
A Survey on Various Methods and Algorithms of Scheduling in Fog Computing

Raouf Belmahdi1, Djamila Mechta1*, Saad Harous2

1 LRSD Lab, Computer Science Department, College of Sciences, University of Sétif1, Sétif 19000, Algeria
2 Dept. of Computer Science and Software Engineering, College of Information Technology, UAE University, Al Ain 15551,

UAE

Corresponding Author Email: mechtadjamila@univ-setif.dz

https://doi.org/10.18280/isi.260208 ABSTRACT

Received: 4 January 2021

Accepted: 16 March 2021

The rapid deployment of IoT in different areas generates a massive amount of data

transferred to the Cloud. To solve this challenge a new paradigm, called Fog Computing, is

located at the edge of the network and close to the connected objects. Its main role is to

extend the capacities of Cloud and improve the performance and the QoS required by the

applications by the use of different methods and techniques based on scheduling algorithms.

In this paper, we review various recent studies available in the literature that are interested

in the scheduling methods and algorithms used in Fog computing. The use of fog layer, in

solving optimization problem, is faced with serious challenges. Therefore, to help

practitioners and researchers, we present an in-depth overview of Fog Computing studying

various scheduling methods and algorithms. We analyze, compare and classify these

different scheduling approaches according to the nature of the algorithm used in the

scheduling, the QoS optimized by the proposed approach and the type of applications in

order to show what is suitable for critical IoT (CIOT), massive IoT (MIOT) and Industry

IoT (IIOT). Finally, we present a comparison of the different simulation tools used to

evaluate these approaches to guide fog computing developers/researchers which tool is

suitable and most flexible for simulating the application under consideration.

Keywords:

cloud computing, Fog Computing, internet

of things, scheduling algorithms,

optimization methods, heuristic, meta-

heuristic

1. INTRODUCTION

The Internet of Things (IoT) is deployed in most areas [1,

2]. This technology is based on connected objects, which are

widely used. Cisco estimates that there will be around 50

billion connected devices by 2020 [3]. They generate a

massive amount of data that needs to be transmitted, stored,

processed and analyzed in Cloud data centers. This increases

the Cloud load and transmission latency; therefore, the Cloud

cannot meet the QoS requirements of IoT critical applications

such as latency sensitive applications. These challenges

require a new architecture to deal with it [4].

1.1 Overview of Fog Computing

In 2012, Cisco proposed a new paradigm named Fog

Computing [5]. It is a highly virtualized platform that provides

computation, storage, and networking services between end

devices and traditional Cloud Computing Data Centers [5]. Its

main role is to extend the Cloud to be closer to the objects that

produce and act on IoT data [6]. The Fog Computing is defined

by OpenFog Consortium [7] as “horizontal, system-level

architecture that distributes computing, storage, control and

networking functions closer to the users along a cloud-to-thing

continuum”.

1.1.1 Architecture of Fog Computing

Recently several research studies proposed a Fog

Computing architecture [7-10]. This architecture is divided

into several layers, the number of layers depends on the point

of view of the author or the application [8]. The majority of

these studies presented a three hierarchical layers architecture

[9, 11-14] as shown in Figure 1.

Figure 1. A hierarchical architecture of Fog Computing

1.1.2 Characteristics of Fog Computing

In the literature, several researchers [8, 13, 15-17] have

proposed a comparison between the characteristics of Cloud

and Fog Computing. Based on these studies, it is noticed that

the Cloud Computing represents a large data centers available

over the Internet, geographically centralized, on the other hand,

the Fog Computing constituted of several small data centers,

geographically widely distributed. This provides services to

user requests at the edge of networks where the distance

between client and server is one or few hops, which allows

location awareness and reduces latency. In terms of resources,

Ingénierie des Systèmes d’Information
Vol. 26, No. 2, April, 2021, pp. 211-224

Journal homepage: http://iieta.org/journals/isi

211

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.260208&domain=pdf

Cloud Computing has a high resources capacity (CPU, RAM,

Storage, Bandwidth), which requires high energy consumption,

and high-cost resources’ usage. By comparison, Fog

Computing, has less resource capacity at lower cost, and which

reduces energy consumption linked to the small data center,

located at the edge networks.

The common differences between the characteristics of

these two paradigms is summarized in Table 1.

Table 1. A comparison between the characteristics of Cloud

and Fog Computing

Characteristics
Cloud

Computing
Fog Computing

Latency High Low

Delay Jitter High Low

Realtime application

handling
Difficult Achievable

Mobility Limited Supported

Geographical distribution Centralized Distributed

Server nodes’ location
Within the

Internet

At the edge of the

network

Distance between client

and server
Multiple hops Single/Few hops

Location awareness No Yes

Number of server nodes Few Large

Computation capability High Low

Storage capacity High Low

Energy consumption High Low

Power source Direct power

Direct power,

Battery, Green

energy

Computation cost High Low

Bandwidth cost High Low

1.1.3 Advantages, challenges and issues of Fog Computing

According to the comparative table (Table 1), we observe

that the Fog Computing paradigm offers several advantages to

applications such as: reduction of the computational load and

the use of resources of Cloud servers [16], reduces network

traffic, suitable for IoT applications [10], ensures low latency

and real-time interactions, and supports for mobility [9].

Despite the advantages offered by Fog Computing, it poses

many challenges and issues: security and privacy, energy

management [9, 16], resource management and scheduling [8].

1.2 Scheduling in Fog Computing

The scheduling is a NP-hard problem, as defined by

M.Pinedo in [18]: “Scheduling is a decision-making process

that is used on a regular basis in many manufacturing and

services industries. It deals with the allocation of resources to

tasks over given time periods and its goal is to optimize one or

more objectives”. Scheduling presents one of the major

challenges in Fog computing paradigm. It plays a fundamental

role to improve the performance of the whole system, by

optimizing one or many objectives to map the tasks to the

appropriate resources [19] in order to respond to the QoS

required by the applications. At the same time, it aims to

improve the degree of customer satisfaction [19].

Fog computing has a hierarchical architecture, where

resources are distributed in the different layers of the paradigm.

Each layer has its own characteristics and capacities. The

scheduling problem in Fog computing presents a new aspect

of scheduling compared to traditional scheduling in related

paradigms.

In this paper, we present the most recent research work

concerning the different scheduling methods and algorithms.

The main purpose of these methods is to improve scheduling

and optimize the performance of applications in Fog

computing.

1.3 Related surveys and our contributions

In this section we present some surveys related to our work.

The surveys of Naha et al. [8], Mouradian et al. [14] and

Elavarasi et al. [20] have presented an overview of Fog

computing: Architectures, Definitions, Research Directions

and Challenges, state of the art and Fog applications.

Mouradian et al. [14] presented the task scheduling algorithms

and analyze them according to different criteria. In the paper

[8], the authors discuss the existing research works and gaps

in resource allocation and scheduling. In the survey [20], the

authors compare various scheduling algorithms based on

performance metrics. In another survey [21], the authors

analyzed the research studies about task scheduling

approaches in fog computing from 2015 to 2018. They

proposed a classification of task scheduling approaches in two

categories: static and dynamic.

In this survey, we summarize our main contributions as

follows:

(1) Present a literature review of the various methods and

scheduling algorithms recently proposed and used in Fog

computing.

(2) Propose a taxonomy, which classifies the different

methods and scheduling algorithms.

(3) Compare the different types of scheduling algorithms

according to QoS criteria and their appropriate applications.

(4) Compare a number of tools used to evaluate the

different proposed approaches.

1.4 Paper organization

The reminder of this article is organized as follows: in

Section 2, we present a taxonomy of the different methods and

scheduling algorithms used in Fog computing. Section 3

reviews the literature and analyses various existing research

works in this field. Sections 4 compares the different

algorithms and methods according to the QoS criteria, and it

classifies them according to the appropriate type of application.

