
Secured Data Transmission with Integrated Fault Reduction Scheduling in Cloud

Computing

Annabathula Phani Sheetal1*, Giddaluru Lalitha1, Arepalli Peda Gopi2, Vejendla Lakshman Narayana3

1 Department of CSE, School of Technology, GITAM (Deemed to be University), Hyderabad, Telangana 502329, India
2 Department of CSE, Vignan’s Nirula Institute of Technology & Science for Women, Peda Palakaluru, Guntur 522009, India
3 Department of IT, Vignan’s Nirula Institute of Technology & Science for Women, Peda Palakaluru, Guntur 522009, India

Corresponding Author Email: sheetal.klu@gmail.com

https://doi.org/10.18280/isi.260209 ABSTRACT

Received: 11 November 2020

Accepted: 5 March 2021

Cloud computing offers end users a scalable and cost-effective way to access multi-platform

data. While the Cloud Storage features endorse it, resource loss is also likely. A fault-

tolerant mechanism is therefore required to achieve uninterrupted cloud service

performances. The two widely used defect-tolerant mechanisms are task relocation and

replication. But the replication approach leads to enormous overhead storage and computing

as the number of tasks gradually increases. When a large number of defects occur, it creates

more overhead storage and time complexity depending on task criticalities. An Integrated

Fault Reduction Scheduling (IFRS) cloud computing model is used to resolve these

problems. The probability of failure of a VM is calculated by finding the previous failures

and active executions in this model. Then a fault-related adaptive recovery timer is retained,

modified depending on the fault type. Experimental findings showed that IFRS reached

67% lower storage costs and 24% less response time when comparing with the current

technique for sensitive tasks.

Keywords:

cloud computing, failures, fault tolerant,

critical tasks, scheduling, fault recovery,

overhead

1. INTRODUCTION

Cloud computing in today's technical world is one of the

new fields. It is used to connect services via the internet, such

as hardware, infrastructure and applications on demand. The

key goal is to provide a large amount of services and/or on-

demand resources [1]. There is a large size of heterogeneous

tools, a broad user base and various kinds of application tasks

in the cloud computing environment. They handle a wide

range of user activities and huge data [2]. In financial and

scientific applications, cloud computing is very useful. In the

face of setbacks, the assignment of resources for jobs with a

tight time frame is challenging [3].

Fault tolerance is also a critical aspect of cloud computing

in addition to missed task deadlines. In the event of failure,

this guarantees prompt and efficient performance of real-time

work. Since backup significantly increases overhead storage,

alternative methods are required that produce high resource

utilization [4]. Although the cloud features are appealing and

the uninterrupted performance of cloud services requires an

inaccurate tolerance mechanism [5].

Any of the flaws come from inside and outside defects. The

two normal fault tolerant mechanisms in cloud computing are

task reallocation and replication. In the re-allocation of tasks,

after a mistake occurs, a task is re-submitted. This process

improves the system's use of resources. However, it can extend

the time for response, which does not meet the task deadlines

[6]. Requests for resources in data centers can fail, as power is

increased during allocation of resources [7].

It is mainly aimed at reducing latency and service overheads

and enhancing the efficiency and capacity of the cloud. The

approach relies on the categorization of devices that can

request in three groups by service category. These classes are

timely, time-tolerant and central. A preprepared executive list

of devices maps any time-sensitive request to one or more

edge devices. One or more devices on the cloud or cloud core

may be allocated per time tolerant request. Key applications

are delegated to the cloud core resources. The proposed

approach selects the most suitable defect tolerant technique

from the duplication, check pointing and re-submission

techniques for each application to achieve defect tolerance

whereas the majority of current methods consider only one

technique.

Adapting to the fault-resolving mechanism involves all the

necessary steps for strict system reliability and heartiness as

well. The probability of the system to terminate internally or

fail could be reduced to a large extend using fault tolerance

considering the fact that it produces better results in dynamic

improvements in the execution time of the system, failure

recovery and an economically lower budget cost. Meanwhile

unmistakably cloud environment has diversified in short term

run which was able to develop a circulated application which

was severely developed to improve the layers of virtualization

where a designing application where able to reflect effective

adaptability. The framework highlights the work which

consists of accessibility and reliability of course as mentioned

which is depicted by the frameworks QoS.

2. LITERATURE SURVEY

Project replication approach is used in the programming of

the fault tolerant workflow [8]. You can concurrently perform

several copies of tasks here. But as the number of tasks grows,

Ingénierie des Systèmes d’Information
Vol. 26, No. 2, April, 2021, pp. 225-230

Journal homepage: http://iieta.org/journals/isi

225

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.260209&domain=pdf

it leads to large overhead storage and computing. In addition,

the technique to find the exact number of duplicate copies was

not presented.

