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 For content-based indexing and retrieval applications, text characters embedded in images 

are a rich source of information. Owing to their different shapes, grayscale values, and 

dynamic backgrounds, these text characters in scene images are difficult to detect and 

classify. The complexity increases when the text involved is a vernacular language like 

Kannada. Despite advances in deep learning neural networks (DLNN), there is a dearth of 

fast and effective models to classify scene text images and the availability of a large-scale 

Kannada scene character dataset to train them. In this paper, two key contributions are 

proposed, AksharaNet, a graphical processing unit (GPU) accelerated modified convolution 

neural network architecture consisting of linearly inverted depth-wise separable 

convolutions and a Kannada Scene Individual Character (KSIC) dataset which is grounds-

up curated consisting of 46,800 images. From results it is observed AksharaNet outperforms 

four other well-established models by 1.5% on CPU and 1.9% on GPU. The result can be 

directly attributed to the quality of the developed KSIC dataset. Early stopping decisions at 

25% and 50% epoch with good and bad accuracies for complex and light models are 

discussed. Also, useful findings concerning learning rate drop factor and its ideal 

application period for application are enumerated. 
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1. INTRODUCTION 

 

The identification of text from natural scene images is a 

popular research subject in the area of image processing and 

pattern recognition. Signboard images with embedded text 

have helpful semantic details that can be used to truly 

comprehend important information for a person’s need and 

protection. These include institute names, business names, 

building names, and warning signs, among other items. As a 

consequence, Scene Character Recognition (SCR) which is an 

important step in text recognition pipeline has become a 

popular research subject, with applications ranging from 

content-based indexing, image retrieval, robotics, as an 

essential reading tool for the blind to interact with their 

environment, tour guide systems and intelligent transportation 

systems. However, scene character recognition from natural 

scenes has been found to be more complicated and nuanced 

than recognizing text in scanned documents. While the 

characters are almost of same size when dealing with same 

paragraph or title in these documents, natural scene settings 

pose a number of problems, including irregular fonts, 

changing lighting conditions, noise, distortion, color variation, 

a dynamic context, and a variety of writing types. 

Most recently published methods use convolution neural 

networks (CNN) for this task. However, Deep learning has 

long struggled to meet the need for effective classification 

models with fewer parameters, lightweight design, and reliable 

performance. Deep models of regular convolutions have a 

large number of parameters, which necessitates a lot of 

computation and infrastructure. Besides, conditions like fitting 

necessitate more data or deeper layers, all of which increase 

the computation complexity which is outside the scope of a 

normal central processing unit (CPU). Alternative hardware 

architectures will need to be adopted to bring down the 

computational complexity. This is a significant disadvantage 

for real-time applications like the one being targeted in this 

paper. Additionally, very less work on classifying Kannada 

scene characters has been carried out. Thus, the unavailability 

of a large dataset, an effective deep model to train, and the ease 

of use of the process-support systems are all major hindrances 

in this mission. 

From the survey [1], it is observed that with use of standard 

CNN there is always a compromise due to computational 

complexity, model complexity or accuracy which are not 

correlated. Alternative designs are required to address the 

problem at hand. Taking cue from the best features of various 

models, the proposed work first focuses on curating a Kannada 

scene text dataset and next design of a graphical processing 

unit (GPU)-accelerated Depthwise Separable Convolutions 

(DSC) network that uses its parameters efficiently, the parallel 

processing capability of a GPU, retains maximum accuracy 

and at the same time keeps the model architecture simple and 

straight forward. The proposed architecture is schematically 

alike in use of inverted DSC to MobileNetV2, use of PReLU 

function for non-linearity activation as in DiCENet and the 

concept of progression of layer blocks [2]. The use of DSC 

drastically reduces the number of parameters and 

computations used in convolutional operations and use of a 
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balanced standard class based Kannada scene text dataset 

addresses the large data requirements for training the DSC 

model which would help achieve better accuracy at low costs 

to train the network.  