In section 5, we present and compare the different scheduling

algorithms and simulation tools used in research work. Section

6 discusses the techniques and methods used to improve

scheduling. We conclude our paper in Section 7.

2. TAXONOMY OF SCHEDULING ALGORITHMS

AND METHODS IN FOG COMPUTING

In this section, we propose a taxonomy of the different

methods and scheduling algorithms in the Fog Computing

environment as shown in Figure 2. This taxonomy is based on

the classification of the various existing research works in the

literature. It deals with a common objective the scheduling

problem.

Our classification is divided into three major categories.

This division is based on the nature of the method or algorithm

used to improve scheduling. In the first category, we have

grouped together the scheduling methods, based on

optimization algorithms of an approximate nature, such as

212

heuristic algorithms like: “Min-Min and Greedy”, and

metaheuristic algorithms like “PSO, ACO, GA”, and also the

hybrid algorithms which are composed of several methods

such as: “ACO-PSO, PSO-Min-Min, BLA-Greedy”. The

second category of scheduling methods, is concerned with

scheduling optimizations based on the QoS constraints of an

application, such as reduction of execution time, cost of

resource usage and amount of energy consumed by the nodes

of an application. Most of these proposed approaches use

approximation algorithms based on Heuristic, Meta-heuristic

and Hybrid, in order to improve the quality of the results. For

the third category, we classified the scheduling methods that

use data mining algorithms, in order to improve the

performance of the scheduling.

Figure 2. Proposed taxonomy of scheduling algorithms and

methods in Fog Computing

In Table 2, we define the different acronyms used in this

paper.

Table 2. List of important acronyms

Acronym Definition

ACO Ant Colony Optimization Algorithm

BLA Bees Life Algorithm

EDA Estimation of Distribution Algorithm

FWA Fireworks Algorithm

GA Genetic Algorithm

PSO Particle Swarm Optimization

EDF Earliest Deadline First

EFT Earliest Finish Time

QoS Quality of service

DAG Directed Acyclic Graph

3. LITERATURE REVIEW

This section presents a literature review of the various

recent research works proposed to demonstrate the different

techniques and scheduling algorithms used in Fog computing

to improve the performance of applications. According to the

taxonomy proposed in this survey, we classify the different

scheduling methods.

3.1 Scheduling based on optimization methods

These methods use heuristic, meta-heuristic or hybrid

techniques. These proposed algorithms are compared to

traditional algorithms in terms of performance in order to

adapt them to Fog computing paradigm.

3.1.1 Heuristics algorithms based scheduling

Choudhari et al. [22] proposed a priority levels-based task

scheduling algorithm (PLTS) in the Fog layer by combining

two algorithms. The first one is an efficient resource allocation

(ERA) algorithm proposed by Agarwal et al. [23]. It is

implemented in the Fog layer and uses a three-layer

architecture model (Client-Fog-Cloud). The second algorithm

is a priority-based scheduling algorithm, proposed by

Dakshayini et al. [24] and implemented in cloud computing

environment.

PLTS algorithm starts by checking the availability of

resources in the Fog nodes that satisfy the clients’

requirements. If the resources are sufficient in this layer and

the requests can be served by the deadline, the algorithm

assigns a priority level to the client request and processes it

later. However, if resources are not sufficient then it sends the

requests to the Cloud layer.

The authors performed several simulation scenarios with

CloudAnalyst tool. For each scenario, the results of the

performance metrics of the algorithm proposed are compared

to those of the following three policies: Optimize Response

Time (ORT), Reconfigure Dynamically (RD), and Efficient

Resource Allocation (ERA) [23]. This study showed that the

proposed prioritized scheduling algorithm has reduced the

response time and has considerably decreased the cost.

However, it used the static priority settings in response to

request traffic load.

3.1.2 Meta-heuristics and hybrid algorithms based scheduling

Wang et al. [25] proposed a task scheduling algorithm in

Fog computing based on the improvement of the bio-inspired

Firework Algorithm (FA) [26].

The authors proposed two contributions. First, they

improved Firework Algorithm (I-FA) by the introduction of an

explosion radius detection mechanism. Second, they used the

proposed task scheduling algorithm (I-FASC) which takes into

account the characteristics of the tasks and the resources. They

have classified the tasks into three clusters according to

expected storage space, expected time and expected

bandwidth. Then, they integrated resources which are of three

types: computing, storage and bandwidth.

The experimental results showed that the algorithm (I-FA)

has an average explosion radius smaller than (FA) algorithm,

and performed better than the other algorithms such as ACO-

based algorithm (Rank-ACO) [27], double-fitness Genetic

algorithm (DFGA) [28] and FA [26]. It reduces the number of

iterations with the fastest convergence speed. The algorithm

(I-FASC) reduces the task completion time compared to the

other three algorithms: FSFC, Rank-ACO and DFGA. It

allocates the resource in a more balanced way, which improves

the performance of the entire system.

Xu et al. [29] proposed a method of scheduling tasks in the

Fog-Cloud environment (LBP-ACS). This latter is based on

the combination of two algorithms: Laxity-Based Priority

(LBPA) [29] and Ant Colony System (ACS) [30]. The aim is

to schedule the tasks’ execution in a way to respect the

deadlines, and to minimize the total energy consumption. The

authors started with the algorithm (LBPA), which calculates

the laxity time for each task and assigns a priority to the laxity

(the smaller the laxity of the task, the higher the priority of the

task). They also proposed a constrained optimization

algorithm based on the Ant Colony System algorithm, which

213

chooses the right Cloud or Fog resources for the task based on

its propriety.

After testing and evaluating the proposed method, they

compared its performance to three other algorithms: Greedy

for Energy (GFE), Heterogeneous Earliest Finish Time

(HEFT) [31], and Differential Evolution Ant Colony

Optimization (DEACO) [32]. The results showed that the

proposed algorithm (LBP-ACS) outperformed the other

algorithms. It balances the benefits between schedule length

and energy consumption for Cloud or Fog resources, with

Lower failure ratio rate.

The authors of the work [33] focused on task scheduling

problem for Bag-of-Tasks applications in Cloud Fog

computing environment. They proposed an algorithm called a

Time-Cost aware Scheduling algorithm (TCaS) based on an

evolutionary algorithm (Genetic Algorithm). They used the

same Fitness Function to compare its performance (trade-off

between the Makespan and Total Cost) to the following

algorithms: Modified Particle Swarm Optimization (MPSO)

[34], Bee Life Algorithm (BLA) [35] and a traditional simple

Round Robin (RR) algorithm. They carried out several

experiments in two different scenarios: one in a local Fog

environment and another in a Cloud-Fog environment. The

results show that for the first scenario TCaS has a better

makespan and total cost; for the second scenario TCaS has a

better makespan than the other algorithms, however MPSO

has a better total cost than the other algorithms. They also

demonstrated that (TCaS) is less convergent compared to the

other algorithms (MPSO, BLA), however, it generates a more

optimal solution.

Xu et al. [36] focused on scheduling Workflow in the

Cloud-Fog environment. They presented a scheduling method

that solves the mapping process between tasks and resources

to minimize the makespan of Workflow and the cost. This

method is an optimization of PSO algorithm. They introduce a

new non-linear function (inertia weight), which enhances the

global and local search capabilities of particles.

Bitam et al. [37] proposed a new bio-inspired algorithm for

scheduling tasks, based on Bee Swarm optimization algorithm

called Bees Life Algorithm (BLA) [35]. This new algorithm

focuses on scheduling improvement in the fog computing

environment. They designed a better allocation of tasks among

the available Fog resources, by finding an optimal trade-off

between CPU execution time and allocated memory. To

achieve this goal, the authors proposed an optimization of the

BLA algorithm using a Greedy approach to optimize the local

search and improve the global solution. This way they reduced

the latency and the cost to satisfy mobile users’ requests.

All the authors’ works discussed in this section are

summarized and compared in Table 3.