The constructive fault tolerance approach [9] has taken into

account strength, memory and other network parameters to

improve resource reliability. After estimating the reliability of

each VM based on the success rate of performance, VM is

selected for work scheduling with high reliability.

Lu et al. [1] proposes two algorithms for scheduling. Energy

efficient defect-free scheduling is carried out in the first

algorithm, and the second algorithm reserves slack times

required for recovery of defects.

They proposed a selective reflected task method in the fault

tolerance algorithm (Fault Tolerance Algorithm) [10],

considering the balance between the parallelity and the

topology of the application. By minimizing the mapping and

calculation price, the fault tolerance for DAG-based

applications is solved.

For critical tasks or tasks with permanent failures, the

dynamic fault-tolerant working flow schedule [11], the spatial

re-execution (SRE) system is used while the temporal re-

execution scheme (TRE) is used for non-critical tasks with

temporary failures. However, the SRE system can incur more

overhead storage if the number of faults for critical tasks is

high. Also, when the amount of defects in non-critical tasks is

high, time complexity is increased [12]. In addition, the

chances of VM backup failure will not be reviewed.

Reactive defect tolerant methods are responding to a

malfunction. Here, after beginning the application, reactions

are implemented. The cloud status is hereby constantly

monitored for failure detection. Replication, inspection and re-

submission may be used for reactions. The requested

submission could lead to a breach of the contract for service

level because of delays in the fulfilment of the requests.

Checkpoints could lead to delays and storage resources in

exhaust cloud. Although replication is the most

comprehensive resource reactive technique, it is the most

common. The reason is that the replication method decreases

lateness to almost nil. Amazon Ec2 uses the auto scaling

community to simultaneously build and operate several copies

of the same software.

Cloud knowledge of fault tolerance relates to the

mechanism to allow a technique to withstand faults in the

framework of the task execution [13]. One of the advantages

of improving cloud tolerances is failure prevention, cure, cost

savings and higher performance measurement [14]. Once

several cloud tasks are performed on several VMs, then

several of the servers crash, which means that there is a failure

and that the defect tolerance mechanism is usually taken [15].

There are a server instance failure and thus a failure of the

tasks. Sometimes one case of failure stimulates another [16].

These factors may include hardware breakdown, device

failures, network partitions, power loss and unforeseen

software results. There are currently several fault tolerance

mechanisms in line with the cloud scheduling [17]. These

include: reprocessing, healing, submission, replication,

software rejuvenation, masking and migration, but most of

these are susceptible to high overheads and often lead to local

trappings. In this section we examine some associated

literature that used intelligent optimization technologies in the

cloud computing setting to solve the dynamic task scheduling

problem [18].

3. PROPOSED MODEL

In this research work, a cloud computing model is proposed

for Integrated Fault Reduction Scheduling (IFRS). The block

diagram of the CHFTS model is shown in Figure 1.

The probability of failure in each VM is calculated in the

IFRS model by finding previous failures and successful

executions. The expected runtime (EET) is calculated for each

Ti mission. Then tasks are classified as important tasks with

short deadlines. Some VMs are then designated as defect-

tolerant VMs based on the FoP. A collection of main and

backup VMs is assigned for each mission. If a fault occurs in

any VM, a fault recovery timer is started, depending on the

task type. If it is impossible to recover the failure in the same

period, the failed VM will automatically be notified and from

that moment the output resumes.

Figure 1. Block diagram of IFRS model

3.1 System model

Each server in Cloud system can be divided into a set of

heterogeneous virtual machines (VMs), by means of

virtualization. Hence a VM is considered as a fundamental

element in a cloud system.

Each data center c owns a set Vc of virtual machines, which

can be represented as:

Vc={vc1,vc2,…,vcn}.

The machine model is shown in Figure 2. In particular,

VM(k) is defined by the P(k) and the cost per hour C

processing power (k). The virtualization principle allows users

to access an infinite number of VMs in the cloud computing

platform. In addition, the bandwidth between the VMs should

be homogeneous, all VMs are placed in one cloud data centre.

226

Figure 2. System model

3.2 VM management

The main reason for the calculation is to improve the

performance of the cloud by limiting as well the time used by

the cloud application as the effect of dissatisfaction. The

calculation is based on choosing VMs and Cloud Analysts that

have the most timely completion of customer application

energy. It also relies on the replication framework for

producing multiple duplicates of identical applications that are

running concurrently on different VMs and Cloud Analyst.