The legend of convolutions for feature extraction began 

with classic Lenet [3] model which is a plain pile of 

convolutions for characteristic mining and max pooling for 

dimensional replacements. Later these notions were developed 

and applied to AlexNet [4] model. AlexNet is a series of 

multiple convolutions sandwiched between max-pooling 

layers for more dense characteristic learning. Soon a vogue of 

deeper networks like Zeiler and Fergus [5] and VGG [6] 

evolved which gave high accuracies but at high computation 

costs. Later, network-in-network [7] style of structural design 

trended with series of Inception [8-11] models marking the end 

of plain stacked convolutions giving richer extractors with less 

parameters. These networks established factoring 

convolutions into numerous forks functioning in succession on 

channels. To this, DSC proposed by Sifre and Mallat [12] was 

exercised in the study [9] to decrease calculations. DSC with 

Residual connections [13] was exercised in Xception [14] for 

efficient use of parameters and MobileNet [15, 16] models for 

mobile applications with lesser parameters. Reconfiguring 

DSC as blueprint separable convolutions, the research [17] is 

based on intra kernel correlations to improve Mobile Nets. 

Also, SegFast [18] which is a spark module uses the fire 

module of SqueezeNet. DSC used with SqueezeNet as encoder 

and Depth-wise Separable transpose convolution as a decoder 

resulted in much lesser parameters. Lately 1D-CNN [19] used 

single dimension convolution to classify sensor signals as 

DiCENet [20] unit, that is built using dimension-wise 

convolutions and dimension-wise fusion have proved as an 

efficient performer. 

Looking at the research carried out specifically for 

recognition of Kannada scene character images, traditional 

method of classification using discrete cosine and angular 

radical transform to extract features [21] is found. A 

multilingual text detection approach using wavelet entropy, 

Gabor transform and k-means clustering can be seen in Refs. 

[22, 23]. Eventually histogram-of-oriented gradient for 

features and neural network for classification was employed 

[24]. Lately, modified AlexNet model with batch 

normalization was proposed [25] for Kannada character 

recognition. An effective scene text detection method was 

proposed [26] which involves connected component 

extraction, character linking and text/non-text classification. It 

combined convolution neural network and extreme learning 

machine (ELM) algorithm for above tasks on some publicly 

available datasets provided effective results. 

Therefore, it is observed that the use of DSC as an efficient 

model for classification in real time is very limited. Also, most 

of the classifications are carried out on the available Chars74K 

[27] dataset in which data in each class isn’t uniform to get 

accurate results for CNN classification. Hence, there is dire 

need for a complete dataset of Kannada scene characters for 

classification. 

The contribution of this paper can be summarized as below: 

(1) We developed the Kannada Scene individual 

character (KSIC) dataset. It consists of single Kannada scene 

characters as images for classification purpose. This is robust 

as its content are natural and every category is covered in its 

making. The categories include images with text as blur, noise, 

imperfect, partial, inclined, etc. The dataset can be implied as 

a base to replicate the data size. The dataset is made available 

for use of researchers at: KSIC Dataset. 

(2) Proposing the GPU-accelerated AksharaNet model. It 

is an efficient classification model with inverted DSCs having 

fewer parameters and lightweight structural design. The model 

is robust and flexible as it can be tuned to a gamut of model 

sizes, for depth wise expansion its block layers can be repeated 

and for width wise extension the number of filters in the 

convolutions can be altered. 

(3) We studied the early stopping criteria, also known as 

Validation Patience (VP). Its impact on different architectures 

is analysed based on epoch reached and accuracy achieved at 

termination. Also, a simple chart is designed to conclude the 

predicted decision. 

(4) We performed behavioural analysis and effects of 

learning rate drop factor (lrdf) and its period (lrdp) of 

implication on the network. The study reveals that decaying of 

learning rate is ideal at sufficient epoch gap. 

The rest of the paper is organized as follows. Section 2 

discusses the development of the Kannada scene dataset. 

