

AksharaNet: A GPU Accelerated Modified Depth-Wise Separable Convolution for Kannada

Text Classification

Shahzia Siddiqua1*, Naveena Chikkaguddaiah2, Sunilkumar S. Manvi1, Manjunath Aradhya3

1 School of Computing & Information Technology, Reva University, Bengaluru 560064, India
2 Department of CSE, SJB Institute of Technology, Bengaluru 560060, India
3 Department of Computer Applications, JSS Science & Technology University, Mysuru 570017, India

Corresponding Author Email: R15PCS22@cit.reva.edu.in

https://doi.org/10.18280/ria.350206

ABSTRACT

Received: 5 September 2020

Accepted: 15 April 2021

 For content-based indexing and retrieval applications, text characters embedded in images

are a rich source of information. Owing to their different shapes, grayscale values, and

dynamic backgrounds, these text characters in scene images are difficult to detect and

classify. The complexity increases when the text involved is a vernacular language like

Kannada. Despite advances in deep learning neural networks (DLNN), there is a dearth of

fast and effective models to classify scene text images and the availability of a large-scale

Kannada scene character dataset to train them. In this paper, two key contributions are

proposed, AksharaNet, a graphical processing unit (GPU) accelerated modified convolution

neural network architecture consisting of linearly inverted depth-wise separable

convolutions and a Kannada Scene Individual Character (KSIC) dataset which is grounds-

up curated consisting of 46,800 images. From results it is observed AksharaNet outperforms

four other well-established models by 1.5% on CPU and 1.9% on GPU. The result can be

directly attributed to the quality of the developed KSIC dataset. Early stopping decisions at

25% and 50% epoch with good and bad accuracies for complex and light models are

discussed. Also, useful findings concerning learning rate drop factor and its ideal

application period for application are enumerated.

Keywords:

deep learning neural networks, Kannada,

classification, depth-wise separable

convolutions, graphical processing unit,

InceptionV3, MobileNetV2, Xception

network

1. INTRODUCTION

The identification of text from natural scene images is a

popular research subject in the area of image processing and

pattern recognition. Signboard images with embedded text

have helpful semantic details that can be used to truly

comprehend important information for a person’s need and

protection. These include institute names, business names,

building names, and warning signs, among other items. As a

consequence, Scene Character Recognition (SCR) which is an

important step in text recognition pipeline has become a

popular research subject, with applications ranging from

content-based indexing, image retrieval, robotics, as an

essential reading tool for the blind to interact with their

environment, tour guide systems and intelligent transportation

systems. However, scene character recognition from natural

scenes has been found to be more complicated and nuanced

than recognizing text in scanned documents. While the

characters are almost of same size when dealing with same

paragraph or title in these documents, natural scene settings

pose a number of problems, including irregular fonts,

changing lighting conditions, noise, distortion, color variation,

a dynamic context, and a variety of writing types.

Most recently published methods use convolution neural

networks (CNN) for this task. However, Deep learning has

long struggled to meet the need for effective classification

models with fewer parameters, lightweight design, and reliable

performance. Deep models of regular convolutions have a

large number of parameters, which necessitates a lot of

computation and infrastructure. Besides, conditions like fitting

necessitate more data or deeper layers, all of which increase

the computation complexity which is outside the scope of a

normal central processing unit (CPU). Alternative hardware

architectures will need to be adopted to bring down the

computational complexity. This is a significant disadvantage

for real-time applications like the one being targeted in this

paper. Additionally, very less work on classifying Kannada

scene characters has been carried out. Thus, the unavailability

of a large dataset, an effective deep model to train, and the ease

of use of the process-support systems are all major hindrances

in this mission.

From the survey [1], it is observed that with use of standard

CNN there is always a compromise due to computational

complexity, model complexity or accuracy which are not

correlated. Alternative designs are required to address the

problem at hand. Taking cue from the best features of various

models, the proposed work first focuses on curating a Kannada

scene text dataset and next design of a graphical processing

unit (GPU)-accelerated Depthwise Separable Convolutions

(DSC) network that uses its parameters efficiently, the parallel

processing capability of a GPU, retains maximum accuracy

and at the same time keeps the model architecture simple and

straight forward. The proposed architecture is schematically

alike in use of inverted DSC to MobileNetV2, use of PReLU

function for non-linearity activation as in DiCENet and the

concept of progression of layer blocks [2]. The use of DSC

drastically reduces the number of parameters and

computations used in convolutional operations and use of a

Revue d'Intelligence Artificielle
Vol. 35, No. 2, April, 2021, pp. 145-152

Journal homepage: http://iieta.org/journals/ria

145

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.350206&domain=pdf

balanced standard class based Kannada scene text dataset

addresses the large data requirements for training the DSC

model which would help achieve better accuracy at low costs

to train the network.