Table 3. Comparison of meta-heuristics and hybrid algorithms based scheduling

(S: Simulation, E: Evaluation on a real server or platform)

Work Evaluation Tool Infrastructure Advantage Limitations

[25] E
Cloud

Server
Fog/ Cloud

- Reduced average explosion radius

- Fast convergence

- Reduced task completion time

- Load optimization

- Fog nodes’ energy consumption

is not considered

[29] S CloudSim

- Balance between schedule length

and energy consumption for cloud or

fog resources

- Low failure ratio

- Not optimized for scheduling

independent tasks

[33] S iFogSim Fog/ Cloud

- Efficient trade-off between

makespan and cost

- TCaS is flexible in satisfying users’

requirement with respect to

highperformance

processing and cost efficiency

- TCaS is more costly than MPSO in a

Cloud–Fog environment.

[36] S Matlab Fog/ Cloud - Reduced Makespan and cost -Lack of cost optimization

[37] S C++ Fog
- Reduced CPU execution time and

memory allocation

- No dynamic job scheduling

-No optimization of network bandwidth

and cost

All works studied previously aim to improve the quality of

scheduling and increase the performance of solution in terms

of reducing latency, energy consumption, makespan and the

cost. They are based on heuristics [22], meta-heuristics [33,

36] or hybrids [25, 29, 37] approaches.

It is noticed that the hybridization of the scheduling

algorithms brought potential benefits where authors in [29]

combined Greedy algorithm with ACO in order to have better

performance and in [25] improved the firework algorithm by

a genetic algorithm. In [37], the authors proposed a Bees Life

Algorithm combined with Greedy approach to improve the

local search process in order to reach the optimal individual.

Other works favored the use of meta-heuristic algorithms such

as in [33] where the authors propose a modification of GA in

the Parental Selection part, this modification improved the

value of the fitness function compared to the BLA and MPSO

algorithms. In [36], the authors proposed an improvement of

the PSO algorithm, by a novel update method of inertia weight

that influences search capability of particles, and which

facilitates to enhance the global search capability of particles.

3.2 QoS constraints-based scheduling

In this class of scheduling methods, the approaches

proposed by the researchers focus on optimizing QoS

constraints, in order to meet the performance requirements of

the types of applications deployed on Fog computing.

3.2.1 Energy-efficiency based scheduling

Among the problems encountered in the Fog computing

paradigm is the energy consumption management [9, 16] of

the distributed nodes that must be efficient. The proposed

works use the scheduling methods with the common objective

of decreasing the energy dissipated by IoT nodes. In this

214

section, we present research works that deal with this type of

problem.

Table 4 summarizes the Energy-Efficiency based

Scheduling works.

Rahbari et al. [38] proposed a scheduling strategy called

greedy knapsack-based scheduling (GKS) by combining the

knapsack and Greedy algorithms. The knapsack algorithm was

used for resource scheduling for allocation optimization of

processing elements. Each application is a combination of a

set of modules, and each module is assigned to a specific

processing element. While a greedy algorithm was used to

reduce the time delay in optimal allocation of resources to

modules in the fog network. These two algorithms were used

in order to optimize the objective of the knapsack problem by

maximizing the profit and minimizing the weight. The results

of different case studies of the proposed method GKS has

reduced the number of application modules lunched by the

processing elements of hosts in micro–Data centers, which has

reduced energy consumption and cost at the same time.

Wan et al. [39] proposed an architecture for smart factory

applications based on Fog Computing, which aims to solve the

problem of energy consumption related to equipment

workload. The authors proposed an energy-aware load

balancing and scheduling method called (ELBS). It makes it

possible to establish an energy model of the equipment

deployed on the Fog nodes for load balancing. It has an

objective function to be minimized for optimizing scheduling.

The authors implemented an improved PSO algorithm in order

to find better results. The multi-agent system is introduced, to

realize dynamic scheduling of intelligent equipment using Fog

nodes according to the load balancing scheduling strategy. The

authors have performed experiments on a real environment,

which presents a prototype platform of type intelligent

manufacturing system. The results show that the proposed

method has a better-balanced workload, and optimized the

energy consumption.

Wang et al. [17] studied the task scheduling strategy in the

Fog computing scenario. They proposed a task scheduling

strategy based on a hybrid heuristic algorithm (HH). It deals

with resource limitations and high energy dissipated by smart

manufacturing devices. HH algorithm combines the

advantages of two algorithms: the improved particle swarm

optimization (IPSO) and the improved ant colony optimization

(IACO). IPSO has a fast convergence and IACO has high

precision characteristics to obtain the optimal solution of task

scheduling. Based on experiment results, the proposed Hybrid

Heuristic algorithm (HH) have outperformed other simple

algorithms IPSO, IACO, Round-Robin. Also, the energy

consumption is proportional to the completion time.

Luo et al. [40] proposed a new hierarchical architecture

called multi-cloud to the existed multi-fog architecture based

on containers technology. The multi-cloud aims to improve the

resource utilization by Fog nodes and reduce the service delay.

They also proposed a scheduling algorithm to deploy on the

Fog nodes based on the energy balancing strategy. Its role is

to control the transmission power of terminal devices,

according to their energy levels, in order to extend the wireless

sensor networks lifetime.

Furthermore, it aims to reduce the delay constraint of tasks

through the collaboration of the Fog nodes and the Cloud

according to the available resource threshold of the Fog node.

Wu et al. [41] proposed several models. They modeled the

IoT system as a three-level model. The IoT application is

modeled by a directed acyclic graph. They proposed a model

to study the energy consumption of the overall three-tier IoT

system. The DAG is divided into two parts, one part is

assigned on the things tiers and processed locally, and the

second part is sent to the Fog and Cloud tiers for further

processing. The tasks assigned to the things tier are sorted by

a heuristic method called bottom level (b-level) [42], and the

tasks assigned to the Fog and Cloud tiers are sorted by the

proposed Estimation of Distribution Algorithm with the

partition operator (EDA-p). When these two processing

sequences are determined, the tasks will be assigned to the

nodes by the rule of Earliest Finish Time First (EFTF). The

proposed scheduling algorithm EDA-p aims to achieve the

trade-off between energy saving and shorten makespan. Its

performance was evaluated using several cases of comparative

studies. The experiment results show that the algorithm is

effective, in reducing makespan and the energy consumption

of devices, as well as extending the life time of IoT devices.

Table 4 recapitulates the previous discussed Energy-

Efficiency based Scheduling works.

Several approaches and strategies have been used with

scheduling algorithms for different applications to use energy

in an efficient way. Wan et al. [39] proposed several

techniques for Smart Factory type application to reduce the

energy consumption by factory terminals equipment. Their

scheduling method is based on load balancing mechanism. The

scheduling method proposed by Wang and Li [17] is based on

a reasonable allocation of resources.

Table 4. Comparison of energy efficiency based scheduling

Work Evaluation Tool Infrastructure Advantage Limitations

[38] S iFogsim Fog
- Reduction of energy

consumption, cost and delay

- No performance comparison to

other heuristic algorithms

[39] E Prototype Platform Fog
- Balanced workload

- Energy consumption optimized
- No makespan optimization

[17] S Matlab Fog

- Reduced completion time and

energy consumption

- Improved reliability

- Requires more completion time

and energy consumption than ISPO

algorithm

[40] E

Use a real

machine with

virtualization

technology

Fog/ Cloud
-Terminal devices’ energy is well

balanced
-No comparison to other algorithms

[41] S C++ Fog/ Cloud
- Reduced energy consumption

and makespan

- Scheduling applications with

flexible or strict deadlines were not

considered

215

In battery-based applications, where system life is a major

issue, Luo et al. [40] have proposed a multi-cloud to multi-fog

based on containers architecture, which uses a scheduling

algorithm based on the energy balancing strategy, between

terminal devices and an energy harvesting equipment. Another

solution proposed by Wu et al. [41], uses scheduling algorithm

to minimize the energy consumed by IoT devices.

