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The rapid deployment of IoT in different areas generates a massive amount of data 

transferred to the Cloud. To solve this challenge a new paradigm, called Fog Computing, is 

located at the edge of the network and close to the connected objects. Its main role is to 

extend the capacities of Cloud and improve the performance and the QoS required by the 

applications by the use of different methods and techniques based on scheduling algorithms. 

In this paper, we review various recent studies available in the literature that are interested 

in the scheduling methods and algorithms used in Fog computing. The use of fog layer, in 

solving optimization problem, is faced with serious challenges. Therefore, to help 

practitioners and researchers, we present an in-depth overview of Fog Computing studying 

various scheduling methods and algorithms. We analyze, compare and classify these 

different scheduling approaches according to the nature of the algorithm used in the 

scheduling, the QoS optimized by the proposed approach and the type of applications in 

order to show what is suitable for critical IoT (CIOT), massive IoT (MIOT) and Industry 

IoT (IIOT). Finally, we present a comparison of the different simulation tools used to 

evaluate these approaches to guide fog computing developers/researchers which tool is 

suitable and most flexible for simulating the application under consideration. 
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1. INTRODUCTION

The Internet of Things (IoT) is deployed in most areas [1, 

2]. This technology is based on connected objects, which are 

widely used. Cisco estimates that there will be around 50 

billion connected devices by 2020 [3]. They generate a 

massive amount of data that needs to be transmitted, stored, 

processed and analyzed in Cloud data centers. This increases 

the Cloud load and transmission latency; therefore, the Cloud 

cannot meet the QoS requirements of IoT critical applications 

such as latency sensitive applications. These challenges 

require a new architecture to deal with it [4]. 

1.1 Overview of Fog Computing 

In 2012, Cisco proposed a new paradigm named Fog 

Computing [5]. It is a highly virtualized platform that provides 

computation, storage, and networking services between end 

devices and traditional Cloud Computing Data Centers [5]. Its 

main role is to extend the Cloud to be closer to the objects that 

produce and act on IoT data [6]. The Fog Computing is defined 

by OpenFog Consortium [7] as “horizontal, system-level 

architecture that distributes computing, storage, control and 

networking functions closer to the users along a cloud-to-thing 

continuum”. 

1.1.1 Architecture of Fog Computing 

Recently several research studies proposed a Fog 

Computing architecture [7-10]. This architecture is divided 

into several layers, the number of layers depends on the point 

of view of the author or the application [8]. The majority of 

these studies presented a three hierarchical layers architecture 

[9, 11-14] as shown in Figure 1. 

Figure 1. A hierarchical architecture of Fog Computing 

1.1.2 Characteristics of Fog Computing 

In the literature, several researchers [8, 13, 15-17] have 

proposed a comparison between the characteristics of Cloud 

and Fog Computing. Based on these studies, it is noticed that 

the Cloud Computing represents a large data centers available 

over the Internet, geographically centralized, on the other hand, 

the Fog Computing constituted of several small data centers, 

geographically widely distributed. This provides services to 

user requests at the edge of networks where the distance 

between client and server is one or few hops, which allows 

location awareness and reduces latency. In terms of resources, 
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Cloud Computing has a high resources capacity (CPU, RAM, 

Storage, Bandwidth), which requires high energy consumption, 

and high-cost resources’ usage. By comparison, Fog 

Computing, has less resource capacity at lower cost, and which 

reduces energy consumption linked to the small data center, 

located at the edge networks. 

The common differences between the characteristics of 

these two paradigms is summarized in Table 1. 

 

Table 1. A comparison between the characteristics of Cloud 

and Fog Computing 

 

Characteristics 
Cloud 

Computing 
Fog Computing 

Latency High Low 

Delay Jitter High Low 

Realtime application 

handling 
Difficult Achievable 

Mobility Limited Supported 

Geographical distribution Centralized Distributed 

Server nodes’ location 
Within the 

Internet 

At the edge of the 

network 

Distance between client 

and server 
Multiple hops Single/Few hops 

Location awareness No Yes 

Number of server nodes Few Large 

Computation capability High Low 

Storage capacity High Low 

Energy consumption High Low 

Power source Direct power 

Direct power, 

Battery, Green 

energy 

Computation cost High Low 

Bandwidth cost High Low 

 

1.1.3 Advantages, challenges and issues of Fog Computing 

According to the comparative table (Table 1), we observe 

that the Fog Computing paradigm offers several advantages to 

applications such as: reduction of the computational load and 

the use of resources of Cloud servers [16], reduces network 

traffic, suitable for IoT applications [10], ensures low latency 

and real-time interactions, and supports for mobility [9]. 

Despite the advantages offered by Fog Computing, it poses 

many challenges and issues: security and privacy, energy 

management [9, 16], resource management and scheduling [8]. 

 

1.2 Scheduling in Fog Computing 

 

The scheduling is a NP-hard problem, as defined by 

M.Pinedo in [18]: “Scheduling is a decision-making process 

that is used on a regular basis in many manufacturing and 

services industries. It deals with the allocation of resources to 

tasks over given time periods and its goal is to optimize one or 

more objectives”. Scheduling presents one of the major 

challenges in Fog computing paradigm. It plays a fundamental 

role to improve the performance of the whole system, by 

optimizing one or many objectives to map the tasks to the 

appropriate resources [19] in order to respond to the QoS 

required by the applications. At the same time, it aims to 

improve the degree of customer satisfaction [19]. 

Fog computing has a hierarchical architecture, where 

resources are distributed in the different layers of the paradigm. 

Each layer has its own characteristics and capacities. The 

scheduling problem in Fog computing presents a new aspect 

of scheduling compared to traditional scheduling in related 

paradigms. 

In this paper, we present the most recent research work 

concerning the different scheduling methods and algorithms. 

The main purpose of these methods is to improve scheduling 

and optimize the performance of applications in Fog 

computing. 

 

1.3 Related surveys and our contributions 

 

In this section we present some surveys related to our work. 

The surveys of Naha et al. [8], Mouradian et al. [14] and 

Elavarasi et al. [20] have presented an overview of Fog 

computing: Architectures, Definitions, Research Directions 

and Challenges, state of the art and Fog applications. 

Mouradian et al. [14] presented the task scheduling algorithms 

and analyze them according to different criteria. In the paper 

[8], the authors discuss the existing research works and gaps 

in resource allocation and scheduling. In the survey [20], the 

authors compare various scheduling algorithms based on 

performance metrics. In another survey [21], the authors 

analyzed the research studies about task scheduling 

approaches in fog computing from 2015 to 2018. They 

proposed a classification of task scheduling approaches in two 

categories: static and dynamic. 

