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 The current work attempts to numerically investigate the thermal transport for two-

dimensional solid complex geometries with two discrete heat sources at the bottom wall. The 

computational grid has been developed in GAMBIT and then linked to the in-house code which 

is based on collocated grid based Finite Volume Method (FVM). In this study five different 

domains viz. square, trapezoidal, skewed, S-curve and H-curve have been considered and the 

thermal conductivity has been varied from 0.25 to 10 W/m K. A concept of Bejan’s heatline 

visualization has been considered for the analysis of thermal transport. The heatlines along 

with isotherms are observed to provide a better insight for the understanding of thermal 

transport in considered complex geometries. With the domain thermal conductivity of 0.25 

W/m K the maximum hot spot temperature is noted to be 443 K (square) and minimum of 436 

K (S-curve). It is observed that with the increase in thermal conductivity from 0.25 to 10 W/m 

K, the maximum temperature in the domain decreased by 23.71 % for skewed and 20.77 % for 

S-curve geometries. 
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1. INTRODUCTION 

 

The understanding of thermal transport in complex 

geometries with discrete heat sources is of major importance. 

The applications include disposal of nuclear wastes, electronic 

circuits, geothermal areas, food processing industries and 

cooling of electronic components [1-5]. A thorough 

understanding of thermal transport in complex geometries 

with discrete heat source is essential in the design of above 

equipment. Natarajan et al. studied two-dimensional heat 

function within a trapezoidal cavity which is differentially 

heated in the vertical direction [6]. Finite element method was 

used to obtain isotherms, streamlines and heatlines. They 

observed that when Ra (Rayleigh number) =103, the heat 

transfer was uniform from hot wall to the cold wall. But for Ra 

=106, the lower left and upper right portion of the cavity were 

observed with higher heat transfer rates. Deng  studied laminar 

natural convection due to discrete heat source-sink pairs in a 

two dimensional cavity [7]. They analyzed the influence of 

arrangement of sources and sinks on fluid flow and heat 

transport characteristics. Banerjee et al. carried out steady state 

simulation for natural convection with a bi-heater 

configuration for the analysis of passive electronic cooling [8]. 

Basak and Roy demonstrated natural convection in a square 

enclosure with insulated top wall, hot bottom wall and cold 

side walls [9]. It was found that heatline concept is very much 

needed for optimal thermal management and also helps in the 

understanding of the energy distribution for the food 

processing application to store food for a long time. Basak et 

al. studied heatline concept for a trapezoidal enclosure by 

varying Rayleigh number in the range of 103 -105 [10], Prandtl 

number (0.026 ≤ Pr ≤ 1000) and at various tilted angles (Φ=450, 

300 and 00). It was observed that the heatlines were 

perpendicular to the isotherms during conduction dominant 

region. Mobedi et al. employed heat function equation for the 

visualization of convection and diffusion in a square cavity 

[11]. Kaluri and Basak demonstrated natural convection in 

square cavity with multiple distributed heat sources [12]. It 

was found that visualization of heatline was useful in effective 

utilization of thermal resources for material processing. By 

using finite element method, Basak et al. studied natural 

convection in trapezoidal enclosures by varying boundary 

conditions [13]. Results were presented in terms of isotherms, 

streamlines, heatlines, local and average Nusselt numbers for 

enclosures. Heatline patterns for enclosures with Dirichlet heat 

function boundary conditions were reported by Biswal and 

Basak [14]. Triveni et al. studied natural convection due to 

partially heated bottom in a triangular cavity filled with water 

by varying Rayleigh number (105≤Ra≤107) [15]. Finite 

volume method was used for solving the governing equations. 

Results were presented in terms of streamlines, isotherms and 

average Nusselt numbers for various positions of the heater 

within the enclosure. It was observed that the increase of heat 

transfer rate depended on increment of Rayleigh number. Das 

and Basak investigated discrete solar heating involving natural 

convection for different types of domains such as square [16], 

triangular and inverted triangular geometries. Isotherms, 

heatlines, streamlines, local and average Nusselt number for 

different positions of the heater within enclosure were 

provided. Lima and Ganzarolli made use of heatlines to 

analyze the conjugate heat transfer in an enclosure having 

internal conducting solid body [17]. It was observed that as the 

ratio of thermal conductivities of fluid and solid (k*) increases 

from 0.01 to100 the heat transfer at the solid domains was 

noted to decrease. Alsabery et al. documented natural 

convection phenomenon in a square enclosure which is filled 
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with nanofluid with sinusoidal heating at the horizontal walls 

[18]. It was found that the enhancement of heat transfer rate 

depended on the increment of solid wall thickness. Alam et al. 

investigated the thermal transport in a prismatic cavity which 

is filled with air [5]. It was observed that the heatlines are 

normal to the isotherms in conduction dominant regime. 