The legend of convolutions for feature extraction began

with classic Lenet [3] model which is a plain pile of

convolutions for characteristic mining and max pooling for

dimensional replacements. Later these notions were developed

and applied to AlexNet [4] model. AlexNet is a series of

multiple convolutions sandwiched between max-pooling

layers for more dense characteristic learning. Soon a vogue of

deeper networks like Zeiler and Fergus [5] and VGG [6]

evolved which gave high accuracies but at high computation

costs. Later, network-in-network [7] style of structural design

trended with series of Inception [8-11] models marking the end

of plain stacked convolutions giving richer extractors with less

parameters. These networks established factoring

convolutions into numerous forks functioning in succession on

channels. To this, DSC proposed by Sifre and Mallat [12] was

exercised in the study [9] to decrease calculations. DSC with

Residual connections [13] was exercised in Xception [14] for

efficient use of parameters and MobileNet [15, 16] models for

mobile applications with lesser parameters. Reconfiguring

DSC as blueprint separable convolutions, the research [17] is

based on intra kernel correlations to improve Mobile Nets.

Also, SegFast [18] which is a spark module uses the fire

module of SqueezeNet. DSC used with SqueezeNet as encoder

and Depth-wise Separable transpose convolution as a decoder

resulted in much lesser parameters. Lately 1D-CNN [19] used

single dimension convolution to classify sensor signals as

DiCENet [20] unit, that is built using dimension-wise

convolutions and dimension-wise fusion have proved as an

efficient performer.

Looking at the research carried out specifically for

recognition of Kannada scene character images, traditional

method of classification using discrete cosine and angular

radical transform to extract features [21] is found. A

multilingual text detection approach using wavelet entropy,

Gabor transform and k-means clustering can be seen in Refs.

[22, 23]. Eventually histogram-of-oriented gradient for

features and neural network for classification was employed

[24]. Lately, modified AlexNet model with batch

normalization was proposed [25] for Kannada character

recognition. An effective scene text detection method was

proposed [26] which involves connected component

extraction, character linking and text/non-text classification. It

combined convolution neural network and extreme learning

machine (ELM) algorithm for above tasks on some publicly

available datasets provided effective results.

Therefore, it is observed that the use of DSC as an efficient

model for classification in real time is very limited. Also, most

of the classifications are carried out on the available Chars74K

[27] dataset in which data in each class isn’t uniform to get

accurate results for CNN classification. Hence, there is dire

need for a complete dataset of Kannada scene characters for

classification.

The contribution of this paper can be summarized as below:

(1) We developed the Kannada Scene individual

character (KSIC) dataset. It consists of single Kannada scene

characters as images for classification purpose. This is robust

as its content are natural and every category is covered in its

making. The categories include images with text as blur, noise,

imperfect, partial, inclined, etc. The dataset can be implied as

a base to replicate the data size. The dataset is made available

for use of researchers at: KSIC Dataset.

(2) Proposing the GPU-accelerated AksharaNet model. It

is an efficient classification model with inverted DSCs having

fewer parameters and lightweight structural design. The model

is robust and flexible as it can be tuned to a gamut of model

sizes, for depth wise expansion its block layers can be repeated

and for width wise extension the number of filters in the

convolutions can be altered.

(3) We studied the early stopping criteria, also known as

Validation Patience (VP). Its impact on different architectures

is analysed based on epoch reached and accuracy achieved at

termination. Also, a simple chart is designed to conclude the

predicted decision.

(4) We performed behavioural analysis and effects of

learning rate drop factor (lrdf) and its period (lrdp) of

implication on the network. The study reveals that decaying of

learning rate is ideal at sufficient epoch gap.

The rest of the paper is organized as follows. Section 2

discusses the development of the Kannada scene dataset.

Section 3 presents the proposed model AksharaNet, its

architecture and implementation methodology. The

experimental results and discussion are then presented in

section 4. Our concluding remarks and future work are finally

presented in section 5.

