exp[𝑥𝑁𝐿(𝜏)]                𝑖 = 𝑗 = 𝑁𝐿

    (13a) 

 

𝒩𝑖 = {

𝐷0 − 𝐴0ℛ
1exp̃[𝑥1(𝜏)]𝑆

1𝑗 = 1

ℛ𝑗+1exp̃[𝑥𝑗+1(𝜏)]𝑆
𝑗+1 − ℛ𝑗exp̃[𝑥𝑗(𝜏)]𝑆

𝑗

𝐷𝐿 − 𝐴Lℛ
𝑁𝐿exp̃[𝑥𝑁𝐿(𝜏)]𝑆

𝑁𝐿𝑗 = 𝑁𝐿

          (13b) 

 

where 𝒳 = [𝐶1, 𝐶2, … , 𝐶𝑁𝐿]𝑇  is the vector containing the 

integration constant of all the layers, 𝑁𝐿 is the total number of 

sub-layers and 𝑥𝑖(𝜏) = 𝜆𝑖(𝜏𝐵
𝑖 − 𝜏𝑖) . The linear system is 

solved with LU factorization and the final solution in each 

layer is given by 

 

𝐹𝑘(𝜏) = ℛ𝑘exp[𝜆𝑘(𝜏𝐵
𝑘 − 𝜏)]𝐶𝑘 + ℛ𝑘exp̃[𝜆𝑘(𝜏𝐵

𝑘 − 𝜏)]𝑆𝑘                             

(14) 

 

The developed methodology presents the advantages that 

the volumetric radiation can be computed directly at a 

particular selected location with reasonable computational 

time allowing the coupled conduction and radiation heat 

transfer. The radiative flux 𝑞𝑅  is obtained from 𝑞𝑅
𝑘(𝜏) =

4𝜋𝐼1,𝑘(𝜏)/3. 

In this study, the temperature is initially guessed using the 

distribution at the previous time step and the assumption of 

multilayers structure of the medium where temperature and 

1/𝜏 are discretes and constants. This assumption has been also 

considered by Tan et al. [22] for radiation and Fourier’s 

conduction in graded index planar medium.  

In addition, each layer has been splitting into nodes 

(including boundaries) to represent the solution given in Eq. 

(14). All these nodes are used to compute the solution of the 

conduction problem in the medium as a single layer. 

 

3.2 Lattice Boltzmann method formulation (LBM) 

 

The LBM is a computational method based on a mesoscopic 

description of heat flow, which better describes and captures 

sharp discontinuities of physical problems than the finite 

difference/volume methods [11, 23]. In order to simplify the 

energy equation with known radiative energy, we consider the 

dimensionless parameters as follows 

 

 𝜂 = 𝑟/𝑙𝑐;  𝜉 = 𝐶𝑣𝑡/𝑙𝑐  , 𝐼
∗ =

𝐼0(𝜂)

𝜎𝐵𝑇ℎ
4/𝜋
, 𝑁𝑐 =

𝜅𝑒𝑘0

4𝜅𝐵𝑇ℎ
3               (15) 

 

where 𝑙𝑐 = 𝑘0 𝜌𝐶𝑝𝐶𝑣⁄  is the characteristic length of the 

problem, 𝑇ℎ  is the reference temperature and 𝑁𝑐  is the 

conductive-radiative parameter known also as Planck Number, 

the dimensionless time, distance, temperature 𝛩 = 𝑇/𝑇ℎ, and 

conductive heat flux 𝑞𝐶
∗ = 𝑞𝐶/𝜌𝐶𝑝𝑇ℎ𝐶𝑣  are 𝜉 , 𝜂 , 𝛩 , and 𝑞𝐶

∗  

respectively. Using this set of variables, Eqs. (1) and (2) are 

rewritten, as  

 
𝜕𝛩

𝜕𝜉
+

𝜕𝑞𝑐
∗

𝜕𝜂
= −𝑎

𝑞𝐶
∗

𝜂
−

𝜅𝑒𝑙𝑐
2

𝑁𝑐
∇∗𝑞𝑅                                               (16a) 