Further it was mentioned that heatlines along with isotherms 

give better understanding of energy distribution. Ajmera and 

Mathur performed experimental and numerical investigation 

of mixed convection in a rectangular enclosure provided with 

ventilation ports [19]. The parameters considered for the study 

were 1.25≤AR≤2.5, 3224≤Re≤6579, 8.5×106≤Gr≤1.03×108 

and Richardson number in the range of 0.21–9.58. It was 

observed that there is a rise in Nusselt number with increase in 

Reynolds number and aspect ratio. It was also noted that 

enhancement of heat transfer depended on the height of 

ventilation ports. A thorough knowledge on heat transport 

phenomenon in complex domain is vital in designing efficient 

equipment. 

Roychowdhury et al. made use of FVM with non-

orthogonal collocated grid to solve incompressible N-S 

equations [20]. Krishna et al. considered semi-staggered grid 

to analyze the lid driven flow through porous media in a 

skewed geometry [21]. Suri and Krishna developed a 

numerical code to analyze heat transport in complex solid 

geometries following FVM philosophy with non-orthogonal 

collocated grid [22]. Suri and Krishna analyzed the energy 

transfer process in complex solid domains [23]. Results were 

presented in terms of isotherms and heatlines for the better 

understanding of thermal transport. 

From the above mentioned works, it can be inferred that 

numerous methodologies were adopted to have a better insight 

on heat transport characteristics in complex geometries. In 

these studies, the numerical analysis was performed on a 

specific domain for which grid is generated. The developed 

code in the present study is generalized such that it can read 

mesh data generated for complex domains in GAMBIT. 

Further, an in-house FVM based code is developed on a 

collocated grid to analyze heat transport in terms of isotherms 

and heatlines for the considered complex geometries. 

 

 

2. PROBLEM DEFINITION AND MATHEMATICAL 

FORMULATION 

 

The computational domains and boundary conditions 

considered in the present study are shown in Figures1 (a)–(e). 

It consists of two-dimensional geometries of dimensions L×H. 

The side walls maintained at constant temperature 300K (Tc) 

and serve as a heat sink, two discrete heat sources are located 

at the bottom wall (L/4) and are maintained at constant heat 

flux 100 W/m2 (q1
and 200 W/m2 (q2 (׀׀

 which serve as heat (׀׀

sources [24]. Other boundaries of the geometries are thermally 

insulated. 

The governing equations for heat transport in complex 

domains in integral form are given as: 

 

∫
𝜕

𝜕𝑥
(𝑘

𝜕𝑇

𝜕𝑥
)

∆𝑉
𝑑𝑥𝑑𝑦 + ∫

𝜕

𝜕𝑦
(𝑘

𝜕𝑇

𝜕𝑦
)

∆𝑉
𝑑𝑥𝑑𝑦 = 0          (1) 

 

Diffusive flux through the east face expressed as a function 

of the projected areas and the values of temperature (T) at 

neighbouring nodes are given as: 

 

𝐽𝐷𝑒 = (
𝑘𝑒𝐴𝑒𝑥

1

𝑉𝑒
) [{𝐴𝑒𝑥

1 (𝑇𝐸 − 𝑇𝑃) + 𝐴𝑒𝑥
2 (𝑇𝑛𝑒 − 𝑇𝑠𝑒)}] +

(
𝑘𝑒𝐴𝑒𝑦

1

𝑉𝑒
) [{𝐴𝑒𝑦

1 (𝑇𝐸 − 𝑇𝑃) + 𝐴𝑒𝑦
2 (𝑇𝑛𝑒 − 𝑇𝑠𝑒)}]                        (2) 

 

Simplification of above Eqn. (2), 

 

𝐽𝐷𝑒 = 𝑑𝑒
1(𝑇𝐸 − 𝑇𝑃) + 𝑑𝑒

2(𝑇𝑛𝑒 − 𝑇𝑠𝑒)           (3) 

 

where 𝑑𝑒
1 =

𝑘𝑒

𝑉𝑒
[(𝐴𝑒𝑥

1 . 𝐴𝑒𝑥
1 ) + (𝐴𝑒𝑦

1 . 𝐴𝑒𝑦
1 )];  𝑑𝑒

2 =

𝑘𝑒

𝑉𝑒
[(𝐴𝑒𝑥

1 . 𝐴𝑒𝑥
2 ) + (𝐴𝑒𝑦

1 . 𝐴𝑒𝑦
2 )]  

𝑉𝑒 = (𝑥𝐸 − 𝑥𝑃)(𝑦𝑛𝑒 − 𝑦𝑠𝑒) − (𝑥𝑛𝑒 − 𝑥𝑠𝑒)(𝑦𝐸 − 𝑦𝑃) 

Similarly, JDw, JDn and JDs can be obtained.  