The segments include the fast, the VM server, the replication

manager and the cloud VMs and Cloud Analyst. In addition to

the QoS requirements, users or customers present their

applications or jobs to the cloud through the cloud entry. In the

representative line are the occupations integrated. The expert

receives a vocation from the representative line in addition to

its requisite QoS. The VM Monitoring Server will be

approached at that time by a review of relevant VMs and cloud

analysts to perform the operation. The server responds to the

client application with the VMs which, in addition to usual

completion times, will play out the application. Each VM shall

be sorted by the official according to the completion date of

the application. The first VM is chosen as the basic VM for

carrying out activities in the arranged cycle, the VM with the

time limit.

Where an internal or external problem makes a task

incomplete, it can be called a task failure. During performance

of scientific work flows in cloud-based environments, failures

can occur. Behind these defects there are various explanations.

The key explanation for the task breakdown is the VM failure.

The other explanations for failures include insufficient

resources, overloading of resources, delayed execution, etc.

During execution, there are two instances of failure in the

Cloud. The first is a lifelong mistake and the other a temporary

mistake. The failures can be restored in temporary defects in a

short time period while the faults can be rectified in permanent

defects only after a failed part has been fixed or replaced. A

fault detection system widely used is a failure signal or

acceptance measure.

As a result of job delays, workflows are more time

consuming and the service level contract (SLA) is being

infringed. Reexecution is one of the least costly fault tolerant

techniques widely used to increase workflow reliability. The

re-execution of space with other resources (SREs) and

temporary re-implementation with the same resources after

recovery of faults can be achieved in two ways: (TRE).

3.3 Estimation of expected end time

Let P(k) be the processing capacity of VMk, k=1,2...K.

Let S(ti) and W(ti) be the size and workload of the input task

ti.

Task execution is started if and only if the input data is

received from all its previous tasks pre(ti).

Then start time of ti is represented by Equation

Tstart(ti) =maxpri (Tstart) + minpri (Tend)

The scheduling time is calculated as

Tsch(ti) = CS(i)/ Th

where, CS is the cloud server and Th is the Threshold limit.

The fault levels are identified as

)(
)(

))(,(
kP

tiW
kVMtiT exec

=

Thus, the end time of task ti is given by

))(,()()()(kVMtitititi TTTT exectransstartend
++=

The proposed algorithm indicates the fault recognition and

reduction for improving the accuracy and performance levels

of the model.

3.4 Algorithm Integrated Fault Reduction Scheduling

(IFRS)

Step-1: Input: jobs, money, and tasks.

Step-2: Output: the length of the process and the use of

resources.

Step-3: Set the resource list [Ressource number] to start

Step-4: Start the task list [Task Number] Not empty

though job-list

Step-5: For each task 'Ji' do

Step-6: VMi random nodes will be selected uniformly,

do the task 'J' from the front of the job-list.

Step-7: Applications are given for

Step-8: VM0(J0), VM1(J1),)... VMn(Jn) and Jobs.

Step-9: For all workers set rep=0.

Step-10: Set rep=0.

Step-11: Present Assign Work Ji with a lower load to the

Vmi

Step-12: If the tie for the least loaded node is present then

Assign Job to a selected random end if the

227

default list is initialized [Resource Faulty No.]

Step-13: The Job 'Ji' assigned is taken from the defective

resource.

Step-14: Rep=1 set;

Step-15: Set Send jobs back to queue if idle available

resources

Step-16: Return Job to the less loaded node Reallocate

the Work J and divide and assign VM to the

randomly selected node if there is a tie for the

least loaded node.

Step-17: Wait before idle load-less resources are

provided.

Step-18: End if

Step-19: End

Step-20: End for

The primary step of the programmer is to divide the task

into smaller tasks, when the user submits the work. The Task

Controller shall have a list of tasks from the beginning of each

task that is prepared for execution. The allocator will keep a

resource list, which will randomly pick the 'd' grid nodes from

the available nodes. Scheduler transmits each grid node with a

query message. Thus, Scheduler receives the actual load data

of each of the d nodes. Finally, the planner assigns the less

loaded assignment to d nodes that have been randomly

selected. There may be cases in which resources cannot

perform the role assigned to them during the task assignment

process. This could be because the resources allocated are

already full of tasks. The error occurred in such a case prevents

the programmer from properly programming the job. The task

allocator thus determines the defective resources and the error

handler provides a list of defective resources [19]. Scheduler

reviews in the resource list for idle resource. The fault list

resource is used and the fault tolerance is carried out when this

specific task is allocated with the least load to the available

resource [20]. This helps to plan properly and all tasks with

minimal runtime can be completed successfully. Tolerate

errors during the assigning of tasks and re-schedule the tasks

to various resources to assist the system to cope with heavy

loads to produce very significant results.