2. KANNADA SCENE TEXT DATASET

For effective classification, deep learning demands a large

dataset of uniform data sizes in each class. The character set

of Kannada alphabets, which are commonly used or found in

scenes are focused upon. Varnamaale is a character set of 48

letters, 15 of which are swaragalu (also known as vowels) and

33 of which are vyanjanagalu (also known as consonants). The

consonant's kaagunita is the mixture of each consonant and the

vowel sequence. Up to 453 such combinations are considered

in scene text for commonly used kagunitaas.

The making of this dataset involves the following steps:

• Firstly, a broad range of data is extracted from the

existing traditional Chars74K [27] dataset for recognition

purpose. Samples from the same are displayed in Figure 1a.

• Secondly, we utilize natural scene images having

Kannada text dataset and the approach [28] to detect, locate,

segment, label and save at character level [29]. Sample of the

process detection is shown in Figure 1b.

• Frequent occurrences of all the characters are not

found in scenes. To overcome such shortcomings, we generate

born-digital Kannada alphabets using the Nudi 4.0 software.

To this, introduce noise, inclinations and light effects for

natural setup. Few of these samples created are displayed in

Figure 1c.

• Efficient classification requires same data size in each

class. Augmenting the existing character images with contrast,

scale, skew and noise techniques, the non- uniform data count

of such classes is levelled up.

The final dataset consists of 468 classes having 100 RGB

files for each class yielding up to 46,800 images. Each class is

orderly labeled with their parent position in the character

array, position in kaagunita (1-14) and their pronunciation. For

example, the filename labeled as ‘1613Kao’ relates to the 16th

position of the character in the chart, 13 refers to 13th location

in the kaagunita array and Kao is the character’s

pronunciation. In Figure 2, “–” represents the infrequent

characters without database and the bounding box showcases

the example discussed [30, 31].

146

(a) Samples from Chars74K dataset

(b) Locate and segment single characters

(c) Samples of born digital characters using Nudi 4.0

Figure 1. Sample collection by different techniques

Figure 2. Labeled class names of Kannada alphabet set

3. PROPOSED MODEL

3.1 Architecture

One of the main objectives of this research is to propose an

efficient classification model to classify Kannada scene

character images. The detailed description of the

specifications of the model is shown in Table 1 and the

complete flow diagram is depicted in Figure 3. The suggested

architecture of AksharaNet is based on inverted DSCs with

residuals. Initially two standard separable full 3×3

convolutions are used with 32 and 64 filters having stride 2.

These layers are stacked up with four blocks of feature

extractors called DSC Modules, with constant expansion

factor of 8 applied to the input tensor. Each module/block has

three DSC segments, the first 2 segments have residual

connections followed by a linear built. Individual segment

layer is factorized to a point-wise convolution, a depth-wise

convolution [14] with a PReLU [1]. Down sampling is handled

with a stride of 2 in the last segment of the block, except at the

final DSC module.

A final 1x1 convolution layer with 1024 filters, a global

average pooling layer that decreases the spatial resolution to 1,

and a dropout layer with 50% removal during training

complete the design. Finally, a fully connected layer with a

Softmax and a classification layer completes the model. A

batch normalization layer is used to bag all convolution layers,

but it is not specified in the figures or the table. Except for the

first and last modules of the network and the third module of

each row, the feature extraction base of the network is made

up of 40 convolutional layers organized into 14 modules, all

of which have linear connections.

For comparison purposes, we choose the popular Inception

v3, MobileNetV2, ResNet-50 and Xception deep CNN models,

which are explained in brief below:

InceptionV3: On the ImageNet dataset, Inception v3 is a

commonly used image recognition model that has been shown

to achieve greater than 78.1 percent accuracy. The model is the

accumulation of several theories generated over time by a

number of researchers. It is based on Szegedy et al. article [10],

"Rethinking the Inception Architecture for Computer Vision."

Convolutions, average pooling, max pooling, concats,

dropouts, and completely linked layers are among the

symmetric and asymmetric building blocks in the model.

Batch norm is extended to activation inputs and is used widely

in the model. Softmax is used to calculate loss.