 
𝜕𝑞𝐶

∗

𝜕𝜉
+

𝜕𝛩

𝜕𝜂
= −

𝑞𝐶
∗

𝑢(𝛩)
                                                                   (16b) 

 

with ∇∗𝑞𝑅  = 𝜅𝑒[1 − 𝜔]{𝑛
2𝛩4 − 𝐼∗}  and 𝑢(𝛩)  is a given 

function of temperature dependent thermal conductivity. The 

modified LBM equation due to radiation and non-Fourier is 

 

𝜕𝑓𝑖

𝜕𝜉
+ 𝑒𝑖 . ∇𝑓𝑖 =

𝑓𝑖
𝑒𝑞
−𝑓𝑖

𝜏𝑀
−

𝜅𝑒𝑙𝑐
2

2𝑁𝑐
∇∗𝑞𝑅 −

1

2
(
𝑎

𝜂
�̂� +

𝑒𝑖

𝑢(𝛩)
) 𝑞𝐶

∗                                                                                   (17) 

 

where 𝜏𝑀  is the relaxation time, 𝑓𝑖
𝑒𝑞

 is the equilibrium 

distribution function, 𝑓𝑖 is the particle distribution and 𝑒𝑖 is the 

moving velocity of the particles. For D1Q2 model, particles 

moves with two opposites unit velocities, 𝑒1⃗⃗⃗⃗  and 𝑒2⃗⃗ ⃗⃗ . The 

relaxation time and vectors are 𝜏𝑀 = 𝑢(𝛩) + ∆𝜉/2 [11, 23, 

24]. After discretization, Eq. (17) is written as 

 

𝑓𝑖(𝜂 + 𝑒𝑖∆𝜉, 𝜉 + ∆𝜉) − 𝑓𝑖 +
∆𝜉

𝜏𝑀
[𝑓𝑖

𝑒𝑞
− 𝑓𝑖] +

𝜅𝑒𝑙𝑐
2

2𝑁𝑐
∆𝜉∇∗𝑞𝑅 =

−
∆𝜉

2
(
𝑎

𝜂
�̂� +

𝑒𝑖

𝑢(𝛩)
) 𝑞𝐶

∗                                                               (18) 

 

The temperature, conductive heat flux and equilibrium 

distributions are obtained from [11, 23, 24]. 

 

𝛩(𝜂, 𝜉) = 𝑓1(𝜂, 𝜉) + 𝑓2(𝜂, 𝜉)                                                 (19a) 
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𝑞𝐶
∗(𝜂, 𝜉) = 𝑒1⃗⃗⃗⃗ . 𝑓1(𝜂, 𝜉) + 𝑒2⃗⃗ ⃗⃗ . 𝑓2(𝜂, 𝜉)                                 (19b) 

 

𝑓𝑖
𝑒𝑞
(𝜂, 𝜉) = {𝛩(𝜂, 𝜉) + 𝑒𝑖 . 𝑞𝐶

∗(𝜂, 𝜉)}/2                            (19c) 

 

3.3 Quadrupole method 

 

To solve the partial differential heat conduction equation, 

many different methods could be used but it is also very 

convenient to apply the Laplace transform, which transforms 

the partial differential equation into an ordinary differential 

equation in the Laplace domain. Let introduce p the Laplace 

variable and note 𝐿(𝑓) = 𝑓(̅𝑝) = ∫ 𝑓(𝑧, 𝑡)exp (−𝑝𝑡)𝑑𝑡
+∞

0
.  