In this survey, we summarize our main contributions as 

follows: 

(1) Present a literature review of the various methods and 

scheduling algorithms recently proposed and used in Fog 

computing. 

(2) Propose a taxonomy, which classifies the different 

methods and scheduling algorithms. 

(3) Compare the different types of scheduling algorithms 

according to QoS criteria and their appropriate applications. 

(4) Compare a number of tools used to evaluate the 

different proposed approaches. 

 

1.4 Paper organization 

 

The reminder of this article is organized as follows: in 

Section 2, we present a taxonomy of the different methods and 

scheduling algorithms used in Fog computing. Section 3 

reviews the literature and analyses various existing research 

works in this field. Sections 4 compares the different 

algorithms and methods according to the QoS criteria, and it 

classifies them according to the appropriate type of application. 

In section 5, we present and compare the different scheduling 

algorithms and simulation tools used in research work. Section 

6 discusses the techniques and methods used to improve 

scheduling. We conclude our paper in Section 7. 

 

 

2. TAXONOMY OF SCHEDULING ALGORITHMS 

AND METHODS IN FOG COMPUTING 

 

In this section, we propose a taxonomy of the different 

methods and scheduling algorithms in the Fog Computing 

environment as shown in Figure 2. This taxonomy is based on 

the classification of the various existing research works in the 

literature. It deals with a common objective the scheduling 

problem.  

Our classification is divided into three major categories. 

This division is based on the nature of the method or algorithm 

used to improve scheduling. In the first category, we have 

grouped together the scheduling methods, based on 

optimization algorithms of an approximate nature, such as 
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heuristic algorithms like: “Min-Min and Greedy”, and 

metaheuristic algorithms like “PSO, ACO, GA”, and also the 

hybrid algorithms which are composed of several methods 

such as: “ACO-PSO, PSO-Min-Min, BLA-Greedy”. The 

second category of scheduling methods, is concerned with 

scheduling optimizations based on the QoS constraints of an 

application, such as reduction of execution time, cost of 

resource usage and amount of energy consumed by the nodes 

of an application. Most of these proposed approaches use 

approximation algorithms based on Heuristic, Meta-heuristic 

and Hybrid, in order to improve the quality of the results. For 

the third category, we classified the scheduling methods that 

use data mining algorithms, in order to improve the 

performance of the scheduling. 

 

 
 

Figure 2. Proposed taxonomy of scheduling algorithms and 

methods in Fog Computing 

 

In Table 2, we define the different acronyms used in this 

paper. 
 

Table 2. List of important acronyms 

 
Acronym Definition 

ACO Ant Colony Optimization Algorithm 

BLA Bees Life Algorithm 

EDA Estimation of Distribution Algorithm 

FWA Fireworks Algorithm 

GA Genetic Algorithm 

PSO Particle Swarm Optimization 

EDF Earliest Deadline First 

EFT Earliest Finish Time 

QoS Quality of service 

DAG Directed Acyclic Graph 

 

 

3. LITERATURE REVIEW  

 

This section presents a literature review of the various 

recent research works proposed to demonstrate the different 

techniques and scheduling algorithms used in Fog computing 

to improve the performance of applications. According to the 

taxonomy proposed in this survey, we classify the different 

scheduling methods. 

 

3.1 Scheduling based on optimization methods 

 

These methods use heuristic, meta-heuristic or hybrid 

techniques. These proposed algorithms are compared to 

traditional algorithms in terms of performance in order to 

adapt them to Fog computing paradigm.  

 

3.1.1 Heuristics algorithms based scheduling 

Choudhari et al. [22] proposed a priority levels-based task 

scheduling algorithm (PLTS) in the Fog layer by combining 

two algorithms. The first one is an efficient resource allocation 

(ERA) algorithm proposed by Agarwal et al. [23]. It is 

implemented in the Fog layer and uses a three-layer 

architecture model (Client-Fog-Cloud). The second algorithm 

is a priority-based scheduling algorithm, proposed by 

Dakshayini et al. [24] and implemented in cloud computing 

environment.  

PLTS algorithm starts by checking the availability of 

resources in the Fog nodes that satisfy the clients’ 

requirements. If the resources are sufficient in this layer and 

the requests can be served by the deadline, the algorithm 

assigns a priority level to the client request and processes it 

later. However, if resources are not sufficient then it sends the 

requests to the Cloud layer. 

The authors performed several simulation scenarios with 

CloudAnalyst tool. For each scenario, the results of the 

performance metrics of the algorithm proposed are compared 

to those of the following three policies: Optimize Response 

Time (ORT), Reconfigure Dynamically (RD), and Efficient 

Resource Allocation (ERA) [23]. This study showed that the 

proposed prioritized scheduling algorithm has reduced the 

response time and has considerably decreased the cost. 

However, it used the static priority settings in response to 

request traffic load. 
 

3.1.2 Meta-heuristics and hybrid algorithms based scheduling 

Wang et al. [25] proposed a task scheduling algorithm in 

Fog computing based on the improvement of the bio-inspired 

Firework Algorithm (FA) [26].  

The authors proposed two contributions. First, they 

improved Firework Algorithm (I-FA) by the introduction of an 

explosion radius detection mechanism. Second, they used the 

proposed task scheduling algorithm (I-FASC) which takes into 

account the characteristics of the tasks and the resources. They 

have classified the tasks into three clusters according to 

expected storage space, expected time and expected 

bandwidth. Then, they integrated resources which are of three 

types: computing, storage and bandwidth. 

The experimental results showed that the algorithm (I-FA) 

has an average explosion radius smaller than (FA) algorithm, 

and performed better than the other algorithms such as ACO-

based algorithm (Rank-ACO) [27], double-fitness Genetic 

algorithm (DFGA) [28] and FA [26]. It reduces the number of 

iterations with the fastest convergence speed. The algorithm 

(I-FASC) reduces the task completion time compared to the 

other three algorithms: FSFC, Rank-ACO and DFGA. It 

allocates the resource in a more balanced way, which improves 

the performance of the entire system. 