MobileNetV2: MobileNetV2 is a convolutional neural

network architecture that aims to be mobile-friendly. It is built

on an inverted residual system, with residual relations between

bottleneck layers. As a source of non-linearity, the

intermediate expansion layer filters features with lightweight

depth wise convolutions. Overall, MobileNetV2's architecture

includes a completely convolutional layer of 32 filters,

supplemented by 19 residual bottleneck layers.

Table 1. AksharaNet parameters

Layer

operation
Input size Kernel size

Channel

count
Stride

Image 299×299×3 - - -

Conv1 150×150×32 3×3 32 2

Conv2 75×75×64 3×3 64 2

DSCModule1 75×75×192 1×1, 3×3 192 1/1/2

DSCModule2 38×38×256 1×1, 3×3 256 1/1/2

DSCModule3 19×19×512 1×1, 3×3 512 1/1/2

DSCModule4 10×10×768 1×1, 3×3 768 1/1/1

Conv3 10×10×1024 1×1 1024 1

GAvg Pool 1×1×1024 10×10 1024 -

FC - - K -
Notes: 1. Each line describes the sequence of layers, 2. DSC Module 1 - 4

refers to the structure as in Figure 3, 3. The kernel size 1×1, 3×3 means

pointwise convolution followed by depth wise convolution, 4. The stride 1/1/2

relates to stride of 2 at 3rd convolution module of each block.

147

Figure 3. Architecture of AksharaNet, a DSC-based classification model

Figure 4. Kannada text classification model using Aksharanet/other CNN models

ResNet-50: ResNet-50 is a 50-layer deep convolutional

neural network. You will use the ImageNet database to load a

pre-trained version of the network that has been trained on

over a million images. The network has been pre-trained to

identify images into 1000 object types, including keyboards,

mice, pencils, and a variety of animals. As a result, the network

has learned a variety of rich feature representations for a

variety of images. The network's image input resolution is 224

by 224 pixels.

Xception network: Xception is an extension of the Inception

Architecture that uses depthwise Separable Convolutions to

replace the regular Inception modules.

Since training all these models requires a lot of computation

power, instead of running them out of a datacenter, thanks to

Nvidia we can now run them off normal systems using

graphical processing units (GPU). Since the computationally

intensive part of the neural network is made up of multiple

matrix multiplications that run into millions of parameters i.e.

weights and biases, we can do all these in parallel (GPU) rather

than serially (from a CPU) to speed up operations.

3.2 Implementation

The implementation of the proposed model is split into four

stages: Choosing the CNN model, data pre-processing,

training and classification and accuracy check. Figure 5 shows

the classification model with AksharaNet as the CNN model

chosen. The description of each stage is itemized below:

(i) CNN model choice: The CNN models chosen are

those that support the current system settings, have properties

148

similar to the proposed model and are presently in use. Along

with AksharaNet, InceptionV3, MobileNetV2, Resnet50 and

Xception deep CNN models are used to train in Python. At this

stage the input size readings are taken from each of these DNN

models to transform the image sizes of the dataset accordingly.

Also, at the FC layer of the models, the number of filters is

replaced to 48-classes in place of 1000. Now, the models are

ready to be trained.

(ii) Dataset pre-processing: The dataset used here is

constrained as per the capacity of the computing system used.

Training is done on the vowels and consonants which make

48-classes with 100 images in each class as displayed in Figure

2. The dataset is shuffled and randomly split as train, test and

validate sets in 75%, 10% and 15% ratio. These datasets are

then scaled up to the size of the DNN model being trained

input picture. The photographs are scaled up to 10%

horizontally and vertically and randomly converted up to 30

pixels. This data augmentation phase keeps the network from

overfitting and memorizing the training images' exact

information. While the augmented training set is used to train

the network model, the augmented validation set is used to

validate the model on a regular basis using training options,

and the augmented test set is used for classification.

Training: This segment initializes the hidden parameters for

training. The standard settings include execution environment,

mini batch size, initial learning rate, momentum, epoch and an

optimizer. Here, the models are trained both on the CPU and a

single GPU system. A mini-batch size of 35 worked well

among other combinations. The initial learning rate is set as

0.01, maximum epoch as 50 and the stochastic gradient

descent with momentum (SGDM) is used as an optimizer. The

default learning rate drop is at every 10 epoch, a drop of 5

epoch too is examined. The results are tabulated in shown in

Figure 7a and Figure 7b. Along with the training options

mentioned in the Figure 4, momentum of 0.9 with shuffle at

every epoch and L2 regularization for the filters are also

applied.