All these strategies proposed previously, are used with

scheduling algorithms, in order to improve the energy

efficiency. Most of these proposed algorithms are of heuristic

and meta-heuristic type [38, 40, 41] and hybrid [17, 39].

3.2.2 Time-efficiency based scheduling

One of the major problems encountered by these types of

critical IoT applications, is the time constraint (or the real-time

interaction) requiring application tasks to complete within an

expected deadline. Next, we discuss the researches about

different scheduling methods, which aim to reduce the

applications’ response time. In what follows, we will review

some Time-Efficiency based Scheduling works and compare

them in the Table 5.

Stavrinides et al. [43] proposed a new approach, which

attempts to schedule computationally demanding tasks, with

low communication requirements on the Cloud, and

communication intensive tasks, with low computational

demands on the Fog computing layer. By contrast other

approaches perform the IoT tasks on the Fog computation

layer. This approach is based on a hybrid Fog and Cloud-aware

heuristic, for the dynamic scheduling of multiple real-time IoT

workflows in a three-tiered architecture. This heuristic

approach allows the scheduling of a ready task of a workflow

on either Fog or Cloud layer based on its potential

communication and computational requirement. The proposed

scheduling strategy is divided in two phases. A task selection

phase that prioritizes tasks according to the Earliest Deadline

First (EDF) policy, and a VM selection phase, which allocates

the selected task to VM using estimated Earliest Finish Time

(EFT) policy.

The authors compared the performance of this approach

with a proposed alternative version of Cloud-unaware

scheduling strategy called Fog-EDF. The obtained results

show that the Hybrid-EDF method reduces the deadline miss

ratio in a significant way by comparison to Fog-EDF.

Auluck et al. [44] proposed an improvement in real-time

task scheduling using the Fog computing, which is based on

three-tiers architecture: local embedded, Fog and Cloud. This

approach allows application tasks to be assigned to the

appropriate tier for successful execution, which ensures

minimal overall communication time. First of all, the authors

divided the tasks into three categories according to their delay

tolerance hard real-time, firm real-time and soft real-time. To

improve the scheduling of these tasks, they proposed two types

of algorithms.

The first algorithm is Static LFC (Local, Fog, Cloud), which

statically assigns the tasks to be executed to the appropriate

queue of different layers by the application of schedulability

test, and the use of an optimization model. This leads to

minimizing the total communication delay between Local, Fog

and Cloud. The second algorithm is Self-Contained LFC

(Local, Fog, Cloud), which schedules tasks without the use of

schedulability test. It starts by scheduling the hard real-time

type tasks on the local embedded processors. Then if the other

types of tasks fail to meet their deadlines in this layer, they are

scheduled in their appropriate layers with the use of an

optimization model to minimize the total communication

delay, which includes the tasks’ constraint deadline. The

authors implemented their approach based on EDF scheduling

algorithm, and compared it to other algorithms based on the

same scheduling algorithm, which uses one of the following:

Embedded-Cloud, Embedded-Fog or Fog-Cloud. The

obtained results showed that the proposed approach improves

the throughput, success ratio and response time.

Mukherjee et al. [45] aim to minimize the failure probability,

to meet the different delay deadlines for the tasks that have

arrived at the fog. They considered the system to be composed

of a set of Fog nodes and end-users that are uniformly and

randomly distributed over the entire network. The end-users

offload their entire tasks to a nearby Fog node referred to as

primary Fog node. If the computing resources are not

sufficient at the level of primary Fog node, it will offload these

tasks to the other neighboring Fog nodes. They assign a

priority to the tasks according to the value of delay-deadlines.

They consider that each Fog node maintains two virtual queues

namely high-priority queue and low-priority queue. The

scheduling of these queues is done using Lyapunov

optimization function. The authors run a series of experiments

using Monte Carlo simulations. The obtained results show that

the scheduling method which uses the offloading tasks and

Lyapunov drift-plus-penalty function, improved reliability

(how many tasks meet their deadlines) compared to random

scheduling.

Aburukba et al. [46] modeled the problem of scheduling IoT

devices’ requests in edge layer and assign them the adequate

resources available at both Fog and Cloud layers in order to

reduce the latency in the hybrid architecture Fog-Cloud

computing. They proposed a customized implementation of

Genetic algorithms.

Table 5. Comparison of time-efficiency based scheduling

Work Evaluation Tool Infrastructure Advantage Limitations

[43] S C++ Fog/ Cloud
- Optimized real-time

communication
- Cloud layer’s monetary cost is not optimized

[44] S iFogsim Fog/ Cloud
- Improved the

communication delay
- No improvement of Cloud layer’s monetary cost

[45] S Simulator Fog - Improved reliability
- Scheduling policy is not optimized under different

resource configuration

[46] S Fog

- Efficient solutions

- Minimize latency

- Maximize resource

utilization

- No comparison to other techniques

216

Table 6. Comparison of cost efficiency-based scheduling

Work Evaluation Tool Infrastructure Advantage Limitations

[47] S Java Fog/ Cloud
- Found the best scheduling plan with

lowest cost under given deadlines

- lack of cost

optimization

[48] S C++ Fog/ Cloud

- Effectively use the complementary cloud resources, and

take into account the deadline constraints and the cost in

the scheduling

- No dynamic scaling

techniques.

[49] S CloudSim Fog/ Cloud

- Achieve better trade-off between the

makespan and the cost.

- Meet user QoS requirements.

- No power

consumption

optimization.

They included a procedure for penalizing infeasible

solutions, which do not satisfy the constraints of the problem

(each request is allocated to one and only one resource, and it

must satisfy the deadline requirements), by reducing the

probability of unsatisfactory chromosome selection.

The authors carried out experiments to determine the

parameters such as the population size and maximum number

of iterations, which have a direct impact on the quality of the

solution. They also compared the proposed GA to an exact

algorithm called Branch-and-Bound algorithm (B&B). These

two algorithms gave almost the same result for the latency

value; however, the B&B algorithm did not converge to a

solution for problems with large size. This algorithm took

almost two days to compute a solution for a problem with 10

requests and 3 resources. On the other hand, the proposed GA

gives a solution within a period of less than one minute for the

same problem. Once the suitable parameters were determined,

a series of simulations for different scenarios have been

performed, and compared with other traditional algorithms

such as Waited Fair Queuing, Priority Strict Queuing, and

Round Robin. The results demonstrate that the proposed

algorithm gives better performance in terms of overall latency,

and meeting the requests deadlines by comparison to other

unoptimized algorithms. The experiments also show that Fog

computing provides better service latency than using only

Cloud computing.

The approaches discussed in this section, have common

objectives, which are to minimize latency, meet deadlines, and

satisfy the requests of real-time applications. Several

techniques and strategies offloaded tasks towards the most

efficient nodes [44, 45], respected the deadline and minimized

the delay. In the study [45], the authors detailed their

scheduling strategy, and explained how to choose the

appropriate node to offload the task.

The second technique, used in ref. [43-45], leverages

priority-based algorithms, by favoring tasks that have the

earliest deadline. For the scheduling algorithms, we observe

that the authors [43, 44] use the priority-based algorithm

Earliest Deadline First (EDF), which is the most used

algorithm in the scheduling of real-time systems. The authors

of the work in [45] proposed a new scheduling method based

on Lyapunov optimization function. A new scheduling method

[46] to minimize latency is based on a genetic algorithm. This

approach reduces the latency by comparison to non-optimized

algorithms.

3.2.3 Cost Efficiency based scheduling

The applications, deployed on Fog computing nodes, use

several types of resources (Bandwidth, CPU, Storage, etc.)

from different layers of the paradigm, in order to perform their

tasks. The massive use of these resources depending on the

nature of the applications generates additional costs. One of

the advantages of this paradigm is to reduce the use of paid

resources. For this purpose, we need efficient scheduling

algorithms, which share the workload on the different

available nodes in order to reduce the cost.

In this section, we review and compare (see Table 6) few

approaches designed for cost efficient management.