The net diffusive flux contribution for all sides of cell can 

be brought into the form  

 

𝐽𝐷 = −{𝑑𝑒
1𝑇𝐸 + 𝑑𝑤

1 𝑇𝑊 + 𝑑𝑛
1𝑇𝑁 + 𝑑𝑠

1𝑇𝑆 − (𝑑𝑒
1 + 𝑑𝑤

1 + 𝑑𝑛
1 +

𝑑𝑠
1)𝑇𝑃 + [𝑏𝑛𝑜]}                                                     (4)  

 

where 𝑏𝑛𝑜 = (𝑑𝑒
2 + 𝑑𝑤

2 )𝑇𝑛𝑒 − (𝑑𝑛
2 + 𝑑𝑤

2 )𝑇𝑛𝑤 − (𝑑𝑒
2 +

𝑑𝑠
2)𝑇𝑠𝑒 − (𝑑𝑤

2 + 𝑑𝑠
2)𝑇𝑠𝑤 

The term bno arises as a result of non-orthogonality of the 

mesh which vanishes when the grid becomes orthogonal. The 

corner values are approximated in terms of four surrounding 

nodal values. For instance, the north-east corner value is given 

as 

 

𝑇𝑛𝑒 =
1

4
(𝑇𝑁 + 𝑇𝐸 + 𝑇𝑃 + 𝑇𝑁𝐸)            (5) 

 

Similarly, 𝑇𝑛𝑤,𝑇𝑠𝑒 and 𝑇𝑠𝑤can be obtained. 

The integral form of governing Eq. (1) over a control 

volume is shown in Figure 2. It may be noted that E, N, W, S, 

NE, NW, SE, SW represents neighbouring nodes of the control 

volume. e, n, w, s indicates the faces of the control volume; ne, 

nw, se, sw indicates corners of the control volume.1'-2'-3'-4’ 

indicates the auxiliary cell of control volume and is centred at 

face ‘e’. 

Steady state heat function equation [25] can be given as 

 

−
𝜕𝛱

𝜕𝑥
= −𝑘

𝜕𝑇

𝜕𝑦
            (6a) 

 
𝜕𝛱

𝜕𝑦
= −𝑘

𝜕𝑇

𝜕𝑥
            (6b) 

 

Differentiating Eq. (6a) with respective to x and Eq. (6b) 

with y and by adding the equations Eq. 7 can be obtained 

 
𝜕2𝛱

𝜕𝑥2 +
𝜕2𝛱

𝜕𝑦2 = 0              (7) 

 

The boundary conditions for heatlines are obtained by 

integrating Eq. (7) along the boundaries at various junction 

points: 

A reference point, 𝛱(0, 𝐻) = 0 is taken at the top left 

corner  

 

Adiabatic top wall: 𝑦 = 𝐻; 0 < 𝑥 ≤ 𝐿; 

𝛱(𝑥, 𝐻) = 𝛱(0, 𝐻) − ∫ −𝑘
𝜕𝑇

𝜕𝑦
|

𝑦=𝐻
𝑑𝑥

𝐿

0
= 0                        (8) 

 

Cold left wall: 𝑥 = 0; 𝐻 > 𝑌 ≥ 0;  

𝛱(0, 𝑦) = 𝛱(𝑥, 𝐻) − ∫ −𝑘
𝜕𝑇

𝜕𝑥
|

𝑥=0
𝑑𝑦

𝐻

0
           (9) 
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Cold right wall: 𝑥 = 1; 𝐻 > 𝑦 ≥ 0;  

𝛱(1, 𝑦) = 𝛱(𝑥, 𝐻) − ∫ −𝑘
𝜕𝑇

𝜕𝑥
|

𝑥=1
𝑑𝑦

𝐻

0
         (10) 

 