By taking small steps in the direction of the loss function's

negative gradient, the SGDM adjusts the network parameters

(weights and biases) to minimize the loss function. The

additional momentum component aids in the reduction of

oscillations that may occur along the steepest descent path to

the optimum. For all parameters, the stochastic gradient

descent with momentum algorithm uses a single learning rate.

The following is the description of this algorithm:

𝜃𝑛+1 = 𝜃𝑛− ∝ ∇ 𝐸(𝜃𝑛) + 𝛾(𝜃𝑛 − 𝜃𝑛−1) (1)

where, n denotes the number of steps in the iterative training

procedure, ∝ is the learning rate, θ the vector of qualified

parameters, E(θ) denotes the loss function, and γ is the

momentum factor indicating how much the previous step

affects the current iteration step.

(iii) Classification and accuracy check: The training is

carried out using a DNN model with altering hyper parameter

values from training options in the augmented training dataset.

At every 10th epoch the training is validated with augmented

validation. After the iterations are completed, the network is

classified with augmented test dataset to make predictions.

The accuracy is calculated taking the mean of predictions and

test labels, a confusion matrix is generated and sample

predictions are displayed. Samples are listed in the Figure 4

where each image is captioned with its class name and

percentage accuracy.

Algorithm 1: Training and testing of AksharaNet CNN Model

Initialization

1: Initialize the Keras Libraries and Colab

2: Download the KSIC dataset

3: scale to model image input size

4: Augment images until each class has 1000 samples

5: shuffle and split to Train, Validate and Test sets with labels

Build Neural Network

6: Create a Keras Model for pre-trained Models/AksharaNet

7: Check their input dimensionality to scale the dataset images

8: replace number of classes to 48 in place of 1000 at Fully

connected layer

Train, Validate and Test

9: Train the model using augmented train data using

mentioned training options (Figure 4)

10: Validate the network for 50 epochs

11: Classify on Test data

12: Calculate test accuracy

4. RESULTS AND DISCUSSION

The research was conducted in four areas, which are

mentioned below:

• Performance of all CNN models with and without

validation patience using the KSIC dataset on a CPU.

• Performance of CNN models and model training time

using the KSIC dataset on GPU.

• Performance on Early stopping/validation patience

(VP).

• Performance of CNN models for learning rate drop

period.

CNN models are implemented in Python 3.8 using

Tensorflow, Keras, OpenCV and sklearnkit. On the hardware

side, we trained on a single NVidia RTX GPU and an i7 - 8700

CPU, 8GB RAM, 64-bit OS based system. The dataset

consisted of 4800 images with 48-classes that were used for

training. AksharaNet and other pre-trained transfer learning

models like InceptionV3, MobileNetV2, Resnet50 and

Xception are trained and compared for classification. The

execution environment with CPU and GPU is tuned to get the

best classification performance for the dataset and the

proposed models. The results are reported on the augmented

training dataset as average training accuracy, on augmented

validation dataset as final validation accuracy and on

augmented test dataset as testing accuracy.

4.1 Performance of all CNN models with validation

patience using the KSIC dataset on a CPU

The performance of all the deep neural models is tuned to

best case on the Kannada alphabet dataset. Figure 5a compares

and shows the execution on a CPU.

The observations are as follows:

• From Figure 5a, training accuracy of Xception model

is 90.51%, which is good in spite of -5 early

stopping/termination. The closure has occurred at 17th epoch

(34% of the execution) but with heavy computation time. So

using early stopping for this model is good to train and it saves

time.

• From Figure 5b, Xception model outperforms on

validation accuracy with 91.18% with initial learning drop rate

of 1e-11 at 15 drops till termination.

149

• From Figure 5c, InceptionV3 trained the best so far

with 93.13% accuracy, while MobileNetV2 gave best

validation scores of 91.78% and AksharaNet performed best

on testing with 93.19% accuracy.

It is observed that highest values are achieved when lrdf is

at a pace of 0.1 for every 10 epoch for 50 max-epoch and

without validation patience. Based on these values, the dataset

is trained using a GPU next.

Figure 5a. CNN model performance on CPU with early

stopping=5 VP and lrdf=5 epoch

Figure 5b. CNN model performance on CPU with normal

termination and lrdf=5 epoch

Figure 5c. CNN model performance on CPU with normal

termination and lrdf=10 epoch

4.2 Performance of CNN models using the KSIC dataset

and GPU

Performance of the models on GPU is shown in Figure 6a

and the training time in Figure 6b.