Xu et al. [29] proposed a method of scheduling tasks in the 

Fog-Cloud environment (LBP-ACS). This latter is based on 

the combination of two algorithms: Laxity-Based Priority 

(LBPA) [29] and Ant Colony System (ACS) [30]. The aim is 

to schedule the tasks’ execution in a way to respect the 

deadlines, and to minimize the total energy consumption. The 

authors started with the algorithm (LBPA), which calculates 

the laxity time for each task and assigns a priority to the laxity 

(the smaller the laxity of the task, the higher the priority of the 

task). They also proposed a constrained optimization 

algorithm based on the Ant Colony System algorithm, which 
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chooses the right Cloud or Fog resources for the task based on 

its propriety. 

After testing and evaluating the proposed method, they 

compared its performance to three other algorithms: Greedy 

for Energy (GFE), Heterogeneous Earliest Finish Time 

(HEFT) [31], and Differential Evolution Ant Colony 

Optimization (DEACO) [32]. The results showed that the 

proposed algorithm (LBP-ACS) outperformed the other 

algorithms. It balances the benefits between schedule length 

and energy consumption for Cloud or Fog resources, with 

Lower failure ratio rate. 

The authors of the work [33] focused on task scheduling 

problem for Bag-of-Tasks applications in Cloud Fog 

computing environment. They proposed an algorithm called a 

Time-Cost aware Scheduling algorithm (TCaS) based on an 

evolutionary algorithm (Genetic Algorithm). They used the 

same Fitness Function to compare its performance (trade-off 

between the Makespan and Total Cost) to the following 

algorithms: Modified Particle Swarm Optimization (MPSO) 

[34], Bee Life Algorithm (BLA) [35] and a traditional simple 

Round Robin (RR) algorithm. They carried out several 

experiments in two different scenarios: one in a local Fog 

environment and another in a Cloud-Fog environment. The 

results show that for the first scenario TCaS has a better 

makespan and total cost; for the second scenario TCaS has a 

better makespan than the other algorithms, however MPSO 

has a better total cost than the other algorithms.  They also 

demonstrated that (TCaS) is less convergent compared to the 

other algorithms (MPSO, BLA), however, it generates a more 

optimal solution. 

Xu et al. [36] focused on scheduling Workflow in the 

Cloud-Fog environment. They presented a scheduling method 

that solves the mapping process between tasks and resources 

to minimize the makespan of Workflow and the cost. This 

method is an optimization of PSO algorithm. They introduce a 

new non-linear function (inertia weight), which enhances the 

global and local search capabilities of particles. 

Bitam et al. [37] proposed a new bio-inspired algorithm for 

scheduling tasks, based on Bee Swarm optimization algorithm 

called Bees Life Algorithm (BLA) [35]. This new algorithm 

focuses on scheduling improvement in the fog computing 

environment. They designed a better allocation of tasks among 

the available Fog resources, by finding an optimal trade-off 

between CPU execution time and allocated memory. To 

achieve this goal, the authors proposed an optimization of the 

BLA algorithm using a Greedy approach to optimize the local 

search and improve the global solution. This way they reduced 

the latency and the cost to satisfy mobile users’ requests. 

All the authors’ works discussed in this section are 

summarized and compared in Table 3. 

 

Table 3. Comparison of meta-heuristics and hybrid algorithms based scheduling 

(S: Simulation, E: Evaluation on a real server or platform) 
 

Work Evaluation Tool Infrastructure Advantage Limitations 

[25] E 
Cloud 

Server 
Fog/ Cloud 

- Reduced average explosion radius 

- Fast convergence 

- Reduced task completion time 

- Load optimization 

- Fog nodes’ energy consumption 

is not considered 

[29] S CloudSim  

- Balance between schedule length 

and energy consumption for cloud or 

fog resources 

- Low failure ratio 

- Not optimized for scheduling 

independent tasks 

[33] S iFogSim Fog/ Cloud 

- Efficient trade-off between 

makespan and cost 

- TCaS is flexible in satisfying users’ 

requirement with respect to 

highperformance 

processing and cost efficiency 

- TCaS is more costly than MPSO in a 

Cloud–Fog environment. 

[36] S Matlab Fog/ Cloud - Reduced Makespan and cost -Lack of cost optimization 

[37] S C++ Fog 
- Reduced CPU execution time and 

memory allocation 

- No dynamic job scheduling 

-No optimization of network bandwidth 

and cost 

 

All works studied previously aim to improve the quality of 

scheduling and increase the performance of solution in terms 

of reducing latency, energy consumption, makespan and the 

cost. They are based on heuristics [22], meta-heuristics [33, 

36] or hybrids [25, 29, 37] approaches.  

It is noticed that the hybridization of the scheduling 

algorithms brought potential benefits where authors in [29] 

combined Greedy algorithm with ACO in order to have better 

performance and in [25] improved the firework algorithm by 

a genetic algorithm. In [37], the authors proposed a Bees Life 

Algorithm combined with Greedy approach to improve the 

local search process in order to reach the optimal individual. 

Other works favored the use of meta-heuristic algorithms such 

as in [33] where the authors propose a modification of GA in 

the Parental Selection part, this modification improved the 

value of the fitness function compared to the BLA and MPSO 

algorithms. In [36], the authors proposed an improvement of 

the PSO algorithm, by a novel update method of inertia weight  

that influences search capability of particles, and which 

facilitates to enhance the global search capability of particles. 

 

3.2 QoS constraints-based scheduling 

 

In this class of scheduling methods, the approaches 

proposed by the researchers focus on optimizing QoS 

constraints, in order to meet the performance requirements of 

the types of applications deployed on Fog computing. 

 

3.2.1 Energy-efficiency based scheduling 

Among the problems encountered in the Fog computing 

paradigm is the energy consumption management [9, 16] of 

the distributed nodes that must be efficient. The proposed 

works use the scheduling methods with the common objective 

of decreasing the energy dissipated by IoT nodes. In this 
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section, we present research works that deal with this type of 

problem. 

Table 4 summarizes the Energy-Efficiency based 

Scheduling works. 

Rahbari et al. [38] proposed a scheduling strategy called 

greedy knapsack-based scheduling (GKS) by combining the 

knapsack and Greedy algorithms. The knapsack algorithm was 

used for resource scheduling for allocation optimization of 

processing elements. Each application is a combination of a 

set of modules, and each module is assigned to a specific 

processing element. While a greedy algorithm was used to 

reduce the time delay in optimal allocation of resources to 

modules in the fog network. These two algorithms were used 

in order to optimize the objective of the knapsack problem by 

maximizing the profit and minimizing the weight. The results 

of different case studies of the proposed method GKS has 

reduced the number of application modules lunched by the 

processing elements of hosts in micro–Data centers, which has 

reduced energy consumption and cost at the same time. 