Ding et al. [47] proposed a cost-effective scheduling

strategy for multi-workflow with time constraints in Fog

computing. This scheduling strategy uses multi-layer

resources of Fog and Cloud computing called (CTSF). The

proposed algorithm is based on Particle Swarm Optimization

(PSO), which allows tasks to be allocated to adequate

resources, and uses the fitness function with an objective of

finding a minimum value of resource execution cost under

given deadlines. In the case where multiple tasks are allocated

to the same resource at the same time, a second algorithm

called Min-Min algorithm is used to resolve the resource

allocation conflict.

In order to evaluate the performance of the proposed

scheduling strategy, two evaluation aspects have been carried

out. First, the CTSF algorithm is compared to two other

strategies, which use the same PSO and Min-Min algorithms,

however they use the resources from a single layer either Fog

or Cloud. Second, they evaluated the CTSF algorithm using

different resource conflict resolution algorithms in multi-layer

Fog and Cloud resources. Based on the obtained results, it is

recommended to execute tasks that require large workload and

small data on cloud servers because of the communication

time saving. However, tasks with small workload and large

data set should be executed on Fog nodes. The CTSF strategy

can find the best scheduling plan with lowest cost under given

deadlines, using the PSO and Min-Min algorithms, by

reducing the execution time of conflicting tasks.

Stavrinides et al. [48] proposed a real-time scheduling

strategy for the tasks of the multiple workflows, coming from

IoT to Fog computing and which uses Cloud resources as a

complement. This strategy is based on the trade-off between

performance and monetary cost. It consists of two stages. A

task selection stage, allows to prioritize the tasks of the global

waiting queue for the central scheduler in Fog layer, according

to their deadline using the Earliest Deadline First (EDF) policy.

In the case where several tasks have the same priority, the task

with highest average computational cost has highest priority.

A virtual machine selection stage, which allocates the tasks,

selected by the scheduler, to the adequate virtual machine of

the Fog or Cloud tier, according to the minimum value given

by the proposed objective function. This function takes into

account the sum of two parameters (the estimated finish time

and the estimated monetary cost of resource usage). Each one

of these parameters is assigned a weight indicating its

contribution factor. This weight is calculated using a proposed

scheduling heuristic.

The authors compared the performance of their proposed

approach to a baseline policy MinEFT-Fog that uses only the

217

Fog layer’s resources. The obtained results show that the

proposed approach assigns tasks that require high computation

but low communication to virtual machine in the Cloud.

However, it assigns tasks with low computation and intensive

communication to Fog virtual machines. This reduces

communication costs and saves the average monetary cost

compared to the baseline policy.

Pham et al. [49] proposed a cost and makespan aware

scheduling algorithm called (CMaS). The objective of this

algorithm is to achieve a good trade-off between the

application execution time and the cost, for the use of Cloud

resources and satisfy the user defined deadline constraints. The

algorithm is divided into three phases. The first phase is to

order the tasks based on the length of the critical path. The

second phase is the node selection that allows the assignment

of each task to an appropriate processing node on the Cloud or

Fog, to achieve the optimal value of a utility function. The

third phase is deadline-based task reassignment, which limits

the deadline violation by reallocating critical tasks to the best

processing nodes. This can reduce the completion time of each

critical task.

In order to demonstrate the performance of the proposed

algorithm, the authors performed two types of evaluations.

The first one is the evaluation of the CMaS algorithm

efficiency compared with other algorithms. The results show

that the algorithm can achieve better trade-off between the

makespan and the cost of task execution than other methods.

The second evaluation concerns the deadline-based task

reassignment. The results show that the deadline-based CMaS

algorithm also gave a better performance in terms of makespan.

It guarantees the end of application execution before the

predefined deadline to satisfy the user QoS requirements.

After detailing some of the works in Cost Efficiency-based

Scheduling category, we observed that authors in [47, 48] have

proposed scheduling methods and strategy for multi-workflow

standard applications. While the author in [49] applied these

methods on workflow standard applications. Both methods are

interested in minimizing two constraints at the same time. The

aim is to reduce the cost of using resources. The execution time

is taken in consideration by reducing the makespan [47, 49] or

respecting the deadlines for real-time applications [48]. For the

cost calculation, both works [48, 49] considered the type of

resources and to which layers of the paradigm belong (Fog or

Cloud), however, the work in [47] and the work of previous

sections such as [22, 36, 37] did not optimize the cost based

on the type of resources.

The work in Ding et al. [47] is based on a hybrid type

optimization algorithm (PSO and Min-Min) to improve the

quality of the result. Stavrinides et al. [48], Pham et al. [49]

incorporated priority algorithms in their approaches to respond

efficiently to the deadline constraint.

3.3 Classification-based scheduling

Liu et al. [50] proposed a new data mining classifications-

based scheduling approach. They proposed a Task Scheduling

algorithm in Fog Computing (TSFC) based on a new

improvement of the traditional Apriori algorithm called I-

Apriori. The main TSFC algorithm process is divided into two

steps. First, it uses the I-Apriori algorithm to generate

association rules of nodes and tasks sets from scheduling

transaction set. Then, these association rules are used with the

TSFC algorithm to get the task scheduling relationship

between the Fog nodes and the tasks. After comparing the

TSFC algorithm to other heuristic algorithms, the results show

that, this new scheduling approach is more efficient than the

Minimum Completion Time algorithm (MCT) [51], Minimum

Execution Time algorithm (MET) [51] and MIN-MIN

algorithm [52], in terms of completion time and waiting time.

However, TSFC algorithm did not ensure the multi-layered

task scheduling and the scheduling optimization for other QoS

parameters.

4. COMPARISON OF SCHEDULING ALGORITHMS

AND METHODS ACCORDING TO QOS CRITERIA

AND THEIR TYPES OF APPLICATIONS

In this section, we present comparisons of many algorithms

for Scheduling problems that have been mentioned earlier in

terms of QoS criteria (see Table 7) and the type of appropriate

applications (see Table 8).

4.1 Comparison based on QoS criteria

The QoS criteria used in this study are summarized as follows:

(1) Cost: the monetary cost of using resources

(Processors, Memory, Storage, Bandwidth, etc.).

(2) Energy: the energy consumption for nodes’

resources.

(3) Workload Ratio: the ratio of the amount tasks to be

performed by a node.

(4) Resources Usage: the resource (Processors, Memory,

Storage, Bandwidth, etc.) utilization rate of a node.

(5) Throughput: the number of tasks that complete their

execution in a time interval [45].

(6) Reliability: the success rate of a task execution under

the constraints of the maximum tolerance time.

(7) Response Time: the total time it takes between a

service request and responding to that request.

(8) Missed-Deadline: the ratio of the number of tasks

that did not complete their execution within their deadlines.

(9) Makespan: the time of processing all tasks.

(10) Delay: the waiting time or the time required for a task

to travel from the source to the destination on which it is

executed [45].

4.2 Classification according to the type of applications

In the literature, several studies have proposed a variety of

IoT applications’ classifications according to their

characteristics and QoS requirements. We propose in this

section a new classification of the different scheduling

methods mentioned previously based on the adequate type of

IoT applications.

218

Table 7. A comparison of scheduling algorithms and methods based on QoS criteria

Category References Cost Energy
Workload

Ratio

Resources

Usage
Throughput Reliability

Response

Time

Missed -

Deadline
Makespan Delay

Heuristic

based

Choudhari
et al. [22]

✓ ✓

Meta-

heuristic

based

Wang et al.

[25]
 ✓ ✓

Xu et al.
[29]

 ✓ ✓ ✓

Nguyen et

al. [33]
✓ ✓

Xu et al.
[36]

✓ ✓

Bitam et al.

[37]
 ✓ ✓

Energy

Efficiency

based

Rahbari et
al. [38]

✓ ✓ ✓

Wan et al.

[39]
 ✓ ✓

Wang et al.
[17]

 ✓ ✓ ✓

Luo et al.