 
𝑑2�̅�

𝑑𝑧2
−

𝜏𝐽

𝑘𝐶
 
𝑑�̅�

𝑑𝑧
−

𝜌𝐶𝑝

𝑘𝐶
𝑝(1 + 𝑝𝜏𝑐𝑣)�̅�(𝑧, 𝑝) +

𝐽2

𝑝𝜎𝑘𝐶
= 0           (20) 

 

The roots of the characteristic associate equation are 

 

𝛾1,2 =
𝜏𝐽

2𝑘𝐶
± √(

𝜏𝐽

2𝑘𝐶
)
2

+
𝜌𝐶𝑝

𝑘𝐶
𝑝(1 + 𝑝𝜏𝑐𝑣)                            (21) 

 

As a consequence, the solution of the Eq. (20) is 

 

�̅�(𝑧, 𝑝) = 𝜉1 exp(𝛾1𝑧) + 𝜉2𝑒𝑥𝑝(𝛾2𝑧) + �̅�(𝑧)                    (22) 

 

where �̅�(𝑧) is a particular solution of Eq. (20) and 𝜉1, 𝜉2 are 

two constants depending on the boundary conditions. Two 

cases corresponding to different initial conditions are 

investigated to determine �̅�(𝑧): 
IC0: the initial temperature within the leg is constant 

𝑇(𝑧, 𝑡 = 0) = 𝑇∞ then it is obvious that 

 

�̅�(𝑧) =
𝐽2

𝜌𝐶𝑝𝑝
2𝜎(1+𝑝𝜏𝑐𝑣)

+
𝑇∞

𝑝
                                                   (23) 

 

IC1: the initial temperature is linear 

 

�̅�(𝑧) =
1

𝑝
(
𝑇𝐿−𝑇0

𝐿
) 𝑧 +

𝐽2

𝜎
+
𝜏𝐽

𝐿
(𝑇𝐿−𝑇0)

𝜌𝐶𝑝𝑝
2(1+𝑝𝜏𝑐𝑣)

+
𝑇0

𝑝
                             (24) 

 

Let for instance determine 𝜉1 and 𝜉2 in the most common 

case that is to say the thermoelectric thin layer is at the 

temperature 𝑇0 and the side at z = L is then at the temperature 

𝑇𝐿 . The equations corresponding to these boundary conditions 

are in the Laplace domain: 

 

�̅�(𝑧 = 0, 𝑝) = 0 ;    �̅�(𝑧 = 𝐿, 𝑝) = (𝑇𝐿 − 𝑇0)/𝑝                (25) 

 

Then 𝜉1 and 𝜉2 are determined as 

 

𝜉1 =

𝐽2

𝜌𝐶𝑝𝑝2𝜎(1+𝑝𝜏𝑐𝑣)
(1−exp(𝛾2𝐿))−

(𝑇𝐿−𝑇0)

𝑝

exp(𝛾2𝐿)−𝜉2𝑒𝑥𝑝(𝛾1𝐿)
                               (26a) 

 

𝜉2 =

𝐽2

𝜌𝐶𝑝𝑝2𝜎(1+𝑝𝜏𝑐𝑣)
(exp(𝛾1𝐿)−1)+

(𝑇𝐿−𝑇0)

𝑝

exp(𝛾2𝐿)−𝜉2𝑒𝑥𝑝(𝛾1𝐿)
                              (26b) 

 

Now, let express the heat flux which is a linear combination 

of the temperature and the derivative of the temperature 

(where 𝛼𝑠 is the Seebeck coefficient) 

 

𝜑 = 𝛼𝑠𝐼𝛩 − 𝑘𝐶𝐴
𝜕𝛩

𝜕𝑧
                                                                 (27) 

 

Considering Eqs (22) and (27), the Laplace transform of the 

heat flux is: 

 

�̅�(𝑧) = (𝛼𝑠𝐼 − 𝑘𝐶𝐴𝛾1)𝜉1 exp(𝛾1𝑧) + (𝛼𝑠𝐼 −
𝑘𝐶𝐴𝛾2)𝜉2exp(𝛾2𝑧) + 𝜑2̅̅̅̅ (𝑧)                                               (28) 

 

𝜑2̅̅̅̅ (𝑧) = (𝛼𝑠𝐼. �̅�(𝑧) − 𝑘𝐶𝐴
𝑑�̅�(𝑧)

𝑑𝑧
)                                         (29) 

 