Wan et al. [39] proposed an architecture for smart factory 

applications based on Fog Computing, which aims to solve the 

problem of energy consumption related to equipment 

workload. The authors proposed an energy-aware load 

balancing and scheduling method called (ELBS). It makes it 

possible to establish an energy model of the equipment 

deployed on the Fog nodes for load balancing. It has an 

objective function to be minimized for optimizing scheduling. 

The authors implemented an improved PSO algorithm in order 

to find better results. The multi-agent system is introduced, to 

realize dynamic scheduling of intelligent equipment using Fog 

nodes according to the load balancing scheduling strategy. The 

authors have performed experiments on a real environment, 

which presents a prototype platform of type intelligent 

manufacturing system. The results show that the proposed 

method has a better-balanced workload, and optimized the 

energy consumption. 

Wang et al. [17] studied the task scheduling strategy in the 

Fog computing scenario. They proposed a task scheduling 

strategy based on a hybrid heuristic algorithm (HH). It deals 

with resource limitations and high energy dissipated by smart 

manufacturing devices. HH algorithm combines the 

advantages of two algorithms: the improved particle swarm 

optimization (IPSO) and the improved ant colony optimization 

(IACO). IPSO has a fast convergence and IACO has high 

precision characteristics to obtain the optimal solution of task 

scheduling. Based on experiment results, the proposed Hybrid 

Heuristic algorithm (HH) have outperformed other simple 

algorithms IPSO, IACO, Round-Robin. Also, the energy 

consumption is proportional to the completion time. 

Luo et al. [40] proposed a new hierarchical architecture 

called multi-cloud to the existed multi-fog architecture based 

on containers technology. The multi-cloud aims to improve the 

resource utilization by Fog nodes and reduce the service delay. 

They also proposed a scheduling algorithm to deploy on the 

Fog nodes based on the energy balancing strategy. Its role is 

to control the transmission power of terminal devices, 

according to their energy levels, in order to extend the wireless 

sensor networks lifetime. 

Furthermore, it aims to reduce the delay constraint of tasks 

through the collaboration of the Fog nodes and the Cloud 

according to the available resource threshold of the Fog node. 

Wu et al. [41] proposed several models. They modeled the 

IoT system as a three-level model. The IoT application is 

modeled by a directed acyclic graph. They proposed a model 

to study the energy consumption of the overall three-tier IoT 

system. The DAG is divided into two parts, one part is 

assigned on the things tiers and processed locally, and the 

second part is sent to the Fog and Cloud tiers for further 

processing. The tasks assigned to the things tier are sorted by 

a heuristic method called bottom level (b-level) [42], and the 

tasks assigned to the Fog and Cloud tiers are sorted by the 

proposed Estimation of Distribution Algorithm with the 

partition operator (EDA-p). When these two processing 

sequences are determined, the tasks will be assigned to the 

nodes by the rule of Earliest Finish Time First (EFTF). The 

proposed scheduling algorithm EDA-p aims to achieve the 

trade-off between energy saving and shorten makespan. Its 

performance was evaluated using several cases of comparative 

studies. The experiment results show that the algorithm is 

effective, in reducing makespan and the energy consumption 

of devices, as well as extending the life time of IoT devices. 

Table 4 recapitulates the previous discussed Energy-

Efficiency based Scheduling works. 

Several approaches and strategies have been used with 

scheduling algorithms for different applications to use energy 

in an efficient way. Wan et al. [39] proposed several 

techniques for Smart Factory type application to reduce the 

energy consumption by factory terminals equipment. Their 

scheduling method is based on load balancing mechanism. The 

scheduling method proposed by Wang and Li [17] is based on 

a reasonable allocation of resources.  

 

Table 4. Comparison of energy efficiency based scheduling 

 
Work Evaluation Tool Infrastructure Advantage Limitations 

[38] S iFogsim Fog 
- Reduction of energy 

consumption, cost and delay 

- No performance comparison to 

other heuristic algorithms 

[39] E Prototype Platform Fog 
- Balanced workload 

- Energy consumption optimized 
- No makespan optimization 

[17] S Matlab Fog 

- Reduced completion time and 

energy consumption 

- Improved reliability 

- Requires more completion time 

and energy consumption than ISPO 

algorithm 

[40] E 

Use a real 

machine with 

virtualization 

technology 

Fog/ Cloud 
-Terminal devices’ energy is well 

balanced 
-No comparison to other algorithms 

[41] S C++ Fog/ Cloud 
- Reduced energy consumption 

and makespan 

- Scheduling applications with 

flexible or strict deadlines were not 

considered 

215



In battery-based applications, where system life is a major 

issue, Luo et al. [40] have proposed a multi-cloud to multi-fog 

based on containers architecture, which uses a scheduling 

algorithm based on the energy balancing strategy, between 

terminal devices and an energy harvesting equipment. Another 

solution proposed by Wu et al. [41], uses scheduling algorithm 

to minimize the energy consumed by IoT devices. 

All these strategies proposed previously, are used with 

scheduling algorithms, in order to improve the energy 

efficiency. Most of these proposed algorithms are of heuristic 

and meta-heuristic type [38, 40, 41] and hybrid [17, 39]. 
 

3.2.2 Time-efficiency based scheduling 

One of the major problems encountered by these types of 

critical IoT applications, is the time constraint (or the real-time 

interaction) requiring application tasks to complete within an 

expected deadline. Next, we discuss the researches about 

different scheduling methods, which aim to reduce the 

applications’ response time. In what follows, we will review 

some Time-Efficiency based Scheduling works and compare 

them in the Table 5. 

Stavrinides et al. [43] proposed a new approach, which 

attempts to schedule computationally demanding tasks, with 

low communication requirements on the Cloud, and 

communication intensive tasks, with low computational 

demands on the Fog computing layer. By contrast other 

approaches perform the IoT tasks on the Fog computation 

layer. This approach is based on a hybrid Fog and Cloud-aware 

heuristic, for the dynamic scheduling of multiple real-time IoT 

workflows in a three-tiered architecture. This heuristic 

approach allows the scheduling of a ready task of a workflow 

on either Fog or Cloud layer based on its potential 

communication and computational requirement. The proposed 

scheduling strategy is divided in two phases. A task selection 

phase that prioritizes tasks according to the Earliest Deadline 

First (EDF) policy, and a VM selection phase, which allocates 

the selected task to VM using estimated Earliest Finish Time 

(EFT) policy. 