As seen from Figure 6b, GPU takes less than half the time

to train the network returning impressive results. From Figure

6a it is observed that InceptionV3 model performs the best

with 94.12% validation accuracy, while AksharaNet returns

the best testing accuracy. It may be noted that though

AksharaNet CPU results are marginally better than GPU for

testing, the advantage that GPU offers in terms of half the time

for training more than makes up for the marginal increase.

Overall, the training time taken by the models in increasing

order is AksharaNet, MobileNetV2, Resnet50, InceptionV3

and Xception. AksharaNet in general returns impressive

training and validation accuracies and performs best in testing

with reduced time frame on the GPU as the model architecture

is simple and the number of parameters is lesser in comparison

to the other models.

Figure 6a. CNN model performance on GPU

Figure 6b. Model training time on CPU and CPU+GPU

4.3 Early stopping/validation patience (VP) performance

Early stopping entails halting the training automatically by

taking benefit from validation data whenever the validation

loss stops decreasing. Figure 7a shows the performance of the

models for an early stopping VP=5 and Figure 7b without VP

on KSIC dataset.

Figure 7a. Model validation patience performance on CPU

and GPU with VP=5

Figure 7b. Model validation patience performance on CPU

and GPU without VP and Epoch=50

It is observed from Figure 7b that normal training has taken

approximately 17-18 drops till completion, Thus VP of 8-9 is

150

ideal for AksharaNet with 50 as max epoch for the considered

data. Table 2 mentions the findings based on the various runs.

On applying VP, on termination of the training the study is

focused on the number of iterations completed, the current

learning rate of the network and the training accuracies

achieved so far. Early stopping at 50% epoch have accuracies

consistent and close to final values. When they read well, the

model is trained well; else the current setup combination can

be disregarded. In the same context, on reaching termination

at 25% epoch, good accuracies provide a scope for

improvement while not so good accuracies may or may not

improve. Also, for deep models with complex computations

early stopping at 25% epoch is ideal (as seen in Xception

model in Figure 5a) and 50% epoch for lighter models. Thus,

these findings help us to make important decisions, saving a

lot of computation time and cost.

Table 2. Early stopping findings based on % Epoch

Accuracy 25% Epoch 50% Epoch

Bad/average

accuracy

May/may not be

accepted
No scope

Good accuracy
Scope for

improvement

Acceptable

model

4.4 Performance of CNN models for learning rate drop

period

The learning rate parameter is initialized to 0.01 to control

the model adaptability with lrdf of 0.1 at each lrdp of the

model weights update. Lrdp is examined for a period of every

10 and 5 epochs. Figure 8a (on CPU) and Figure 8b (on GPU)

shows performances of the models for the Kannada dataset for

both categories of lrdp.

Figure 8a. Model performance for learning rate drop period

on CPU

Figure 8b. Model performance for learning rate drop period

on GPU

The considerations for drop at every 5 epoch winds up the

execution at learning rate of 1e-11 and for drop at every 10

epoch the learning rate is 1e-06. The models exhibit better

accuracies with last learning rate up to 1e-06, so decaying of

learning rate is ideal at an ample epoch gap extending up to

1e-06. Also, frequent drop calculations add up to overall

model computation cost and time.

5. CONCLUSION AND FUTURE ENHANCEMENTS

The proposed work aims to grounds-up curate a dataset in

the absence of large-scale Kannada scene character dataset. A

dataset with 46,800 Kannada scene character images having

468 classes with 100 images for each class was developed with

an objective to use techniques which can help in building a

quality dataset which can feed and judge the efficiency of the

various models. The dataset is scalable and can be replicated

to any size or level through morphing. AksharaNet - a GPU-

accelerated deep neural network model with low complexity

and computation cost is proposed. Its architecture is tailored

for mobile and resource constrained environments providing

results with high accuracy and fast computations. The study is

investigated on five models and deeper learning allowed us to

conclude that on testing data, AksharaNet outperforms

MobileNetV2 by 1.5% on CPU and 1.9% on GPU. Training

the model with complete 468 classes having 46,800 images on

multiple high-end GPUs is expected to increase the

performance. The model training time is drastically reduced

by 50% when using a GPU compared to only a CPU, with

AksharaNet requiring the least time as the model architecture

is simple and the number of parameters is lesser in comparison

to the other models. Early stopping decisions at 25% epoch

and 50% with good and bad accuracies for complex and light

models are discussed. Also, useful findings w.r.t. learning rate

drop factor and its ideal period for application are enumerated.