Adiabatic bottom wall: 𝑦 = 0; 0 < 𝑥𝑎 ≤ 𝐿 8;⁄  

𝛱(𝑥𝑎 , 0) = 𝛱(0, 𝑦) + ∫ −𝑘
𝜕𝑇

𝜕𝑦
|

𝑦=0
𝑑𝑥

𝐿 8⁄

0
         (11) 

 

Bottom wall with heater (q1”): 𝑦 = 0; 𝐿 8⁄ < 𝑥𝑏 < 3𝐿 8⁄ ; 

𝛱(𝑥𝑏 , 0) = 𝛱(𝑥𝑎 , 0) + ∫ 𝑞1
"  𝑑𝑥

3𝐿 8⁄

𝐿 8⁄
           (12) 

 

Adiabatic bottom wall: 𝑦 = 0;  3𝐿 8⁄ > 𝑥𝑐 ≥ 5𝐿 8⁄ ;  

𝛱(𝑥𝑐 , 0) = 𝛱(𝑥𝑏 , 0) + ∫ − 𝑘
𝜕𝑇

𝜕𝑦
|

𝑦=0
𝑑𝑥

5𝐿 8⁄

3𝐿 8⁄
                      (13) 

Bottom wall with heater (q2”): 𝑦 = 0; 5𝐿 8⁄ > 𝑥𝑑 > 7𝐿 8⁄ ; 

𝛱(𝑥𝑑 , 0) = 𝛱(𝑥𝑐 , 0) + ∫ 𝑞2
"   𝑑𝑥

7𝐿 8⁄

5𝐿 8⁄
         (14) 

 

Adiabatic bottom wall: 𝑦 = 0; 7𝐿 8⁄ ≥ 𝑥𝑒 > 𝐿 

𝛱(𝑥𝑒 , 0) = 𝛱(𝑥𝑑 , 0) + ∫ − 𝑘
𝜕𝑇

𝜕𝑦
|

𝑦=0
𝑑𝑥

𝐿

7𝐿 8⁄
         (15) 

 

𝑑𝑒
1 and 𝑑𝑒

2 denotes orthogonal and non-orthogonal diffusive 

fluxes for east face of the control volume 

respectively;  𝐴𝑒𝑥
1  and  𝐴𝑒𝑥

2  represents orthogonal and non-

orthogonal area in 𝑥 direction for the east face of the control 

volume. 

 

 
 

Figure 1. Computatonal domains and boundary conditions (a) Square (b) Trapezoidal (c) Skewed (d) S curve (e) H curve 

 

 
 

Figure 2. Typical control volume 

 

 

3. SOLUTION METHODOLOGY 

 

The governing Eqns (1-7) are discretized for non – 

orthogonal domains by using finite volume method. 

Numerical work has been performed for the complex domains 

using arbitrary quadrilateral mesh. Collocated grid 

arrangement is chosen which makes the terms in all the 

governing equations identical leading to simplified 

programming, minimized program storage and computational 

time. In this study the computational domain and its grid is 

generated in GAMBIT and the data is exported in neutral file 

format. A code in C++ is implemented to read mesh data from 

GAMBIT and linked to the in-house finite volume method 

code for the thermal transport visualization. The set of 

governing equations (Eqs. 1 and 7) obtained are solved using 

Gauss- Seidel iterative solver and a convergence criterion of 

10-6 is imposed to terminate the iterations. Contour plots are 

used for the visualization of isotherms and heatlines for the 

considered geometries. 

The steps considered in the present numerical methodology 

is provided as a flow chart and is shown in Figure 3 and can 

be summarised as follows  

• Modelling, meshing, selection of boundary conditions 

and fluid/solid domain using GAMBIT. 

• Exporting of mesh data in the neutral file format. 

• Reading the mesh data from GAMBIT by in-house 

developed C++ code. 

• Assigning temperature and heat function conditions at 

boundary nodes 

• Initialization of temperature and heat function values for 

102



 

internal nodes. 

• Solving the integral form of governing equations (Eqs. (1 

and 7)) based on collocated grid based finite volume 

method. 

• The solution of algebraic equations is obtained by using 

Gauss-Seidel iterative solver. 

• Check for the convergence criterion (10-6). 

• Obtained results are exported to post processing software 

in which contours have been plotted. 

   

 
 

Figure 3. Flow chart for numerical methodology 

4. GRID INDEPENDENCE AND VALIDATION 

 

Generation of grid is important part of the numerical 

analysis. A numerical code in C++ has been implemented to 

read mesh from GAMBIT and linked to the in-house finite 

volume method code for the visualization of thermal transport. 