From a mathematical point of view, the quadrupole method 

belongs to the class of analytical unified exact explicit method 

for solving linear partial differential equations in simple 

geometries. H.S. Carlaw [25] first presented this approach for 

the conduction of heat in solids. The Laplace heat flux and 

temperature are analogue of the electrical current and 

electrical potential. To summarize, this method provides a 

transfer matrix for the medium that linearly links the input 

temperature–heat flux column vector at one side and the output 

vector at the other side. Let now determine the quadrupole 

corresponding to the case studied. Thanks to Eqs. (22) and (28) 

 

[
�̅�(𝑧𝑖)

�̅�(𝑧𝑖)
] = 𝑀𝑝,𝑖 (

𝜉1
𝜉2
) + 𝑈𝑝,𝑖                                                    (30) 

 

where 

 

𝑀𝑝,𝑖 = ([
 1       1
𝛼𝑠𝐼  𝛼𝑠𝐼

] − 𝑘𝐶𝐴 [
 0     0
𝛾1   𝛾2

]) . [
 𝑒𝑥𝑝(𝛾1𝑧𝑖)      0 

0        𝑒𝑥𝑝(𝛾2𝑧𝑖)
]  (31a) 

 

𝑈𝑝,𝑖 = [
�̅�(𝑧𝑖)

𝛼𝑠𝐼�̅�(𝑧𝑖) − 𝑘𝐶𝐴𝑑�̅�(𝑧𝑖)/𝑑𝑧
]                                  (31b) 

 

Considering the Eq. (26) at the both sides of the 

thermoelectric film, the quadrupole formulation of the 

problem is directly given by  

 

[
�̅�(0)

�̅�(0)
] = 𝑀𝑝,0𝑀𝑝,𝐿

−1 [
�̅�(𝐿)

�̅�(𝐿)
] − 𝑀𝑝,0𝑀𝑝,𝐿

−1𝑈𝑝,𝐿 + 𝑈𝑝,0    (32) 

 

Thanks to this semi-analytical formulation, it is possible to 

plot the transient temperature along the thermoelectric film. 

 

 

4. RESULTS AND DISCUSSION 

 

Toward the validation of the present development, the heat 

transfer occurring in three spatial configurations: the slab, the 

solid sphere and the hollow concentric spheres has been 

considered. For grid independent solution, the medium is 

divided into 90 layers for coupled PN – LBM, and each layer is 

split into ten grid points (including interfaces) to solve the 

radiation problem. For angular independent solution, a 

reasonable order P25 approximation has been found to be 

sufficient as recommended by Ymeli and Kamdem [18] for 

spherical geometry. The present section is organized as 

follows: the first part investigates the accuracy of the proposed 

methodology while the second part focus on the performances 

of the coupled PN–LBM in solving one-dimensional combined 

mode of radiative and non-Fourier conduction in 

inhomogeneous media. The third part investigates the effect of 

relaxation time on temperature field in thermoelement.  
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4.1 Steady state temperature distributions for 

inhomogeneous media 

 

The PN – LBM code for computing the coupled volumetric 

radiation and heat conduction used in the present work was 

first benchmarked for steady state cases dealing with constant 

and temperature dependent thermal conductivity in 1-D planar 

medium. The temperature dependent thermal conductivity is 

considered in the form 𝑘𝑐(𝑇) = 𝑘0 + 𝛾𝐶(𝑇 − 𝑇0) . The left 

boundary has the emissivity 𝜖0 = 0.2 while the right boundary 

is considered as black and the optical thickness is taken to 

𝜅𝑒𝐿 = 10 with scattering albedo 𝜔 = 0.0.  

 

 
 

Figure 1. Effect of conductive – radiative parameter on 

steady state temperature in a slab for 𝜖0 = 0.2 and 𝜖𝐿 = 1.0 

 

 
 

Figure 2. Effect of variable thermal conductivity on steady 

state temperature in a slab for 𝜖0 = 0.2 and 𝜖𝐿 = 1.0  

 

The temperature distributions with constant thermal 

conductivity are given in Figure 1 while the case with 

temperature dependent thermal conductivity is given in Figure 

2. In order to establish the accuracy of the PN – LBM, these 

results are compared to those reported by Mishra et al. [26] 

based on Discrete Transfer Method (DTM). It is seen from 

these figures that the results of the present work match very 

well with those reported in the literatures.  