The authors compared the performance of this approach 

with a proposed alternative version of Cloud-unaware 

scheduling strategy called Fog-EDF. The obtained results 

show that the Hybrid-EDF method reduces the deadline miss 

ratio in a significant way by comparison to Fog-EDF. 

Auluck et al. [44] proposed an improvement in real-time 

task scheduling using the Fog computing, which is based on 

three-tiers architecture: local embedded, Fog and Cloud. This 

approach allows application tasks to be assigned to the 

appropriate tier for successful execution, which ensures 

minimal overall communication time. First of all, the authors 

divided the tasks into three categories according to their delay 

tolerance hard real-time, firm real-time and soft real-time. To 

improve the scheduling of these tasks, they proposed two types 

of algorithms.  

The first algorithm is Static LFC (Local, Fog, Cloud), which 

statically assigns the tasks to be executed to the appropriate 

queue of different layers by the application of schedulability 

test, and the use of an optimization model. This leads to 

minimizing the total communication delay between Local, Fog 

and Cloud. The second algorithm is Self-Contained LFC 

(Local, Fog, Cloud), which schedules tasks without the use of 

schedulability test. It starts by scheduling the hard real-time 

type tasks on the local embedded processors. Then if the other 

types of tasks fail to meet their deadlines in this layer, they are 

scheduled in their appropriate layers with the use of an 

optimization model to minimize the total communication 

delay, which includes the tasks’ constraint deadline. The 

authors implemented their approach based on EDF scheduling 

algorithm, and compared it to other algorithms based on the 

same scheduling algorithm, which uses one of the following: 

Embedded-Cloud, Embedded-Fog or Fog-Cloud. The 

obtained results showed that the proposed approach improves 

the throughput, success ratio and response time. 

Mukherjee et al. [45] aim to minimize the failure probability, 

to meet the different delay deadlines for the tasks that have 

arrived at the fog. They considered the system to be composed 

of a set of Fog nodes and end-users that are uniformly and 

randomly distributed over the entire network. The end-users 

offload their entire tasks to a nearby Fog node referred to as 

primary Fog node. If the computing resources are not 

sufficient at the level of primary Fog node, it will offload these 

tasks to the other neighboring Fog nodes. They assign a 

priority to the tasks according to the value of delay-deadlines. 

They consider that each Fog node maintains two virtual queues 

namely high-priority queue and low-priority queue. The 

scheduling of these queues is done using Lyapunov 

optimization function. The authors run a series of experiments 

using Monte Carlo simulations. The obtained results show that 

the scheduling method which uses the offloading tasks and 

Lyapunov drift-plus-penalty function, improved reliability 

(how many tasks meet their deadlines) compared to random 

scheduling. 

Aburukba et al. [46] modeled the problem of scheduling IoT 

devices’ requests in edge layer and assign them the adequate 

resources available at both Fog and Cloud layers in order to 

reduce the latency in the hybrid architecture Fog-Cloud 

computing. They proposed a customized implementation of 

Genetic algorithms.  

 

Table 5. Comparison of time-efficiency based scheduling 

 
Work Evaluation Tool Infrastructure Advantage Limitations 

[43] S C++ Fog/ Cloud 
- Optimized real-time 

communication 
- Cloud layer’s monetary cost is not optimized 

[44] S iFogsim Fog/ Cloud 
- Improved the 

communication delay 
- No improvement of Cloud layer’s monetary cost 

[45] S Simulator Fog - Improved reliability 
- Scheduling policy is not optimized under different 

resource configuration 

[46] S Fog  

- Efficient solutions 

- Minimize latency 

- Maximize resource 

utilization 

- No comparison to other techniques 
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Table 6. Comparison of cost efficiency-based scheduling 

 
Work Evaluation Tool Infrastructure Advantage Limitations 

[47] S Java Fog/ Cloud 
- Found the best scheduling plan with 

lowest cost under given deadlines 

- lack of cost 

optimization 

[48] S C++ Fog/ Cloud 

- Effectively use the complementary cloud resources, and 

take into account the deadline constraints and the cost in 

the scheduling 

- No dynamic scaling 

techniques. 

[49] S CloudSim Fog/ Cloud 

- Achieve better trade-off between the 

makespan and the cost. 

- Meet user QoS requirements. 

- No power 

consumption 

optimization. 

 

They included a procedure for penalizing infeasible 

solutions, which do not satisfy the constraints of the problem 

(each request is allocated to one and only one resource, and it 

must satisfy the deadline requirements), by reducing the 

probability of unsatisfactory chromosome selection. 

The authors carried out experiments to determine the 

parameters such as the population size and maximum number 

of iterations, which have a direct impact on the quality of the 

solution. They also compared the proposed GA to an exact 

algorithm called Branch-and-Bound algorithm (B&B). These 

two algorithms gave almost the same result for the latency 

value; however, the B&B algorithm did not converge to a 

solution for problems with large size. This algorithm took 

almost two days to compute a solution for a problem with 10 

requests and 3 resources. On the other hand, the proposed GA 

gives a solution within a period of less than one minute for the 

same problem. Once the suitable parameters were determined, 

a series of simulations for different scenarios have been 

performed, and compared with other traditional algorithms 

such as Waited Fair Queuing, Priority Strict Queuing, and 

Round Robin. The results demonstrate that the proposed 

algorithm gives better performance in terms of overall latency, 

and meeting the requests deadlines by comparison to other 

unoptimized algorithms. The experiments also show that Fog 

computing provides better service latency than using only 

Cloud computing. 

The approaches discussed in this section, have common 

objectives, which are to minimize latency, meet deadlines, and  

satisfy the requests of real-time applications. Several 

techniques and strategies offloaded tasks towards the most 

efficient nodes [44, 45], respected the deadline and minimized 

the delay. In the study [45], the authors detailed their 

scheduling strategy, and explained how to choose the 

appropriate node to offload the task.   

The second technique, used in ref. [43-45], leverages 

priority-based algorithms, by favoring tasks that have the 

earliest deadline. For the scheduling algorithms, we observe 

that the authors [43, 44] use the priority-based algorithm 

Earliest Deadline First (EDF), which is the most used 

algorithm in the scheduling of real-time systems. The authors 

of the work in [45] proposed a new scheduling method based 

on Lyapunov optimization function. A new scheduling method 

[46] to minimize latency is based on a genetic algorithm. This 

approach reduces the latency by comparison to non-optimized 

algorithms. 