[40]
 ✓ ✓

Wu et al.
[41]

 ✓ ✓

Time

Efficiency

based

Stavrinides

et al. [43]
✓ ✓

Auluck et

al. [44]
 ✓ ✓ ✓ ✓

Mukherjee

et al. [45]
 ✓ ✓

Aburukba

et al. [46]
 ✓ ✓

Cost

Efficiency

based

Ding et al.

[47]
✓ ✓

Stavrinides

et al. [48]
✓ ✓

Pham et al.

[49]
✓ ✓

Classification

based

Liu et al.

[50]
 ✓ ✓

Table 8. A classification according to the type applications

References
Smart

home
Wearables

Smart

Farming

Smart

City

Autonomous

Vehicles
Healthcare

Smart

Industry

Smart

traffic

Gaming, AR

and VR

Choudhari et al.

[22]
✓ ✓

Wang et al. [25] ✓ ✓ ✓ ✓

Xu et al. [29] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Nguyen et al.
[33]

✓ ✓ ✓

Xu et al. [36] ✓ ✓ ✓

Bitam et al. [37] ✓ ✓ ✓ ✓

Rahbari et al.

[38]
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wan et al. [39] ✓ ✓ ✓ ✓

Wang et al. [17] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Luo et al. [40] ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wu et al. [41] ✓ ✓ ✓ ✓

Stavrinides et al.

[43]
✓ ✓ ✓ ✓ ✓ ✓ ✓

Auluck et al. [44] ✓ ✓ ✓ ✓ ✓ ✓

M. Mukherjee et
al. [45]

✓ ✓ ✓ ✓ ✓ ✓

Aburukba et al.

[46]
✓ ✓ ✓ ✓ ✓ ✓

Ding et al. [47] ✓ ✓ ✓

Stavrinides et al.

[48]
✓ ✓ ✓ ✓ ✓ ✓ ✓

Pham et al. [49] ✓ ✓ ✓

Liu et al. [50] ✓ ✓ ✓ ✓ ✓ ✓

219

5. COMPARISON OF SIMULATION TOOLS AND

TYPES OF SCHEDULING ALGORITHMS USED

In this section we present, a comparison of the use of

different types of scheduling algorithms and also the

simulation tools used by the researchers in their work.

5.1 Simulation tools comparison

(a) Simulation VS Evaluation

(b) Programming Language VS Simulator Toolkit

(c) The list of Simulator Toolkit

Figure 3. Programming languages and simulation toolkit

used in the experiment

Different Simulator Tool Kits Description:

(1) CloudSim: is an open-source extensible simulation

toolkit, that enables modeling and simulation of Cloud

computing systems and application provisioning

environments. It allows the evaluation of the performance of

resource provisioning and application scheduling techniques,

under different usage and infrastructure scenarios [53].

(2) iFogSim: is a simulation toolkit developed based on

the fundamental framework of CloudSim. It extends the

abstraction of basic CloudSim classes, and offers scopes to

simulate customized Fog computing environment with large

number of Fog nodes and IoT devices. In addition, it facilitates

evaluation of end-to-end latency, network congestion, power

usage, operational expenses and QoS satisfaction [54].

(3) CloudAnalyst: extends the functionalities of

CloudSim. This tool supports visual modeling and simulation

of large-scale applications that are deployed on Cloud

Infrastructures. The main objectives of CloudAnalyst are to

separate the simulation experimentation exercise from a

programming exercise. It allows description of application

workloads, including users' geographical location information

generating traffic and location of data centers, number of users

and data centers, and number of resources in each data center.

Using this information, CloudAnalyst generates information

about response time of requests, processing time of requests,

and other metrics [55].

(4) SimGrid: it is an open-source framework, which

allows the simulation of distributed computer system used in

studies on Grids, Clusters, High Performance Computing, P2P

systems and Fog Computing [56].

(5) Matlab: is a tool often used in scientific fields to

perform numerical calculations. It manipulates matrices,

displays curves and data, and writes scripts and algorithms.

(6) C++: is a programming language, used in the

development of applications that require high performance.

(7) Java: a general-purpose object-oriented

programming language.

Based on our study of literature, we observe that the

evaluations in a real environment present only 14% of

experimental work. On the other hand, the authors tend to use

simulation tools in their experimental work which presents

84%. This is due to the high cost and difficulty of

implementation caused by the evaluation in a real environment

(see Figure 3.a) [57].

These simulations are carried out by two different methods,

either by programming or by the use of a Simulator Toolkit or

Framework. Most of the simulations (56%) are carried out

using a Simulator Toolkit (see Figure 3.b), because these tools

facilitate the development, modeling and evaluation of the

model to be simulated by using the functionalities offered by

the Toolkit. This allows the researchers to focus on the

simulation and analysis of the proposed approach’s behavior,

analyze the results obtained in the various simulation scenarios

[57, 58], and not focus on the details of programming the

model to be simulated.

In the literature, the authors use several types of Simulator

Toolkit as shown in. The majority of studies cited previously

have generally used two types of Simulator Toolkit, the first is

CloudSim specialized in the simulation of the scheduling in

the Cloud Computing environment [59], and the second

iFogSim is specialized in scheduling simulation in the Fog

Computing environment as shown in Figure 3.c [54, 59].

5.2 Comparison of the type of algorithms used

According to the work cited above, we notice that most

algorithms used to solve the scheduling problem, which is of

NP-hard nature [54], are Heuristic or Meta-heuristic type

(88%) as shown in Figure 4.a. This is due to the fact that this

kind of algorithms have the ability to provide solutions close

to the optimum within a reasonable time [60-62]. By

comparison, exact algorithms give optimal solutions but in a

very inefficient way. In the studies of the authors cited in this

paper, we observe that the meta-heuristic algorithms are used

more than heuristic algorithms (see Figure 4.a), because they

provide better results closer to the optimal solution [60].

Among these meta-heuristic algorithms, we see that the most

used algorithms are: PSO (27%), GA (20%) and ACO (13%).

(see Figure 4.b). 67% the scheduling approaches, which use

meta-heuristic algorithms are hybrid as shown in Figure 4.c.

The hybridization of these meta-heuristic algorithms,

220

improves the performance and the quality of the solution

generated by the algorithm, as well as the speed of

convergence [60, 63].

(a) The use of Heuristic and Meta-heuristic Algorithms

(b) The list of Heuristic and Meta-heuristic Algorithms

(c) The use of type of Meta-heuristic Algorithms

Figure 4. The type of algorithms used in the scheduling

6. DISCUSSION

In general, the scheduling problem is NP-hard problem

which requires optimization methods to solve it. For this,

approximation algorithms [60] based on Heuristic and Meta-

heuristic algorithms are used to get a semi optimal solution,

which are very close to an exact solution in a reasonable time.

For instance, in ref. [46], the authors performed a comparison

in terms of solution quality and execution time between a

Meta-heuristic algorithm (GA) and an exact algorithm (Branch

and bound (B&B)). After reducing the size of the problem for

the exact algorithm (B&B), it takes 2 days to calculate the

result by comparison the GA finds a solution, which is very

close the solution found by the exact algorithm, in less than

one minute. According to the comparison shown in the

previous section, we observed that most of the scheduling

approaches use meta-heuristic and hybrid algorithms because

they give near optimal solution in a very efficient way.

Liu et al. [50] proposed another type of scheduling approach,

instead of using approximation algorithms, they used an

algorithm based on the classification techniques of Data

mining called the Apriori algorithm, which obtained

acceptable results in a reduced time complexity. One of the

objectives of these scheduling methods and algorithms is to be

used in the optimization of the QoS of the applications, so that

they meet the performance requirements of the applications

such as the optimization of energy consumption, cost and

latency. The works of the researchers cited previously

combine scheduling algorithms based on optimization

techniques to respond to this type of problem and effectively

manage the QoS constraints required by these applications:

(1) Energy consumption reduction: the authors reduce

the number of nodes used to run the applications. They use the

load balancing method based on energy awareness. This

efficient energy management increases the lifespan of the IoT

applications battery-based, and reduces the cost of power

consumption by nodes.