The next considered problem is that of two concentric 

spheres where the inner radius has 𝑅0 = 0.5 and outer radius 

𝑅𝐿 = 1.0  with heated black boundaries 𝑇0 = 2𝑇𝐿 . The 

extinction coefficient is 𝜅𝑒 = 2.0 for isotropically scattering 

with constant thermal conductivity. The conduction-radiation 

parameter 𝑁𝐶  = 0.1 and 1.0 with three scattering albedos 𝜔 =
0.1, 0.5 and 0.9 are considered. The conductive heat flux 𝑄𝐶  

and total heat flux 𝑄𝑇  at boundaries are presented in Table 2 

for steady state and compared to Galerkin solutions [27] used 

as benchmark due to the high accuracy of the Galerkin method. 

Therefore, it can be observed in Table 2 that, the maximum 

relative errors for 𝑄𝐶(𝑅0), 𝑄𝐶(𝑅𝐿), 𝑄𝑇(𝑅0) and 𝑄𝑇(𝑅𝐿) are 

0.3854 %, 0.5154 %, 0.4674 %, and 0.6146 % respectively. So, 

the developed methodology for coupled heat transfer shows 

good agreement with benchmark solutions for all the cases 

presented. 

 

Table 1. Dimensionless conductive and total heat flux at the 

inner/outer black spheres with 𝜅𝑒𝑅𝐿 = 2.0, and 𝑇0 = 2𝑇𝐿  

with 𝑄𝐶 = 𝑅𝐿𝑞𝐶/𝑘0𝑇0 𝑎𝑛𝑑 𝑄𝑇 = 𝑅𝐿(𝑞𝐶 + 𝑞𝑅)/𝑘0𝑇0 

 
 Conductive heat fluxes 

Present Galerkin [27] 

𝑁𝑐 𝜔 𝑄𝐶(𝑅0) 𝑄𝐶(𝑅𝐿) 𝑄𝐶(𝑅0) 𝑄𝐶(𝑅𝐿) 
 

0.1 

0.1 2.5069 0.7066 2.5166  0.7100 

0.5 2.3156 0.6413 2.3233  0.6426 

0.9 2.0705 0.5372 2.0728  0.5378 

 

1.0 

0.1 2.0577 0.5211 2.0560  0.5238 

0.5 2.0335 0.5143 2.0339  0.5156 

0.9 2.0125 0.5040 2.0073  0.5049 

 Total heat fluxes 

𝑄𝑇(𝑅0) 𝑄𝑇(𝑅𝐿) 𝑄𝑇(𝑅0) 𝑄𝑇(𝑅𝐿) 
 

0.1 

0.1 6.0774 1.5090 6.0519 1.5130 

0.5 5.9487 1.4818 5.9433 1.4858 

0.9 5.8241 1.4526 5.7970 1.4493 

 

1.0 

0.1 2.4002 0.5983 2.4080 0.6020 

0.5 2.4034 0.5962 2.3954 0.5988 

0.9 2.3896 0.5937 2.3797 0.5949 

 
4.2 Transient temperature for nonhomogeneous media 

 

One of the particular cases of combined conduction-

radiation problems correspond to the purely scattering medium 

with 𝜔 = 1.0 where conduction equation (Eq.3) and radiative 

heat transfer equation (Eq.4) are decoupled and evolve 

separately. The considered problem concerns the solid sphere 

with constant thermal conductivity and throughout this study, 

the constant thermal speed is taken in such that 𝐶𝑣𝑅𝐿/2𝛼0=1.0, 

with 𝑅𝐿 =1.0. By selecting four time levels 𝜉 = 𝐶v𝑡/(𝑅𝐿 −
𝑅0) = 0.25, 0.5, 0.75 and 0.875, the corresponding transient 

temperature distributions are given in Figure 3 and compared 

to those of Mishra and Sahai [28] based on LBM. It should be 

note that, the benchmark solutions are considered as exact 

solutions due to the ability of the LBM to accommodate the 

thermal wave front. The most visible observation to be drawn 

is that temperatures increase or decrease suddenly. This 

behavior indicates the presence of the thermal wave front 

moving from the surface towards the center. The present 

Figure shows that, the LBM solution build in this work 

produces the same results with the implemented LBM in the 

literatures. 