4. EXPERIMENTAL RESULTS

The proposed model is implemented in Cloudsim for

identification of faults and reducing the faults. The proposed

IFRS model exhibits better performance when compared to

traditional models. The proposed model considers 34675 tasks

for performing scheduling and then the parameters are

evaluated and depicted in this section. The fault identification

rate of proposed and existing methods are indicated in Figure

3.

Five cloud users with five brokers and two data centers are

built in the first scenario. There are three hosts in the first data

center, while there are two hosts in the second. Even 10 VMs

are generated by Xen as a Virtual Machine Managers (VMM)

on Linux OS using the Time – Shared Policy, each with 512

BM, an image size 10 000 BM, and one CPU each. With a

stock size of 1,000,000 and a bandwidth of 10,000, the Host

Memory is 2048 MB. In addition, the number of tasks

submitted (cloudlets) is 10 to 100, each of 800,000 in duration

and 600 in file size.

The number of missed tasks for scheduling in the proposed

model is very less when compared to the existing models. The

Figure 4 indicates the Number of missed tasks in proposed and

existing models.

Figure 3. Facult Identification rate

Figure 4. Missed tasks levels

Figure 5. Scheduling time levels

The scheduling time in the proposed model is more accurate

and in less time the IFRS model complete the scheduling. The

Figure 5 represents the scheduling time levels of the proposed

and traditional methods.

228

The VM requests are handled effectively and the

requestions need to be completed in time. The proposed model

and traditional models request completed status is indicated in

Figure 6.

Figure 6. Requests completed levels

The failed request levels of the proposed and traditional

models are indicated in Figure 7. The failed requests of the

proposed models are high when compared to traditional

methods.

Figure 7. Failed requests levels

5. CONCLUSION

Cloud-based application services need a large amount of

data processing. Since network bandwidth is a limited resource,

task scheduling algorithms based on data locality is crucial for

reducing the job completion time. This article proposes a cloud

computing IFRS model for integrated fault reduction planning.

In this model, by identifying previous failures and active

executions the fault probabilities (FoP) of each VM are

calculated. The expected time of success (EET) is calculated

for each mission. Then tasks are classified as important tasks

with short deadlines. The principal outcomes of the proposed

approach are to minimize latencies and service overheads and

to enhance cloud trustworthiness and capability. In addition,

the approach gives the cloud services greater availability.

These results would boost the credibility and increase the

benefit from the provider's perspective. For the consumer, the

results indicate that the customer's response times and costs

are of a distinctive level of service. During a fault which is

modified depending upon the form of faults, an adaptive fault

recovery period is retained. For critical and non-critical tasks,

experiments are performed by different failure rates. The

results of experiments showed that the IFRS models achieve a

43% savings in storage costs, as opposed to current technology,

and a 13% response delay for essential tasks. Future work

concentrates on grouping activities according to their types

and demands in order to further reduce CPU use and battery

power. We intend to broaden our research to include other

forms of transmission failures encountered. Moreover, we

intend to concentrate on maximising electricity use.

REFERENCES

[1] Lu, K., Yahyapour, R., Wieder, P., Yaqub, E., Abdullah,

M., Schloer, B., Kotsokalis, C. (2016). Fault-tolerant

service level agreement lifecycle management in clouds

using actor system. Future Gener Comput Syst., 54: 247-

259. https://doi.org/10.1016/j.future.2015.03.016

[2] Moon, Y.H., Youn, C.H. (2015). Multihybrid job

scheduling for fault-tolerant distributed computing in

policy-constrained resource networks. Comput Netw., 82:

81-95. https://doi.org/10.1016/j.comnet.2015.02.030

[3] He, J., Dong, M., Ota, K., Fan, M., Wang, G. (2014).