 

3.2.3 Cost Efficiency based scheduling 

The applications, deployed on Fog computing nodes, use 

several types of resources (Bandwidth, CPU, Storage, etc.) 

from different layers of the paradigm, in order to perform their 

tasks. The massive use of these resources depending on the 

nature of the applications generates additional costs. One of 

the advantages of this paradigm is to reduce the use of paid 

resources. For this purpose, we need efficient scheduling 

algorithms, which share the workload on the different 

available nodes in order to reduce the cost. 

In this section, we review and compare (see Table 6) few 

approaches designed for cost efficient management. 

Ding et al. [47] proposed a cost-effective scheduling 

strategy for multi-workflow with time constraints in Fog 

computing. This scheduling strategy uses multi-layer 

resources of Fog and Cloud computing called (CTSF). The 

proposed algorithm is based on Particle Swarm Optimization 

(PSO), which allows tasks to be allocated to adequate 

resources, and uses the fitness function with an objective of 

finding a minimum value of resource execution cost under 

given deadlines. In the case where multiple tasks are allocated 

to the same resource at the same time, a second algorithm 

called Min-Min algorithm is used to resolve the resource 

allocation conflict. 

In order to evaluate the performance of the proposed 

scheduling strategy, two evaluation aspects have been carried 

out. First, the CTSF algorithm is compared to two other 

strategies, which use the same PSO and Min-Min algorithms, 

however they use the resources from a single layer either Fog 

or Cloud. Second, they evaluated the CTSF algorithm using 

different resource conflict resolution algorithms in multi-layer 

Fog and Cloud resources. Based on the obtained results, it is 

recommended to execute tasks that require large workload and 

small data on cloud servers because of the communication 

time saving. However, tasks with small workload and large 

data set should be executed on Fog nodes. The CTSF strategy 

can find the best scheduling plan with lowest cost under given 

deadlines, using the PSO and Min-Min algorithms, by 

reducing the execution time of conflicting tasks. 

Stavrinides et al. [48] proposed a real-time scheduling 

strategy for the tasks of the multiple workflows, coming from 

IoT to Fog computing and which uses Cloud resources as a 

complement. This strategy is based on the trade-off between 

performance and monetary cost. It consists of two stages. A 

task selection stage, allows to prioritize the tasks of the global 

waiting queue for the central scheduler in Fog layer, according 

to their deadline using the Earliest Deadline First (EDF) policy. 

In the case where several tasks have the same priority, the task 

with highest average computational cost has highest priority. 

A virtual machine selection stage, which allocates the tasks, 

selected by the scheduler, to the adequate virtual machine of 

the Fog or Cloud tier, according to the minimum value given 

by the proposed objective function. This function takes into 

account the sum of two parameters (the estimated finish time 

and the estimated monetary cost of resource usage). Each one 

of these parameters is assigned a weight indicating its 

contribution factor. This weight is calculated using a proposed 

scheduling heuristic. 

The authors compared the performance of their proposed 

approach to a baseline policy MinEFT-Fog that uses only the 
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Fog layer’s resources. The obtained results show that the 

proposed approach assigns tasks that require high computation 

but low communication to virtual machine in the Cloud. 

However, it assigns tasks with low computation and intensive 

communication to Fog virtual machines. This reduces 

communication costs and saves the average monetary cost 

compared to the baseline policy. 

Pham et al. [49] proposed a cost and makespan aware 

scheduling algorithm called (CMaS). The objective of this 

algorithm is to achieve a good trade-off between the 

application execution time and the cost, for the use of Cloud 

resources and satisfy the user defined deadline constraints. The 

algorithm is divided into three phases. The first phase is to 

order the tasks based on the length of the critical path. The 

second phase is the node selection that allows the assignment 

of each task to an appropriate processing node on the Cloud or 

Fog, to achieve the optimal value of a utility function. The 

third phase is deadline-based task reassignment, which limits 

the deadline violation by reallocating critical tasks to the best 

processing nodes. This can reduce the completion time of each 

critical task. 

In order to demonstrate the performance of the proposed 

algorithm, the authors performed two types of evaluations. 

The first one is the evaluation of the CMaS algorithm 

efficiency compared with other algorithms. The results show 

that the algorithm can achieve better trade-off between the 

makespan and the cost of task execution than other methods. 

The second evaluation concerns the deadline-based task 

reassignment. The results show that the deadline-based CMaS 

algorithm also gave a better performance in terms of makespan. 

It guarantees the end of application execution before the 

predefined deadline to satisfy the user QoS requirements. 

After detailing some of the works in Cost Efficiency-based 

Scheduling category, we observed that authors in [47, 48] have 

proposed scheduling methods and strategy for multi-workflow 

standard applications. While the author in [49] applied these 

methods on workflow standard applications. Both methods are 

interested in minimizing two constraints at the same time. The 

aim is to reduce the cost of using resources. The execution time 

is taken in consideration by reducing the makespan [47, 49] or 

respecting the deadlines for real-time applications [48]. For the 

cost calculation, both works [48, 49] considered the type of 

resources and to which layers of the paradigm belong (Fog or 

Cloud), however, the work in [47] and the work of previous 

sections such as [22, 36, 37] did not optimize the cost based 

on the type of resources. 

The work in Ding et al. [47] is based on a hybrid type 

optimization algorithm (PSO and Min-Min) to improve the 

quality of the result. Stavrinides et al. [48], Pham et al. [49] 

incorporated priority algorithms in their approaches to respond 

efficiently to the deadline constraint. 

 

3.3 Classification-based scheduling 

 

Liu et al. [50] proposed a new data mining classifications-

based scheduling approach. They proposed a Task Scheduling 

algorithm in Fog Computing (TSFC) based on a new 

improvement of the traditional Apriori algorithm called I-

Apriori. The main TSFC algorithm process is divided into two 

steps. First, it uses the I-Apriori algorithm to generate 

association rules of nodes and tasks sets from scheduling 

transaction set. Then, these association rules are used with the 

TSFC algorithm to get the task scheduling relationship 

between the Fog nodes and the tasks. After comparing the 

TSFC algorithm to other heuristic algorithms, the results show 

that, this new scheduling approach is more efficient than the 

Minimum Completion Time algorithm (MCT) [51], Minimum 

Execution Time algorithm (MET) [51] and MIN-MIN 

algorithm [52], in terms of completion time and waiting time. 

However, TSFC algorithm did not ensure the multi-layered 

task scheduling and the scheduling optimization for other QoS 

parameters.  