 

 
 

Figure 3. Temperature distributions at four time steps 𝜉 =
0.25, 𝜉 = 0.5, 𝜉 = 0.75 and 𝜉 = 0.875 for solid sphere 
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Figure 4. Temperature distributions at four-time steps 𝜉 =
0.1, 𝜉 = 0.3, 𝜉 = 0.6 and 𝜉 = 6.2 for 𝛾𝐶 = 0.0  

 

For the next considered case, the medium absorb 50% of 

radiation energy (𝜔 = 0.5) with 𝜅𝑒 = 1.0, 𝑅0/𝑅𝐿  = 0.5 and 

conduction-radiation parameter 𝑁𝑐 = 0.1 . The temperature 

distributions for hollow concentric spheres at four-time levels 

including the steady state (SS) 𝜉 = 0.1, 𝜉 = 0.3, 𝜉 = 0.6 and 

𝜉 = 6.2 are presented in Figure 4. The thermal wave front 

moves from inner hot boundary to outer cold boundary and the 

temperature of the unperturbed zone increase with time, which 

is the contribution of thermal radiations.  

 

4.3 Effect of variable thermal conductivity on transient 

temperature 

 

Considering the solid sphere heated at the surface, the effect 

of temperature dependent thermal conductivity 𝑘𝑐(𝑇) =
𝑘0[1 + 𝛽𝐶𝑇]  is now investigated with three values of 𝛾𝐶 =
𝛽𝐶𝑇ℎ  for both conduction and radiation phenomena. The 

conduction-radiation number is taken to be 𝑁𝑐 = 0.1 and 𝜔 =
0.5. Figure 5 depicts the temperature field for 𝛾𝐶 = -0.5, 0.0 

and +0.5 at time levels 𝜉 = 0.3 and 𝜉 = 0.6. It is seen from 

this figure that, the increase of 𝛾𝐶  parameter improves the 

temperature profile in the media and negative values of 𝛾𝐶 

strongly affect the temperature field than positive values. This 

may be attributed to the fact that for positive 𝛾𝐶, the thermal 

conductivity increases and therefore improves the thermal 

transfer by conduction. 

 

 
 

 
 

Figure 5. Effect of variable thermal conductivity on 

temperature field for 𝜔 = 0.5, 𝑁𝑐 = 0.1 and 𝜅𝑒 = 1.0 in 

solid sphere (a) 𝜉 = 0.1 (b) 𝜉 = 0.3 and (c) 𝜉 = 0.6 

4.4 Effect of relaxation time on transient temperature for 

thermoelement 

 

Thanks to semi-analytical method based on Laplace 

transform and quadrupole matrix formulation, the effect of 

thermal relaxation time on the transient temperature along the 

thermoelectric film is now investigated. The time variation of 

temperature at different coordinates 𝑧 = 0,  𝑧 = 𝐿/4, 𝑧 = 𝐿/2, 

𝑧 = 3𝐿/4  and 𝑧 = 𝐿  is plotted in Figure 6. Four values of 

relaxation times are considered 𝜏𝑐𝑣  = 0.1s, 1s, 10s and 100s 

with the boundary conditions IC0: 𝑇∞ = 𝑇0 = 270𝐾 and 𝑇𝐿 =
300𝐾. It is seen in this figure that for small relaxation times, 

there is not notably difference between the Fourier and non-

Fourier states. As relaxation time increases, temperatures 

obtained with Fourier law are greater than those produce with 

non-Fourier law of thin layer. 