NetSecCC: A scalable and fault-tolerant architecture for

cloud computing security. Peer-to-Peer Netw Appl., 9(1):

67-81. https://doi.org/10.1007/s12083-014-0314-y

[4] Nawi, N.M., Khan, A., Rehman, M.Z., Chiroma, H.,

Herawan, T. (2015). Weight optimization in recurrent

neural networks with hybrid metaheuristic Cuckoo

search techniques for data classification. Math Probl

Eng., 2015: 868375.

https://doi.org/10.1155/2015/868375

[5] Mills, B., Znati, T., Melhem, R. (2014). Shadow

computing: an energy-aware fault tolerant computing

model. In: 2014 International Conference on Computing,

Networking and Communications (ICNC), pp. 73-77.

https://doi.org/10.1109/iccnc.2014.6785308

[6] Kashan, H.A. (2009). League championship algorithm: a

new algorithm for numerical function optimization. In:

International Conference of Soft Computing and Pattern

Recognition, 2009. SOCPAR’09, pp. 43-48.

https://doi.org/10.1109/socpar.2009.21

[7] Kashan, H.A., Karimi, B. (2012). A new algorithm for

constrained optimization inspired by the sport league

championships. In: 2010 IEEE Congress on Evolutionary

Computation (CEC), pp. 1-8.

https://doi.org/10.1109/cec.2010.5586364

[8] Abdulhamid, S.M., Latiff, M.S.A., Ismaila, I. (2014).

Tasks scheduling technique using league championship

algorithm for makespan minimization in IAAS cloud.

ARPN J Eng Appl Sci., 9(12): 2528-2533.

[9] Abdulhamid, S.M., Latiff, M.S.A., Madni, S.H.H.,

Oluwafemi, O. (2015). A survey of league championship

algorithm: prospects and challenges. Indian Jo Sci

Technol., 8(S3): 101-110.

https://doi.org/10.17485/ijst/2015/v8is3/60476

[10] Yang, Y.G., Tian, J., Lei, H., Zhou, Y.H., Shi, W.M.

(2016). Novel quantum image encryption using one-

dimensional quantum cellular automata. Inf Sci., 345:

257-270. https://doi.org/10.1016/j.ins.2016.01.078

[11] Dondi, R., El-Mabrouk, N., Swenson, K.M. (2014). Gene

tree correction for reconciliation and species tree

229

inference: Complexity and algorithms. J Discrete

Algorithms, 25: 51-65.

https://doi.org/10.1016/j.jda.2013.06.001

[12] Abdulhamid, S.M., Latiff, M.S.A., Bashir, M.B. (2014).

On-demand grid provisioning using cloud infrastructures

and related virtualization tools: A survey and taxonomy.

Int J Adv Stud Comput Sci Eng IJASCSE, 3(1): 49-59.

[13] Kushwah, V.S., Goyal, S.K., Narwariya, P. (2014). A

survey on various fault tolerant approaches for cloud

environment during load balancing. Int J Comput Netw

Wirel Mobile Commun., 4(6): 25-34.

[14] Yang, W., Zhang, C., Shao, Y., Shi, Y., Li, H., Khan, M.,

Hussain, F., Khan, I., Cui, L.J., He, H. (2014). A hybrid

particle swarm optimization algorithm for service

selection problem in the cloud. Int J Grid Distrib Comput

7(4): 1-10.

[15] Hussin, M., Lee, Y.C., Zomaya, A.Y. (2010). Dynamic

job-clustering with different computing priorities for

computational resource allocation. In: Proceedings of the

2010 10th IEEE/ACM International Conference on

Cluster, Cloud and Grid Computing, IEEE Computer

Society, pp. 589-590.

https://doi.org/10.1109/ccgrid.2010.119

[16] Vidhate, D., Patil, A., Guleria, D. (2010). Dynamic

cluster resource allocations for jobs with known memory

demands. In: Proceedings of the International

Conference and Workshop on Emerging Trends in

Technology, ACM, pp. 64-69.

https://doi.org/10.1145/1741906.1741918

[17] Abd. Latiff, M.S., Shafie, M., Abdulhamid, S.M., Bashir,

M.B. (2014). Scheduling techniques in on-demand grid

as a service cloud: A review. Journal of Theoretical and

Applied Information Technology, 63(1): 10-19.

[18] Abdullahi, M., Ngadi, M.A. (2016). Symbiotic organism

search optimization based task scheduling in cloud

computing environment. Future Gener Comput Syst., 56:

640-650. https://doi.org/10.1016/j.future.2015.08.006

[19] Madni, S.H.H., Latiff, M.S.A., Coulibaly, Y. (2016). An

appraisal of meta-heuristic resource allocation

techniques for IaaS cloud. Indian J Sci Technol., 9(4): 1-

14. https://doi.org/10.17485/ijst/2016/v9i4/80561

[20] Chiroma, H., Shuib, N.L.M., Muaz, S.A., Abubakar, A.I.,

Ila, L.B., Maitama, J.Z. (2015). A review of the

applications of bio-inspired flower pollination algorithm.

Procedia Comput Sci., 62: 435-441.

https://doi.org/10.1016/j.procs.2015.08.438

230