Grid independence has been carried out by considering mid 

plane temperature of the cavity. It is observed that maximum 

percentage variation for temperature values between grid sizes 

80×80 and 120×120 is less than 1%. Therefore, a grid size of 

80×80 has been considered for present study. The 

computational domain consists of 80 × 80 cells with 20 grid 

points each, on two discrete heat sources. The thermal 

conductivity (k) of the computational solid domains is varied 

between 0.25 W/m K and 10 W/m K [26]. The left hand side 

of the Figure 4(a) gives isotherms from commercial CFD code 

Ansys-Fluent and the right hand side gives isotherms from the 

present study. Figure 4(b) provides the quantitative 

comparison with Ansys-Fluent package by comparing 

temperature profile at mid plane. Based on Figure 4 it can be 

observed that the present numerical methodology is in good 

agreement with the commercial code Ansys-Fluent. Figure 5 

shows the contours for isotherms and heatlines for the 

computational domain Figure 1(d). Basak et al. reported that 

in conduction dominant regime the isotherms and heatlines are 

normal to each other which can be observed from Figure 5 [27]. 

Based on Figures 4 and 5 it can be concluded that the present 

numerical methodology is validated and is in agreement with 

the literature. 

 

 
(a)                                            (b) 

 

Figure 4. a) Comparison of isotherms for Ansys Fluent (left), present study (middle) and b) mid plane temperature profile with 

commercial CFD code (right) 

 

 
 

Figure 5. Comparison of isotherms ( __ ) and heatlines (- - -) 

5. RESULTS AND DISCUSSION 

 

The isotherms (left), and heatlines (right) are presented in 

Figures 6 (a)–(e) subjected to two distinct heat sources at the 

bottom wall in the presence of cold side walls and insulated at 

the top wall. The thermal conductivity considered for the solid 

domains shown in Figure 6 is 0.25 W/m K. Based on the 

isotherms it may be noted that the magnitude of the isotherms 

is high at the right bottom portion of the geometries due to 

higher heat flux i.e. 200 W/m2 (q2
 and observed to decrease (׀׀

as they move towards the cold side walls i.e. 300 K. Also, from 

the isotherms shown in Figure 6 (left) it may also be observed 

that they are slightly compressed towards the right bottom 

corner, when compared to the left bottom portion of the cavity. 

This phenomenon can be explained due to the position of heat 

flux (200 W/m2) with higher magnitude which is allocated 

towards the right bottom position of the cavity. This 200 W/m2 
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magnitude heat flux leads to the formation of hot spot with an 

isotherm with highest value when compared to rest of the 

cavity. The heat from the discrete heat sources has to be 

dissipated towards the cold walls which are maintained at 300 

K. As the temperature gradient is more between the right 

portion of heat source and cold wall, the isotherms can be 

observed to be compressed towards right bottom of the domain. 

The maximum hot spot temperature for the considered 

geometries with thermal conductivity 0.25 W/mK is noted at 

the heat source q2
 placed at the bottom right (W/m2 200) ׀׀

portion of the cavity. The maximum temperatures observed are 

443 K (square), 437 K (trapezoidal), 439 K (skewed), 436 K 

(S-curve) and 439 K (H-curve) geometries. This behavior 

clearly indicates the dependence of geometry configuration on 

thermal transport. 

The heatlines are plotted by assuming the reference point, 

𝛱=0 at the top left adiabatic surface for the geometries shown 

in Figure 1. Based on the heatlines shown in Figure 6 (right) 

the heatlines move from discrete heat sources to the cold walls. 

As the heatlines provide the direction of heat flow, the 

behaviour of heatlines shown in Figures 6 (a-e) indicate the 

heat transport from discrete heat sources to cold walls. Also, 

as heat cannot dissipate through the adiabatic walls due to 

which the heatlines may be noted to be parallel to the adiabatic 

surfaces. In the present study the sign convention is based on 

direction of heat flow ’𝛱’ from the hot to cold walls. The 

positive sign of ’𝛱’ denotes clock wise heat flow and the anti 

clock wise heat flow is represented by negative sign of ’𝛱’. It 

can be noted that the magnitude of heatlines at right wall 

signifies higher heat transfer rates when compared to rest of 

the domain. Also, the magnitude of heat function decreases 

from bottom heat flux portion to the central vertical axis 

signifying less heat transfer at that zone. 
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Figure 6. Isotherms (left) and heatlines (right) for different complex domains(a) Square (b) Trapezoidal (c)Skewed (d) S curve 