Section 3 presents the proposed model AksharaNet, its 

architecture and implementation methodology. The 

experimental results and discussion are then presented in 

section 4. Our concluding remarks and future work are finally 

presented in section 5. 
 

 

2. KANNADA SCENE TEXT DATASET 
 

For effective classification, deep learning demands a large 

dataset of uniform data sizes in each class. The character set 

of Kannada alphabets, which are commonly used or found in 

scenes are focused upon. Varnamaale is a character set of 48 

letters, 15 of which are swaragalu (also known as vowels) and 

33 of which are vyanjanagalu (also known as consonants). The 

consonant's kaagunita is the mixture of each consonant and the 

vowel sequence. Up to 453 such combinations are considered 

in scene text for commonly used kagunitaas. 

The making of this dataset involves the following steps: 

• Firstly, a broad range of data is extracted from the 

existing traditional Chars74K [27] dataset for recognition 

purpose. Samples from the same are displayed in Figure 1a.  

• Secondly, we utilize natural scene images having 

Kannada text dataset and the approach [28] to detect, locate, 

segment, label and save at character level [29]. Sample of the 

process detection is shown in Figure 1b.  

• Frequent occurrences of all the characters are not 

found in scenes. To overcome such shortcomings, we generate 

born-digital Kannada alphabets using the Nudi 4.0 software. 

To this, introduce noise, inclinations and light effects for 

natural setup. Few of these samples created are displayed in 

Figure 1c.  

• Efficient classification requires same data size in each 

class. Augmenting the existing character images with contrast, 

scale, skew and noise techniques, the non- uniform data count 

of such classes is levelled up.  

The final dataset consists of 468 classes having 100 RGB 

files for each class yielding up to 46,800 images. Each class is 

orderly labeled with their parent position in the character 

array, position in kaagunita (1-14) and their pronunciation. For 

example, the filename labeled as ‘1613Kao’ relates to the 16th 

position of the character in the chart, 13 refers to 13th location 

in the kaagunita array and Kao is the character’s 

pronunciation. In Figure 2, “–” represents the infrequent 

characters without database and the bounding box showcases 

the example discussed [30, 31]. 
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(a) Samples from Chars74K dataset 

 
(b) Locate and segment single characters 

 
(c) Samples of born digital characters using Nudi 4.0 

 

Figure 1. Sample collection by different techniques 

 

 
 

Figure 2. Labeled class names of Kannada alphabet set 

 

 

3. PROPOSED MODEL 

 

3.1 Architecture 

 

One of the main objectives of this research is to propose an 

efficient classification model to classify Kannada scene 

character images. The detailed description of the 

specifications of the model is shown in Table 1 and the 

complete flow diagram is depicted in Figure 3. The suggested 

architecture of AksharaNet is based on inverted DSCs with 

residuals. Initially two standard separable full 3×3 

convolutions are used with 32 and 64 filters having stride 2. 

These layers are stacked up with four blocks of feature 

extractors called DSC Modules, with constant expansion 

factor of 8 applied to the input tensor. Each module/block has 

three DSC segments, the first 2 segments have residual 

connections followed by a linear built. Individual segment 

layer is factorized to a point-wise convolution, a depth-wise 

convolution [14] with a PReLU [1]. Down sampling is handled 

with a stride of 2 in the last segment of the block, except at the 

final DSC module.  

A final 1x1 convolution layer with 1024 filters, a global 

average pooling layer that decreases the spatial resolution to 1, 

and a dropout layer with 50% removal during training 

complete the design. Finally, a fully connected layer with a 

Softmax and a classification layer completes the model. A 

batch normalization layer is used to bag all convolution layers, 

but it is not specified in the figures or the table. Except for the 

first and last modules of the network and the third module of 

each row, the feature extraction base of the network is made 

up of 40 convolutional layers organized into 14 modules, all 

of which have linear connections. 