(2) For real-time and critical application, meeting the

deadlines and reducing the response time are important. For

this purpose, the authors use the techniques of prioritized

queues and offloading the tasks in the most efficient nodes.

(3) To reduce costs, the authors minimize the use of

expensive nodes such as cloud nodes to accomplish different

tasks. They favor the use of the local node on the fog layer,

which at the same time reduces the communication to the

cloud without affecting the application performance.

Finally, the evaluation of the different scheduling

approaches proposed by the researchers, most of them use

Simulator ToolKit tools such as CloudSim or iFogSim, which

facilitates simulation and analysis of results.

7. CONCLUSIONS

In this paper, we have presented a survey on different

scheduling algorithms and methods used in Fog computing.

Through this study, we have reviewed, analyzed and compared

different algorithms and approaches proposed to improve

scheduling in this paradigm. Also, we have classified these

methods in several categories according to their nature. We

have deducted that most of the algorithms and scheduling

methods proposed are approximation algorithms of meta-

heuristic-based type. These types of algorithms are used to

optimize the system performance by decreasing energy

consumed by IoT devices and minimizing the cost/latency of

transmissions. Consequently, they can meet the workload and

performance required by critical IoT applications deployed on

Fog computing.

In future, based on this study we plan to propose a new

approach in this thematic by combining edge and fog layers

algorithms to efficiently optimize the whole system.

REFERENCES

[1] Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos,

D. (2014). Context aware computing for the internet of

things: A survey. IEEE Commun. Surv. Tutorials, 16(1):

414-454.

https://doi.org/10.1109/SURV.2013.042313.00197

[2] Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P.,

Sikdar, B. (2019). A survey on IoT security: Application

areas, security threats, and solution architectures. IEEE

Access, 7: 82721-82743.

https://doi.org/10.1109/ACCESS.2019.2924045

[3] Evans, D. (2011). How the next evolution of the internet

221

is changing everything. cisco white paper.

https://www.cisco.com/c/dam/en_us/about/ac79/docs/in

nov/IoT_IBSG_0411FINAL.pdf, accessed on Nov. 04,

2020.

[4] Rao, T., Khan, M.A., Maschendra, M., Kumar, M.K.

(2015). A paradigm shift from cloud to Fog Computing.

In IJCSET, 385-389. http://www.ijcset.net

[5] Bonomi, F., Milito, R., Zhu, J., Addepalli, S. (2012). Fog

computing and its role in the internet of things. In

Proceedings of the First Edition of the MCC Workshop

on Mobile Cloud Computing - MCC’12, p. 13.

https://doi.org/10.1145/2342509.2342513

[6] Fog computing and the internet of things: Extend the

cloud to where the things are, cisco white paper. 2015.

http://www.cisco.com/c/dam/en_us/solutions/trends/iot/

docs/computing-overview.pdf, accessed on Nov. 04,

2020.

[7] “OpenFog Reference Architecture for Fog Computing,”

2017. [Online]. Available:

https://www.iiconsortium.org/pdf/OpenFog_Reference_

Architecture_2_09_17.pdf, accessed on Nov. 04, 2020.

[8] Naha, R.K., Garg, S., Georgakopoulos, D., Jayaraman,

P.P., Gao, L.X., Xiang, Y., Ranjan, R. (2018). Fog

computing: Survey of trends, architectures, requirements,

and research directions. IEEE Access, 6: 47980-48009.

https://doi.org/10.1109/ACCESS.2018.2866491

[9] Hu, P., Dhelim, S., Ning, H., Qiu, T. (2017). Survey on

fog computing: architecture, key technologies,

applications and open issues. J. Netw. Comput. Appl., 98:

27-42. https://doi.org/10.1016/j.jnca.2017.09.002

[10] Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K.,

Buyya, R. (2016). Fog Computing: Principles,

architectures, and applications. Internet Things Princ.

Paradigms, 61-75. https://doi.org/10.1016/B978-0-12-

805395-9.00004-6

[11] Nadeem, M.A., Saeed, M.A. (2016). Fog computing: An

emerging paradigm. In 2016 Sixth International

Conference on Innovative Computing Technology

(INTECH), pp. 83-86.

https://doi.org/10.1109/INTECH.2016.7845043

[12] Sarkar, S., Misra, S. (2016). Theoretical modelling of fog

computing: a green computing paradigm to support IoT

applications. IET Networks, 5(2): 23-29.

https://doi.org/10.1049/iet-net.2015.0034

[13] Luan, T.H., Gao, L.X., Li, Z., Xiang, Y., Wei, G.Y., Sun,

L. (2015). Fog computing: focusing on mobile users at

the edge, 1-11. arXiv:1502.01815.

[14] Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.,

Morrow, M., Polakos, P. (2017). A comprehensive

survey on Fog Computing: State-of-the-art and research

challenges. IEEE Commun. Surv. & Tutorials, 20(1):

416-464.

https://doi.org/10.1109/COMST.2017.2771153

[15] Dang, L.M., Piran, M.J., Han, D., Min, K., Moon, H.

(2019). A survey on internet of things and cloud

computing for healthcare. Electronics, 8(7): 768.

https://doi.org/10.3390/electronics8070768

[16] Prakash, P, Darshaun, K.G., Yaazhlene, P, Ganesh, M.V.,

Vasudha, B. (2017). Fog Computing: Issues, challenges

and future directions. Int. J. Electr. & Comput. Eng., 7(6).

https://doi.org/10.11591/ijece.v7i6.pp3669-3673

[17] Wang, J., Li, D. (2019). Task scheduling based on a

hybrid heuristic algorithm for smart production line with

Fog Computing. Sensors, 19(5): 1023.

https://doi.org/10.3390/s19051023

[18] Pinedo, M.L. (2012). Scheduling: Theory, Algorithms,

and Systems. Springer. https://doi.org/10.1007/978-1-

4614-2361-4

[19] Mon, M.M., Khine, M.A. (2019). Scheduling and load

balancing in cloud-fog computing using swarm

optimization techniques: A survey. In Seventeenth

International Conference on Computer Applications

(ICCA 2019), pp. 8-14.

[20] Elavarasi, R., Silas, S. (2019). Survey on job scheduling

in Fog Computing. In 2019 3rd International Conference

on Trends in Electronics and Informatics (ICOEI), pp.

580-583. https://doi.org/10.1109/ICOEI.2019.8862651

[21] Hosseinioun, P., Kheirabadi, M., Reza, S., Tabbakh, K.,

Ghaemi, R. (2020). A Task scheduling approaches in fog

computing: A survey. Trans. Emerg. Telecommun.

Technol. https://doi.org/10.1002/ett.3792

[22] Choudhari, T., Moh, M., Moh, T.-S. (2018). Prioritized

task scheduling in fog computing. In Proceedings of the

ACMSE 2018 Conference, pp. 1-8.

https://doi.org/10.1145/3190645.3190699

[23] Agarwal, S., Yadav, S., Yadav, A.K. (2016). An efficient

architecture and algorithm for resource provisioning in

fog computing. Int. J. Inf. Eng. Electron. Bus., 8(1): 48-

61. https://doi.org/10.5815/ijieeb.2016.01.06

[24] Dakshayini, D.M., Guruprasad, D.H.S. (2011). An

optimal model for priority-based service scheduling

policy for cloud computing environment. Int. J. Comput.

Appl., 32(9): 23-29.

[25] Wang, S., Zhao, T., Pang, S. (2020). Task scheduling

algorithm based on improved firework algorithm in Fog

Computing. IEEE Access, 8: 32385-32394.

https://doi.org/10.1109/ACCESS.2020.2973758

[26] Tan, Y., Zhu, Y. (2010). Fireworks Algorithm for

Optimization. In: Tan Y., Shi Y., Tan K.C. (eds)

Advances in Swarm Intelligence. ICSI 2010. Lecture

Notes in Computer Science, vol 6145. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-13495-

1_44

[27] Edward, N., Elcock, J. (2018). An efficient task

scheduling algorithm for heterogeneous multiprocessing

environments. In 2018 International Conference on

Information and Computer Technologies (ICICT), pp.