 

 

4. COMPARISON OF SCHEDULING ALGORITHMS 

AND METHODS ACCORDING TO QOS CRITERIA 

AND THEIR TYPES OF APPLICATIONS 

 

In this section, we present comparisons of many algorithms 

for Scheduling problems that have been mentioned earlier in 

terms of QoS criteria (see Table 7) and the type of appropriate 

applications (see Table 8). 

 

4.1 Comparison based on QoS criteria 

 

The QoS criteria used in this study are summarized as follows: 

 

(1) Cost: the monetary cost of using resources 

(Processors, Memory, Storage, Bandwidth, etc.). 

(2) Energy: the energy consumption for nodes’ 

resources. 

(3) Workload Ratio: the ratio of the amount tasks to be 

performed by a node. 

(4) Resources Usage: the resource (Processors, Memory, 

Storage, Bandwidth, etc.) utilization rate of a node. 

(5) Throughput: the number of tasks that complete their 

execution in a time interval [45]. 

(6) Reliability: the success rate of a task execution under 

the constraints of the maximum tolerance time. 

(7) Response Time: the total time it takes between a 

service request and responding to that request. 

(8) Missed-Deadline: the ratio of the number of tasks 

that did not complete their execution within their deadlines. 

(9) Makespan: the time of processing all tasks. 

(10) Delay: the waiting time or the time required for a task 

to travel from the source to the destination on which it is  

executed [45]. 

 

4.2 Classification according to the type of applications 

 

In the literature, several studies have proposed a variety of 

IoT applications’ classifications according to their 

characteristics and QoS requirements. We propose in this 

section a new classification of the different scheduling 

methods mentioned previously based on the adequate type of 

IoT applications. 
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Table 7. A comparison of scheduling algorithms and methods based on QoS criteria 

 

Category References Cost Energy 
Workload 

Ratio 

Resources 

Usage 
Throughput Reliability 

Response 

Time 

Missed -

Deadline 
Makespan Delay 

Heuristic 

based 

Choudhari 
et al. [22] 

✓      ✓    

Meta-

heuristic 

based 

Wang et al. 

[25] 
   ✓     ✓  

Xu et al. 
[29] 

 ✓      ✓ ✓  

Nguyen et 

al. [33] 
✓        ✓  

Xu et al. 
[36] 

✓        ✓  

Bitam et al. 

[37] 
   ✓     ✓  

Energy 

Efficiency 

based 

Rahbari et 
al. [38] 

✓ ✓  ✓       

Wan et al. 

[39] 
 ✓ ✓        

Wang et al. 
[17] 

 ✓    ✓   ✓  

Luo et al. 

[40] 
 ✓        ✓ 

Wu et al. 
[41] 

 ✓       ✓  

Time 

Efficiency 

based 

Stavrinides 

et al. [43] 
✓       ✓   

Auluck et 

al. [44] 
    ✓  ✓ ✓  ✓ 

Mukherjee 

et al. [45] 
     ✓  ✓   

Aburukba 

et al. [46] 
       ✓  ✓ 

Cost 

Efficiency 

based 

Ding et al. 

[47] 
✓        ✓  

Stavrinides 

et al. [48] 
✓       ✓   

Pham et al. 

[49] 
✓        ✓  

Classification 

based 

Liu et al. 

[50] 
        ✓ ✓ 

 

Table 8. A classification according to the type applications 

 

References 
Smart 

home 
Wearables 

Smart 

Farming 

Smart 

City 

Autonomous 

Vehicles 
Healthcare 

Smart 

Industry 

Smart 

traffic 

Gaming, AR 

and VR 

Choudhari et al. 

[22] 
✓        ✓ 

Wang et al. [25] ✓ ✓ ✓  ✓     

Xu et al. [29] ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ 

Nguyen et al. 
[33] 

✓   ✓    ✓  

Xu et al. [36] ✓   ✓    ✓  

Bitam et al. [37] ✓ ✓ ✓  ✓     

Rahbari et al. 

[38] 
✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓ 

Wan et al. [39] ✓ ✓ ✓    ✓   

Wang et al. [17] ✓ ✓ ✓  ✓ ✓ ✓ ✓  

Luo et al. [40] ✓ ✓ ✓  ✓ ✓ ✓ ✓  

Wu et al. [41] ✓ ✓ ✓    ✓   

Stavrinides et al. 

[43] 
✓   ✓ ✓ ✓ ✓ ✓ ✓ 

Auluck et al. [44] ✓    ✓ ✓ ✓ ✓ ✓ 

M. Mukherjee et 
al. [45] 

✓    ✓ ✓ ✓ ✓ ✓ 

Aburukba et al. 

[46] 
✓    ✓ ✓ ✓ ✓ ✓ 

Ding et al. [47] ✓   ✓    ✓  

Stavrinides et al. 

[48] 
✓   ✓ ✓ ✓ ✓ ✓ ✓ 

Pham et al. [49] ✓   ✓    ✓  

Liu et al. [50] ✓    ✓ ✓ ✓ ✓ ✓ 
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5. COMPARISON OF SIMULATION TOOLS AND 

TYPES OF SCHEDULING ALGORITHMS USED 

 

In this section we present, a comparison of the use of 

different types of scheduling algorithms and also the 

simulation tools used by the researchers in their work. 

 

5.1 Simulation tools comparison  

 

 
(a) Simulation VS Evaluation 

 
(b) Programming Language VS Simulator Toolkit 

 
(c) The list of Simulator Toolkit 

 

Figure 3. Programming languages and simulation toolkit 

used in the experiment 

 

Different Simulator Tool Kits Description: 

(1) CloudSim: is an open-source extensible simulation 

toolkit, that enables modeling and simulation of Cloud 

computing systems and application provisioning 

environments. It allows the evaluation of the performance of 

resource provisioning and application scheduling techniques, 

under different usage and infrastructure scenarios [53]. 

(2) iFogSim: is a simulation toolkit developed based on 

the fundamental framework of CloudSim. It extends the 

abstraction of basic CloudSim classes, and offers scopes to 

simulate customized Fog computing environment with large 

number of Fog nodes and IoT devices. In addition, it facilitates 

evaluation of end-to-end latency, network congestion, power 

usage, operational expenses and QoS satisfaction [54]. 

(3) CloudAnalyst: extends the functionalities of 

CloudSim. This tool supports visual modeling and simulation 

of large-scale applications that are deployed on Cloud 

Infrastructures. The main objectives of CloudAnalyst are to 

separate the simulation experimentation exercise from a 

programming exercise. It allows description of application 

workloads, including users' geographical location information 

generating traffic and location of data centers, number of users 

and data centers, and number of resources in each data center. 