For comparison purposes, we choose the popular Inception 

v3, MobileNetV2, ResNet-50 and Xception deep CNN models, 

which are explained in brief below: 

InceptionV3: On the ImageNet dataset, Inception v3 is a 

commonly used image recognition model that has been shown 

to achieve greater than 78.1 percent accuracy. The model is the 

accumulation of several theories generated over time by a 

number of researchers. It is based on Szegedy et al. article [10], 

"Rethinking the Inception Architecture for Computer Vision." 

Convolutions, average pooling, max pooling, concats, 

dropouts, and completely linked layers are among the 

symmetric and asymmetric building blocks in the model. 

Batch norm is extended to activation inputs and is used widely 

in the model. Softmax is used to calculate loss. 

MobileNetV2: MobileNetV2 is a convolutional neural 

network architecture that aims to be mobile-friendly. It is built 

on an inverted residual system, with residual relations between 

bottleneck layers. As a source of non-linearity, the 

intermediate expansion layer filters features with lightweight 

depth wise convolutions. Overall, MobileNetV2's architecture 

includes a completely convolutional layer of 32 filters, 

supplemented by 19 residual bottleneck layers. 

 

Table 1. AksharaNet parameters 

 
Layer 

operation 
Input size Kernel size 

Channel 

count 
Stride 

Image 299×299×3 - - - 

Conv1 150×150×32 3×3 32 2 

Conv2 75×75×64 3×3 64 2 

DSCModule1 75×75×192 1×1, 3×3 192 1/1/2 

DSCModule2 38×38×256 1×1, 3×3 256 1/1/2 

DSCModule3 19×19×512 1×1, 3×3 512 1/1/2 

DSCModule4 10×10×768 1×1, 3×3 768 1/1/1 

Conv3 10×10×1024 1×1 1024 1 

GAvg Pool 1×1×1024 10×10 1024 - 

FC - - K - 
Notes: 1. Each line describes the sequence of layers, 2. DSC Module 1 - 4 

refers to the structure as in Figure 3, 3. The kernel size 1×1, 3×3 means 

pointwise convolution followed by depth wise convolution, 4. The stride 1/1/2 

relates to stride of 2 at 3rd convolution module of each block. 
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Figure 3. Architecture of AksharaNet, a DSC-based classification model 

 

 
 

Figure 4. Kannada text classification model using Aksharanet/other CNN models 

 

ResNet-50: ResNet-50 is a 50-layer deep convolutional 

neural network. You will use the ImageNet database to load a 

pre-trained version of the network that has been trained on 

over a million images. The network has been pre-trained to 

identify images into 1000 object types, including keyboards, 

mice, pencils, and a variety of animals. As a result, the network 

has learned a variety of rich feature representations for a 

variety of images. The network's image input resolution is 224 

by 224 pixels. 

Xception network: Xception is an extension of the Inception 

Architecture that uses depthwise Separable Convolutions to 

replace the regular Inception modules. 

Since training all these models requires a lot of computation 

power, instead of running them out of a datacenter, thanks to 

Nvidia we can now run them off normal systems using 

graphical processing units (GPU). Since the computationally 

intensive part of the neural network is made up of multiple 

matrix multiplications that run into millions of parameters i.e. 

weights and biases, we can do all these in parallel (GPU) rather 

than serially (from a CPU) to speed up operations. 

 

3.2 Implementation 

 

The implementation of the proposed model is split into four 

stages: Choosing the CNN model, data pre-processing, 

training and classification and accuracy check. Figure 5 shows 

the classification model with AksharaNet as the CNN model 

chosen. The description of each stage is itemized below: 

(i) CNN model choice: The CNN models chosen are 

those that support the current system settings, have properties 
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similar to the proposed model and are presently in use. Along 

with AksharaNet, InceptionV3, MobileNetV2, Resnet50 and 

Xception deep CNN models are used to train in Python. At this 

stage the input size readings are taken from each of these DNN 

models to transform the image sizes of the dataset accordingly. 