Overall, AksharaNet returns a robust performance to classify

individual characters, which can be extended to words,

sentences and numbers as future research. The model can be

extended to a spectrum of different model sizes, both depth

and width wise hence it can be used for real-time mobile

applications like text recognition and translation. The dataset

can be augmented or scaled to highest level and also can be

used in applications where blur or broken content needs to be

classified or replaced.

ACKNOWLEDGMENT

The authors sincerely acknowledge and thank Mr. Sumit

Ranjan and Ms. Vinitha V N for their valuable technical inputs

and guidance during the implementation phase of AksharaNet.

REFERENCES

[1] Bianco, S., Cadene, R., Celona, L., Napoletano, P. (2018).

Benchmark analysis of representative deep neural

network architectures. IEEE Access, 6: 64270-64277.

https://doi.org/10.1109/ACCESS.2018.2877890

[2] Merati, M., Mahmoudi, S., Chenine, A., Chikh, M.A.

(2019). A new triplet convolutional neural network for

classification of lesions on mammograms. Revue

d’Intelligence Artificielle, 33(3): 213-217.

https://doi.org/10.18280/ria.330307

[3] LeCun, Y., Jackel, L.D., Bottou, L., Cortes, C., Denker,

J.S., Drucker, H., Guyon, I., Muller, U.A., Sackinger, E.,

Simard, P., Vapnik, V. (1995). Learning algorithms for

classification: A comparison on handwritten digit

recognition. Neural networks: The Statistical Mechanics

Perspective, World Scientific, 261-276.

[4] Krizhevsky, A., Sutskever, I., Hinton, G.E. (2017).

ImageNet classification with deep convolutional neural

networks. Communications of the ACM, 60(6): 84-90.

78.13 81.88
66.25

88 83.7593.13 84.06 86.87 91.87 91.46

0

50

100

InceptionV3 MobileNetV2 ResNet50 Xception AksharaNet

Accuracy @5 Epoch Accuracy @10 Epoch

80
85.63 83.33

90.63 93.13 91.46

60

80

100

InceptionV3 MobileNetV2 AksharaNet

Accuracy @5 Epoch Accuracy @10 Epoch

151

https://doi.org/10.1145/3065386

[5] Zeiler, M.D., Fergus, R. (2014). Visualizing and

understanding convolutional networks. In: Fleet D.,

Pajdla T., Schiele B., Tuytelaars T. (eds) Computer

Vision – ECCV 2014. ECCV 2014. Lecture Notes in

Computer Science, vol 8689. Springer, Cham.

https://doi.org/10.1007/978-3-319-10590-1_53

[6] Simonyan, K., Zisserman, A. (2014). Very deep

convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556.

[7] Lin, M., Chen, Q., Yan, S. (2013). Network in network.

arXiv preprint arXiv:1312.4400.

[8] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.

(2015). Going deeper with convolutions. 2015 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 1-9.

https://doi.org/10.1109/CVPR.2015.7298594

[9] Ioffe, S., Szegedy, C. (2015). Batch normalization:

Accelerating deep network training by reducing internal

covariate shift. arXiv preprint arXiv:1502.03167.

[10] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna,

Z. (2016). Rethinking the inception architecture for

computer vision. 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 2818-2826.

https://doi.org/10.1109/CVPR.2016.308

[11] Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A. (2016).

Inception-v4, inception-ResNet and the impact of

residual connections on learning. arXiv preprint

arXiv:1602.07261.

[12] Sifre, L., Mallat, S. (2014). Rigid-motion scattering for

texture classification. arXiv preprint arXiv:1403.1687.

[13] He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual

learning for image recognition. 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR),

pp. 770-778. https://doi.org/10.1109/CVPR.2016.90

[14] Chollet, F. (2017). Xception: Deep learning with

depthwise separable convolutions. 2017 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 1800-1807.

https://doi.org/10.1109/CVPR.2017.195

[15] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D.,

Wang, W., Weyand, T., Adam, H. (2017). Mobilenets:

Efficient convolutional neural networks for mobile

vision applications. arXiv preprint arXiv:1704.04861.