Using this information, CloudAnalyst generates information 

about response time of requests, processing time of requests, 

and other metrics [55]. 

(4) SimGrid: it is an open-source framework, which 

allows the simulation of distributed computer system used in 

studies on Grids, Clusters, High Performance Computing, P2P 

systems and Fog Computing [56]. 

(5) Matlab: is a tool often used in scientific fields to 

perform numerical calculations. It manipulates matrices, 

displays curves and data, and writes scripts and algorithms. 

(6) C++: is a programming language, used in the 

development of applications that require high performance. 

(7) Java: a general-purpose object-oriented 

programming language. 

 

Based on our study of literature, we observe that the 

evaluations in a real environment present only 14% of 

experimental work. On the other hand, the authors tend to use 

simulation tools in their experimental work which presents 

84%. This is due to the high cost and difficulty of 

implementation caused by the evaluation in a real environment 

(see Figure 3.a) [57]. 

These simulations are carried out by two different methods, 

either by programming or by the use of a Simulator Toolkit or 

Framework. Most of the simulations (56%) are carried out 

using a Simulator Toolkit (see Figure 3.b), because these tools 

facilitate the development, modeling and evaluation of the 

model to be simulated by using the functionalities offered by 

the Toolkit. This allows the researchers to focus on the 

simulation and analysis of the proposed approach’s behavior, 

analyze the results obtained in the various simulation scenarios 

[57, 58], and not focus on the details of programming the 

model to be simulated. 

In the literature, the authors use several types of Simulator 

Toolkit as shown in. The majority of studies cited previously 

have generally used two types of Simulator Toolkit, the first is 

CloudSim specialized in the simulation of the scheduling in 

the Cloud Computing environment [59], and the second 

iFogSim is specialized in scheduling simulation in the Fog 

Computing environment as shown in Figure 3.c [54, 59]. 

 

5.2 Comparison of the type of algorithms used 

 

According to the work cited above, we notice that most 

algorithms used to solve the scheduling problem, which is of 

NP-hard nature [54], are Heuristic or Meta-heuristic type 

(88%) as shown in Figure 4.a. This is due to the fact that this 

kind of algorithms have the ability to provide solutions close 

to the optimum within a reasonable time [60-62]. By 

comparison, exact algorithms give optimal solutions but in a 

very inefficient way. In the studies of the authors cited in this 

paper, we observe that the meta-heuristic algorithms are used 

more than heuristic algorithms (see Figure 4.a), because they 

provide better results closer to the optimal solution [60]. 

Among these meta-heuristic algorithms, we see that the most 

used algorithms are: PSO (27%), GA (20%) and ACO (13%). 

(see Figure 4.b). 67% the scheduling approaches, which use 

meta-heuristic algorithms are hybrid as shown in Figure 4.c. 

The hybridization of these meta-heuristic algorithms, 
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improves the performance and the quality of the solution 

generated by the algorithm, as well as the speed of 

convergence [60, 63]. 

 

 
(a) The use of Heuristic and Meta-heuristic Algorithms 

 
(b) The list of Heuristic and Meta-heuristic Algorithms 

 

 
(c) The use of type of Meta-heuristic Algorithms 

 

Figure 4. The type of algorithms used in the scheduling 

 

 

6. DISCUSSION 

 

In general, the scheduling problem is NP-hard problem 

which requires optimization methods to solve it. For this, 

approximation algorithms [60] based on Heuristic and Meta-

heuristic algorithms are used to get a semi optimal solution, 

which are very close to an exact solution in a reasonable time. 

For instance, in ref. [46], the authors performed a comparison 

in terms of solution quality and execution time between a 

Meta-heuristic algorithm (GA) and an exact algorithm (Branch 

and bound (B&B)). After reducing the size of the problem for 

the exact algorithm (B&B), it takes 2 days to calculate the 

result by comparison the GA finds a solution, which is very 

close the solution found by the exact algorithm, in less than 

one minute. According to the comparison shown in the 

previous section, we observed that most of the scheduling 

approaches use meta-heuristic and hybrid algorithms because 

they give near optimal solution in a very efficient way. 

Liu et al. [50] proposed another type of scheduling approach, 

instead of using approximation algorithms, they used an 

algorithm based on the classification techniques of Data 

mining called the Apriori algorithm, which obtained 

acceptable results in a reduced time complexity. One of the 

objectives of these scheduling methods and algorithms is to be 

used in the optimization of the QoS of the applications, so that 

they meet the performance requirements of the applications 

such as the optimization of energy consumption, cost and 

latency. The works of the researchers cited previously 

combine scheduling algorithms based on optimization 

techniques to respond to this type of problem and effectively 

manage the QoS constraints required by these applications: 

 

(1) Energy consumption reduction: the authors reduce 

the number of nodes used to run the applications. They use the 

load balancing method based on energy awareness. This 

efficient energy management increases the lifespan of the IoT 

applications battery-based, and reduces the cost of power 

consumption by nodes. 

(2) For real-time and critical application, meeting the 

deadlines and reducing the response time are important. For 

this purpose, the authors use the techniques of prioritized 

queues and offloading the tasks in the most efficient nodes. 

(3) To reduce costs, the authors minimize the use of 

expensive nodes such as cloud nodes to accomplish different 

tasks. They favor the use of the local node on the fog layer, 

which at the same time reduces the communication to the 

cloud without affecting the application performance. 

Finally, the evaluation of the different scheduling 

approaches proposed by the researchers, most of them use 

Simulator ToolKit tools such as CloudSim or iFogSim, which 

facilitates simulation and analysis of results. 

 

 

7. CONCLUSIONS 

 

In this paper, we have presented a survey on different 

scheduling algorithms and methods used in Fog computing. 

Through this study, we have reviewed, analyzed and compared 

different algorithms and approaches proposed to improve 

scheduling in this paradigm. Also, we have classified these 

methods in several categories according to their nature. We 

have deducted that most of the algorithms and scheduling 

methods proposed are approximation algorithms of meta-

heuristic-based type. These types of algorithms are used to 

optimize the system performance by decreasing energy 

consumed by IoT devices and minimizing the cost/latency of 

transmissions. Consequently, they can meet the workload and 

performance required by critical IoT applications deployed on 

Fog computing.  

In future, based on this study we plan to propose a new 

approach in this thematic by combining edge and fog layers 

algorithms to efficiently optimize the whole system.  
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