Also, at the FC layer of the models, the number of filters is 

replaced to 48-classes in place of 1000. Now, the models are 

ready to be trained.  

(ii) Dataset pre-processing: The dataset used here is 

constrained as per the capacity of the computing system used. 

Training is done on the vowels and consonants which make 

48-classes with 100 images in each class as displayed in Figure 

2. The dataset is shuffled and randomly split as train, test and 

validate sets in 75%, 10% and 15% ratio. These datasets are 

then scaled up to the size of the DNN model being trained 

input picture. The photographs are scaled up to 10% 

horizontally and vertically and randomly converted up to 30 

pixels. This data augmentation phase keeps the network from 

overfitting and memorizing the training images' exact 

information. While the augmented training set is used to train 

the network model, the augmented validation set is used to 

validate the model on a regular basis using training options, 

and the augmented test set is used for classification. 

Training: This segment initializes the hidden parameters for 

training. The standard settings include execution environment, 

mini batch size, initial learning rate, momentum, epoch and an 

optimizer. Here, the models are trained both on the CPU and a 

single GPU system. A mini-batch size of 35 worked well 

among other combinations. The initial learning rate is set as 

0.01, maximum epoch as 50 and the stochastic gradient 

descent with momentum (SGDM) is used as an optimizer. The 

default learning rate drop is at every 10 epoch, a drop of 5 

epoch too is examined. The results are tabulated in shown in 

Figure 7a and Figure 7b. Along with the training options 

mentioned in the Figure 4, momentum of 0.9 with shuffle at 

every epoch and L2 regularization for the filters are also 

applied. 

By taking small steps in the direction of the loss function's 

negative gradient, the SGDM adjusts the network parameters 

(weights and biases) to minimize the loss function. The 

additional momentum component aids in the reduction of 

oscillations that may occur along the steepest descent path to 

the optimum. For all parameters, the stochastic gradient 

descent with momentum algorithm uses a single learning rate. 

The following is the description of this algorithm: 

 

𝜃𝑛+1 =  𝜃𝑛− ∝ ∇ 𝐸(𝜃𝑛) +  𝛾(𝜃𝑛 − 𝜃𝑛−1) (1) 

 

where, n denotes the number of steps in the iterative training 

procedure, ∝ is the learning rate, θ the vector of qualified 

parameters, E(θ) denotes the loss function, and γ is the 

momentum factor indicating how much the previous step 

affects the current iteration step.  

(iii) Classification and accuracy check: The training is 

carried out using a DNN model with altering hyper parameter 

values from training options in the augmented training dataset. 

At every 10th epoch the training is validated with augmented 

validation. After the iterations are completed, the network is 

classified with augmented test dataset to make predictions. 

The accuracy is calculated taking the mean of predictions and 

test labels, a confusion matrix is generated and sample 

predictions are displayed. Samples are listed in the Figure 4 

where each image is captioned with its class name and 

percentage accuracy. 

Algorithm 1: Training and testing of AksharaNet CNN Model 

Initialization 

1: Initialize the Keras Libraries and Colab 

2: Download the KSIC dataset 

3: scale to model image input size 

4: Augment images until each class has 1000 samples 

5: shuffle and split to Train, Validate and Test sets with labels 

Build Neural Network 

6: Create a Keras Model for pre-trained Models/AksharaNet 

7: Check their input dimensionality to scale the dataset images 

8: replace number of classes to 48 in place of 1000 at Fully 

connected layer 

Train, Validate and Test 

9: Train the model using augmented train data using 

mentioned training options (Figure 4) 

10: Validate the network for 50 epochs  

11: Classify on Test data  

12: Calculate test accuracy 

 

 

4. RESULTS AND DISCUSSION 

 

The research was conducted in four areas, which are 

mentioned below: 

• Performance of all CNN models with and without 

validation patience using the KSIC dataset on a CPU. 