[16] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen,

L.C. (2018). Mobilenetv2: Inverted residuals and linear

bottlenecks. 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 4510-4520.

https://doi.org/10.1109/CVPR.2018.00474

[17] Haase, D., Amthor, M. (2020). Rethinking Depthwise

Separable Convolutions: How Intra-Kernel Correlations

Lead to Improved MobileNets. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 14600-14609.

[18] Pal, A., Jaiswal, S., Ghosh, S., Das, N., Nasipuri, M.

(2018). SegFast: A faster squeezenet based semantic

image segmentation technique using depth-wise

separable convolutions. In Proceedings of the 11th Indian

Conference on Computer Vision, Graphics and Image

Processing, pp. 1-7.

https://doi.org/10.1145/3293353.3293406

[19] Tang, D., Jin, M., Wang, Q., Zhou, W., Zhang, J. (2020).

Human activity recognition algorithm based on one-

dimensional convolutional neural network. Revue

d’Intelligence Artificielle, 34(1): 75-80.

https://doi.org/10.18280/ria.340110

[20] Mehta, S., Hajishirzi, H., Rastegari, M. (2019). DiCENet:

Dimension-wise convolutions for efficient networks.

arXiv preprint arXiv:1906.03516.

[21] Kumar, D., Ramakrishnan, A.G. (2012). Recognition of

Kannada characters extracted from scene images. In

Proceeding of the Workshop on Document Analysis and

Recognition, pp. 15-21.

https://doi.org/10.1145/2432553.2432557

[22] Aradhya, V.M., Pavithra, M.S., Naveena, C. (2012). A

robust multilingual text detection approach based on

transforms and wavelet entropy. Procedia Technology, 4:

232-237. https://doi.org/10.1016/j.protcy.2012.05.035

[23] Pavithra, M.S., Aradhya, V.M. (2014). A comprehensive

of transforms, Gabor filter and k-means clustering for

text detection in images and video. Applied Computing

and Informatics, 12(2): 1-15.

https://doi.org/10.1016/j.aci.2014.08.001

[24] Yadav, D.P., Kumar, M. (2018). Kannada character

recognition in images using histogram of oriented

gradients and machine learning. In: Chaudhuri B.,

Kankanhalli M., Raman B. (eds) Proceedings of 2nd

International Conference on Computer Vision & Image

Processing. Advances in Intelligent Systems and

Computing, vol 704. Springer, Singapore.

https://doi.org/10.1007/978-981-10-7898-9_22

[25] Siddiqua, S., Naveena, C., Manvi, S.S. (2019).

Recognition of Kannada characters in scene images

using neural networks. 2019 Fifth International

Conference on Image Information Processing (ICIIP), pp.

146-150.

https://doi.org/10.1109/ICIIP47207.2019.8985672

[26] Wu, H., Zou, B., Zhao, Y.Q., Guo, J. (2017). Scene text

detection using adaptive color reduction, adjacent

character model and hybrid verification strategy. The

Visual Computer, 33(1): 113-126.

https://doi.org/10.1007/s00371-015-1156-1

[27] Chars74k demo.

http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/,

accessed on 12 November 2020.

[28] Siddiqua, S., Naveena, C., Manvi, S.S. (2021).

Combined contrast enhanced and wide-baseline

technique for text detection in images. Journal of

Huazhong University of Science and Technology, 50(4).

[29] Siddiqua, S., Naveena, C., Manvi, S.K. (2017). A

combined edge and connected component based

approach for Kannada text detection in images. In 2017

International Conference on Recent Advances in

Electronics and Communication Technology

(ICRAECT), pp. 121-125.

https://doi.org/10.1109/ICRAECT.2017.35

[30] Manjunath Aradhya, V.N., Basavaraju, H.T., Guru, D.S.

(2019). Decade research on text detection in

images/videos: A review. Evolutionary Intelligence, 1-

27. https://doi.org/10.1007/s12065-019-00248-z

[31] Basavaraju, H.T., Aradhya, V.M., Guru, D.S. (2019).

Text detection through hidden Markov random field and

EM-algorithm. In Information systems design and

intelligent applications, Springer, Singapore, 19-29.

https://doi.org/10.1007/978-981-13-3329-3_3

152