(e) H curve at k= 0.25 W/m K 

 

 
 

Figure 7. Isotherms (left) and heatlines (right) for S curve geometry with the variation of thermal conductivity (k)  

(a) 0.5 W/m K (b) 1 W/m K and (c) 10 W/m K 

 

Figure 7 (a-c) illustrates isotherms and heatlines for S curve 

geometry with the variation of thermal conductivity (k = 0.5, 

1 and 10 W/mK) at a constant heat flux condition of 100 W/m2 

(q1
and 200 W/m2 (q2 (׀׀

 Figure 6(d) represents S curve .(׀׀

geometry with a thermal conductivity of 0.25 W/mK. It can be 

noted that the magnitude of isotherms decreases with the 

increase in thermal conductivity. This can be inferred due the 

increase in heat transfer due to the increase in thermal 

conductivity. The increase in heat transfer rate tends to the 

decrease in the magnitude of isotherms.  In line to the decrease 

in magnitude of temperature, the magnitudes of the heatlines 

are also observed to decrease due to the decrease in 

temperature gradient. Figure 8 (a–e) shows the local 

temperature distribution along the axial direction at mid-plane 

drawn with the variation of thermal conductivity (k = 0.25, 0.5, 

0.75, 1, 5 and 10 W/m K). Figures 8 (a) and (c), shows the 

magnitude of mid plane temperature higher when compared to 

rest of domain due to variation in size of the cavity at a thermal 

conductivity of k = 0.25 W/m K. When the size of the domain 

increases for a material whose thermal conductivity is low the 
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heat cannot propagate and leads to higher magnitude for 

temperature. Also, with the thermal conductivity of k =5 and 

10 W/m K the magnitude of constant temperature lines is 

almost same for the considered geometries. For a thermal 

conductivity of 0.25 W/m K the effective heat transport 

through the domain is less when compared to higher values of 

thermal conductivity. With the increase in thermal 

conductivity the heat transfer rate is observed to increase. The 

increase in heat transfer rate leads to the decrease in the 

magnitude of the mid plane temperature. Based on Figure 8 it 

can be noted that with the increase in thermal conductivity 

from 0.25 to 10 W/m K, the maximum temperature along the 

vertical mid plane for the considered domains decreased by 

22.65 % (square), 20.90 % (trapezoidal), 23.71 % (skewed), 

20.77 % (S-curve) and 21.35 % (H-curve) geometries.

 

 
 

Figure 8. Variation of local temperature distribution vs axial direction along the board with different complex domains  

(a) Square, (b) Trapezoidal, (c) Skewed, (d) S curve, (e) H curve 

 

 

6. CONCLUSIONS 

 

A numerical code in C++ has been implemented to read the 

mesh from GAMBIT and linked to the in-house finite volume 

method code for the visualization of thermal transport. Results 

are presented in terms of isotherms and heatlines for the 

considered geometries. The results thus obtained are compared 

with Ansys-Fluent. Contours for isotherms are plotted to 

visualize the temperature distribution and heatlines are plotted 

to assess the energy transport. The study could reveal that for 

a domain with lower thermal conductivity the magnitude of 

temperature increases with the increase in size. The geometry 

configuration is noted to influence the thermal transport. 

Based on results it can be observed that the visualization of 

heatlines provides the better insight of energy transport in 

domains with discrete heat sources. The study can provide an 
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insight on the thermal management of electronic components 

on complex shaped circuit boards. 
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NOMENCLATURE 

A projected area, m2 

bno non orthogonality of the grid 

d1 orthogonal part of diffusive flux 

d2 non orthogonal part of diffusive flux 

E,N,W,S  east, north, west, south nodes 

e,n,w,s east, north, west, south faces 

H height in vertical direction, m 

JD diffusive flux 

k thermal conductivity W/m K 

L length in horizontal direction, m 

NE north east node 

NW north west node 

ne north east corner 

nw north west corner 

q1
 left heater, W/m2 ׀׀

q2
 right heater, W/m2 ׀׀

SE south east node 

SW south west node 

se south east corner 

sw south west corner 

T temperature, K 

Tc temperature of cold wall, K 

xa distance between left adiabatic, m 

xb distance between left heater, m 

xc distance between center adiabatic, m 

xd distance between right heater, m 

xe distance between right adiabatic, m 

x, y coordinate axis 

Greek symbols 

𝜫 heat function W/m 

∆𝑽 control volume, m3 

Superscripts 

1 orthogonal terms 

2 non orthogonal terms 
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