• Performance of CNN models and model training time 

using the KSIC dataset on GPU. 

• Performance on Early stopping/validation patience 

(VP). 

• Performance of CNN models for learning rate drop 

period. 

 

CNN models are implemented in Python 3.8 using 

Tensorflow, Keras, OpenCV and sklearnkit. On the hardware 

side, we trained on a single NVidia RTX GPU and an i7 - 8700 

CPU, 8GB RAM, 64-bit OS based system. The dataset 

consisted of 4800 images with 48-classes that were used for 

training. AksharaNet and other pre-trained transfer learning 

models like InceptionV3, MobileNetV2, Resnet50 and 

Xception are trained and compared for classification. The 

execution environment with CPU and GPU is tuned to get the 

best classification performance for the dataset and the 

proposed models. The results are reported on the augmented 

training dataset as average training accuracy, on augmented 

validation dataset as final validation accuracy and on 

augmented test dataset as testing accuracy. 

 

4.1 Performance of all CNN models with validation 

patience using the KSIC dataset on a CPU 

 

The performance of all the deep neural models is tuned to 

best case on the Kannada alphabet dataset. Figure 5a compares 

and shows the execution on a CPU. 

The observations are as follows: 

• From Figure 5a, training accuracy of Xception model 

is 90.51%, which is good in spite of -5 early 

stopping/termination. The closure has occurred at 17th epoch 

(34% of the execution) but with heavy computation time. So 

using early stopping for this model is good to train and it saves 

time.  

• From Figure 5b, Xception model outperforms on 

validation accuracy with 91.18% with initial learning drop rate 

of 1e-11 at 15 drops till termination.  
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• From Figure 5c, InceptionV3 trained the best so far 

with 93.13% accuracy, while MobileNetV2 gave best 

validation scores of 91.78% and AksharaNet performed best 

on testing with 93.19% accuracy.  

It is observed that highest values are achieved when lrdf is 

at a pace of 0.1 for every 10 epoch for 50 max-epoch and 

without validation patience. Based on these values, the dataset 

is trained using a GPU next. 

 

 
 

Figure 5a. CNN model performance on CPU with early 

stopping=5 VP and lrdf=5 epoch 

 

 
 

Figure 5b. CNN model performance on CPU with normal 

termination and lrdf=5 epoch 

 

 
 

Figure 5c. CNN model performance on CPU with normal 

termination and lrdf=10 epoch 

 

4.2 Performance of CNN models using the KSIC dataset 

and GPU 

 

Performance of the models on GPU is shown in Figure 6a 

and the training time in Figure 6b. 

As seen from Figure 6b, GPU takes less than half the time 

to train the network returning impressive results. From Figure 

6a it is observed that InceptionV3 model performs the best 

with 94.12% validation accuracy, while AksharaNet returns 

the best testing accuracy. It may be noted that though 

AksharaNet CPU results are marginally better than GPU for 

testing, the advantage that GPU offers in terms of half the time 

for training more than makes up for the marginal increase. 

Overall, the training time taken by the models in increasing 

order is AksharaNet, MobileNetV2, Resnet50, InceptionV3 

and Xception. AksharaNet in general returns impressive 

training and validation accuracies and performs best in testing 

with reduced time frame on the GPU as the model architecture 

is simple and the number of parameters is lesser in comparison 

to the other models. 

 

 
 

Figure 6a. CNN model performance on GPU 

 

 
 

Figure 6b. Model training time on CPU and CPU+GPU 

 

4.3 Early stopping/validation patience (VP) performance 

 

Early stopping entails halting the training automatically by 

taking benefit from validation data whenever the validation 

loss stops decreasing. Figure 7a shows the performance of the 

models for an early stopping VP=5 and Figure 7b without VP 

on KSIC dataset. 