 

 
(a) Relaxation time 𝜏𝑐𝑣  = 0.1s 

 

 
(b) Relaxation time 𝜏𝑐𝑣  = 1s  

 

 
(c) Relaxation time 𝜏𝑐𝑣  = 10s 

 

Figure 6. Effect of relaxation time on temperature field of 

thermoelectric thin layer 

 

 

5. CONCLUSION 

 

The transient coupled non-Fourier conduction with 

radiation heat transfer in an inhomogeneous, scattering and 

gray medium with graded index is investigated. The analytical 

layered solution of radiation is developed based on linear 
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algebra approach in complex media while the lattice 

Boltzmann method is used to solve the non-linear hyperbolic 

energy equation and compared with benchmark solutions. The 

contribution of radiation on the transient temperature 

distributions in the medium was graphically examined using 

three radiation parameters: temperature dependent thermal 

conductivity, single scattering albedo and conduction-

radiation parameter. The obtained results show good 

agreement with benchmark solutions of radiative heat flux, 

steady state and transient temperature distributions. It was 

found that the radiation effect is more pronounced for high 

value of refractive index or low values of the single scattering 

albedo; conduction-radiation parameter while this 

contribution is less effective for anisotropic scattering 

coefficient. Through these calculations, it was found that 

although the hyperbolic sharp wave front of non-Fourier 

conduction becomes smoother when strong radiative heat 

transfer is taken into account, it can be damped or emphasized 

with the effect of thermal conductivity and the scattering 

albedo. The present study demonstrates that the proposed 

analytical layered solution for radiation coupled to Lattice 

Boltzmann method for non-linear hyperbolic conduction is 

accurate and suitable for combined radiation-conduction 

problems in complex media. In the case of thermoelectric 

elements, the development of a specific quadrupole applied to 

thermoelectricity allows to obtain the transient behavior of a 

film under several boundary conditions, to take into account 

what happens at very short times and to investigate the effect 

of relaxation times on the thermogram. 
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NOMENCLATURE 

 

𝑎         =   constant taken 0 for slab and for 1 sphere 

𝐴, 𝐵, 𝐶 =    matrices for angular discretized RTE  

𝐶𝑣       =   speed of the thermal wave (m.s-1) 

𝐶𝑝       =     specific heat at constant pressure (J.kg-1. K-1) 

𝐷         =     source vector for radiative transfer equation  

𝑒          =     velocities of the particle distribution functions 

𝑓         =      particle distribution function 

𝐹        =      vector of intensity moment  

𝐼         =      radiative intensity (W.m-2.Sr-1) 

𝐽         =      current density  

𝑘𝑐       =       thermal conductivity (W.m-1.K-1) 

𝐿             =       length of the geometry (m)  

𝑁𝑐      =       conduction-radiation parameter 

𝑁𝐿      =      total number of layers of the medium 

𝑃ℓ       =       Legendre polynomial 

𝑞         =      heat flux (W.m-2) 

𝑟, 𝑧      =      spatial variable (m) 

ℛ        =      matrix of eigenvectors  

𝑆         =      source term of the ordinary differential equation 

T         =     temperature distribution (K) 

𝑡          =     time variable (s) 

𝑢         =     temperature dependent function 

𝑊       =     vector of radiative intensity moment 

  

Greek symbols 

 

𝛼          =        thermal diffusivity (m2.s-1) 

𝛾      =        dimensionless coefficient of thermal conductivity 

𝛿      =        Kronecker symbol 

𝜖      =        emissivity  

𝜂         dimensionless distance 

Θ      dimensionless temperature 

𝛬      matrix of real eigenvalue 

𝜆      eigenvalue 

𝜉      dimensionless time or constant in thermoelectricity  

𝜌        material density (kg.m-3) 

𝜎𝐵    Stefan-Boltzmann constant (5.67 × 10−8 W. m−2.K−4) 

𝜅𝑒 =  extinction coefficient (m-1) 

𝜏   =   optical depth  

𝜏𝐵 =   optical thickness of a given layer 

𝜏𝑐𝑣   relaxation time in non-Fourier conduction (s) 

𝜏𝑀   thermal relaxation time for LBM model 

Φ    scattering phase function 

𝜔    scattering albedo 

 

Superscripts 

 

𝑒𝑞     =      equilibrium state 

𝑘       =      order of the given layer 

𝑇       =      transpose vector 

 

Subscripts 

 

𝑐     =     conductive 

ℎ     =     reference  

R      =     radiative 
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