 

 
 

Figure 7a. Model validation patience performance on CPU 

and GPU with VP=5 

 

 
 

Figure 7b. Model validation patience performance on CPU 

and GPU without VP and Epoch=50 

 

It is observed from Figure 7b that normal training has taken 

approximately 17-18 drops till completion, Thus VP of 8-9 is 
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ideal for AksharaNet with 50 as max epoch for the considered 

data. Table 2 mentions the findings based on the various runs. 

On applying VP, on termination of the training the study is 

focused on the number of iterations completed, the current 

learning rate of the network and the training accuracies 

achieved so far. Early stopping at 50% epoch have accuracies 

consistent and close to final values. When they read well, the 

model is trained well; else the current setup combination can 

be disregarded. In the same context, on reaching termination 

at 25% epoch, good accuracies provide a scope for 

improvement while not so good accuracies may or may not 

improve. Also, for deep models with complex computations 

early stopping at 25% epoch is ideal (as seen in Xception 

model in Figure 5a) and 50% epoch for lighter models. Thus, 

these findings help us to make important decisions, saving a 

lot of computation time and cost. 

 

Table 2. Early stopping findings based on % Epoch 

 
Accuracy 25% Epoch 50% Epoch 

Bad/average 

accuracy 

May/may not be 

accepted 
No scope 

Good accuracy 
Scope for 

improvement 

Acceptable 

model 

 

4.4 Performance of CNN models for learning rate drop 

period 

 

The learning rate parameter is initialized to 0.01 to control 

the model adaptability with lrdf of 0.1 at each lrdp of the 

model weights update. Lrdp is examined for a period of every 

10 and 5 epochs. Figure 8a (on CPU) and Figure 8b (on GPU) 

shows performances of the models for the Kannada dataset for 

both categories of lrdp. 

 

 
Figure 8a. Model performance for learning rate drop period 

on CPU 

 

 
Figure 8b. Model performance for learning rate drop period 

on GPU 

 

The considerations for drop at every 5 epoch winds up the 

execution at learning rate of 1e-11 and for drop at every 10 

epoch the learning rate is 1e-06. The models exhibit better 

accuracies with last learning rate up to 1e-06, so decaying of 

learning rate is ideal at an ample epoch gap extending up to 

1e-06. Also, frequent drop calculations add up to overall 

model computation cost and time. 

 

5. CONCLUSION AND FUTURE ENHANCEMENTS 

 

The proposed work aims to grounds-up curate a dataset in 

the absence of large-scale Kannada scene character dataset. A 

dataset with 46,800 Kannada scene character images having 

468 classes with 100 images for each class was developed with 

an objective to use techniques which can help in building a 

quality dataset which can feed and judge the efficiency of the 

various models. The dataset is scalable and can be replicated 

to any size or level through morphing. AksharaNet - a GPU-

accelerated deep neural network model with low complexity 

and computation cost is proposed. Its architecture is tailored 

for mobile and resource constrained environments providing 

results with high accuracy and fast computations. The study is 

investigated on five models and deeper learning allowed us to 

conclude that on testing data, AksharaNet outperforms 

MobileNetV2 by 1.5% on CPU and 1.9% on GPU. Training 

the model with complete 468 classes having 46,800 images on 

multiple high-end GPUs is expected to increase the 

performance. The model training time is drastically reduced 

by 50% when using a GPU compared to only a CPU, with 

AksharaNet requiring the least time as the model architecture 

is simple and the number of parameters is lesser in comparison 

to the other models. Early stopping decisions at 25% epoch 

and 50% with good and bad accuracies for complex and light 

models are discussed. Also, useful findings w.r.t. learning rate 

drop factor and its ideal period for application are enumerated. 

Overall, AksharaNet returns a robust performance to classify 

individual characters, which can be extended to words, 

sentences and numbers as future research. The model can be 

extended to a spectrum of different model sizes, both depth 

and width wise hence it can be used for real-time mobile 

applications like text recognition and translation. The dataset 

can be augmented or scaled to highest level and also can be 

used in applications where blur or broken content needs to be 

classified or replaced. 
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