101-106.

https://doi.org/10.1109/INFOCT.2018.8356849

[28] Li, J.F., Peng, J. (2011). Task scheduling algorithm based

on improved genetic algorithm in cloud computing

environment. Jisuanji Yingyong/ J. Comput. Appl., 31(1):

184-186. https://doi.org/10.3724/SP.J.1087.2011.00184

[29] Xu, J., Hao, Z., Zhang, R., Sun, X. (2019). A method

based on the combination of laxity and ant colony system

for cloud-Fog Task scheduling. IEEE Access, 7: 116218-

116226.

https://doi.org/10.1109/ACCESS.2019.2936116

[30] Pei, Y., Wang, W., Zhang, S. (2012). Basic ant colony

optimization. In 2012 International Conference on

Computer Science and Electronics Engineering, pp. 665-

667. https://doi.org/10.1109/ICCSEE.2012.178

[31] Topcuouglu, H., Hariri, S., Wu, M. (2002). Performance-

effective and low-complexity task scheduling for

heterogeneous computing. IEEE Trans. Parallel Distrib.

Syst., 13(3): 260-274. https://doi.org/10.1109/71.993206

222

https://doi.org/10.1109/INFOCT.2018.8356849

[32] Xiangyin, Z., hang, H.D., Jiqiang, J. (2008). DEACO:

Hybrid ant colony optimization with differential

evolution. In 2008 IEEE Congress on Evolutionary

Computation (IEEE World Congress on Computational

Intelligence), pp. 921-927.

https://doi.org/10.1109/CEC.2008.4630906

[33] Nguyen, B.M., Thi, H., Thanh, B., The Anh, T., Bao Son,

D. (2019). Evolutionary algorithms to optimize task

scheduling problem for the IoT based bag-of-tasks

application in cloud–fog computing environment. Appl.

Sci., 9(9): 1730. https://doi.org/10.3390/app9091730

[34] Tian, D., Shi, Z. (2018). MPSO: Modified particle swarm

optimization and its applications. Swarm Evol. Comput.,

41: 49-68. https://doi.org/10.1016/j.swevo.2018.01.011

[35] Bitam, S., Khider, M. (2012). Bees Life algorithm for job

scheduling in cloud computing. In International

Conference on Computing and Information Technology

(ICCIT), pp. 186-191.

[36] Xu, R., Wang, Y.G., Cheng, Y.L., Zhu, Y.W., Xie, Y.,

Sani, A.S., Yuan, D. (2019). Improved particle swarm

optimization based workflow scheduling in cloud-fog

environment. In Business Process Management

Workshops, pp. 337-347. https://doi.org/10.1007/978-3-

030-11641-5_27

[37] Bitam, S., Zeadally, S., Mellouk, A. (2018). Fog

computing job scheduling optimization based on bees

swarm. Enterp. Inf. Syst., 12(4): 373-397.

https://doi.org/10.1080/17517575.2017.1304579

[38] Rahbari, D., Nickray, M. (2019). Low-latency and

energy-efficient scheduling in fog-based IoT

applications. Turkish J. Electr. Eng. Comput. Sci., 27:

1406-1427. https://doi.org/10.3906/elk-1810-47

[39] Wan, J., Chen, B., Wang, S., Xia, M., Li, D., Liu, C.

(2018). Fog Computing for energy-aware load balancing

and scheduling in smart factory. IEEE Trans. Ind.

Informatics, 14(10): 4548-4556.

https://doi.org/10.1109/TII.2018.2818932

[40] Luo, J., Yin, L.X, Hu, J.Y., Wang, C., Liu, X., Fan, X.,

Luo, H.B. (2018). Container-based fog computing

architecture and energy-balancing scheduling algorithm

for energy IoT. Futur. Gener. Comput. Syst., 97: 50-60.

https://doi.org/10.1016/j.future.2018.12.063

[41] Wu, C., Li, W., Wang, L., Zomaya, A. (2018). Hybrid

evolutionary scheduling for energy-efficient fog-

enhanced internet of things. IEEE Trans. Cloud Comput.

https://doi.org/10.1109/TCC.2018.2889482

[42] Kwok, Y.K., Ahmad, I. (1999). Static scheduling

algorithms for allocating directed task graphs to

multiprocessors. ACM Comput. Surv., 31(4): 406-471.

https://doi.org/10.1145/344588.344618

[43] Stavrinides, G.L., Karatza, H.D. (2019). A hybrid

approach to scheduling real-time IoT workflows in fog

and cloud environments. Multimed. Tools Appl., 78(17):

24639-24655. https://doi.org/10.1007/s11042-018-7051-

9

[44] Auluck, N., Azim, A., Fizza, K. (2019). Improving the

schedulability of real-time tasks using Fog Computing.

IEEE Trans. Serv. Comput., pp. 1-1.

https://doi.org/10.1109/TSC.2019.2944360

[45] Mukherjee, M., Guo, M., Lloret, J., Iqbal, R., Zhang, Q.

(2017). Deadline-aware fair scheduling for offloaded

tasks in Fog Computing with inter-fog dependency. IEEE

Commun. Lett., 24(2): 307-311.

https://doi.org/10.1109/LCOMM.2019.2957741

[46] Aburukba, R.O., AliKarrar, M., Landolsi, T., El-Fakih,

K. (2020). Scheduling internet of things requests to

minimize latency in hybrid fog–cloud computing. Futur.

Gener. Comput. Syst., 111: 539-551.

https://doi.org/10.1016/j.future.2019.09.039

[47] Ding, R., Li, X., Liu, X., Xu, J. (2019). A Cost-Effective

Time-Constrained Multi-workflow Scheduling Strategy

in Fog Computing. In: Liu X. et al. (eds) Service-

Oriented Computing – ICSOC 2018 Workshops. ICSOC

2018. Lecture Notes in Computer Science, vol 11434.

Springer, Cham. https://doi.org/10.1007/978-3-030-

17642-6_17

[48] Stavrinides, G.L., Karatza, H.D. (2019). Cost-effective

utilization of complementary cloud resources for the

scheduling of real-time workflow applications in a fog

environment. In 2019 7th International Conference on

Future Internet of Things and Cloud (FiCloud), pp. 1-8.

https://doi.org/10.1109/FiCloud.2019.00009

[49] Pham, X.Q., Man, N.D., Tri, N.D.T., Thai, N.Q., Huh,

E.N. (2017). A cost- and performance-effective approach

for task scheduling based on collaboration between cloud

and fog computing. Int. J. Distrib. Sens. Networks,

13(11): 155014771774207.

https://doi.org/10.1177/1550147717742073

[50] Liu, L., Qi, D., Zhou, N., Wu, Y. (2018). A task

scheduling algorithm based on classification mining in

Fog Computing environment. Wirel. Commun. Mob.

Comput. 1-11. https://doi.org/10.1155/2018/2102348

[51] Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D.,

Freund, R.F. (1999). Dynamic mapping of a class of

independent tasks onto heterogeneous computing

systems. J. Parallel Distrib. Comput., 59(2): 107-131.

https://doi.org/10.1006/jpdc.1999.1581

[52] Braun, T. D., Siegel, H.J., Beck, N., Bölöni, L.L.,

Maheswaran, M., Reuther, A.I., Robertson, J.P., Theys,

M.D., Yao, B., Hensgen, D., Freund, R.F. (2001). A

comparison of eleven static heuristics for mapping a class

of independent tasks onto heterogeneous distributed

computing systems. J. Parallel Distrib. Comput., 61(6):

810-837. https://doi.org/10.1006/jpdc.2000.1714

[53] Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.

A.F., Buyya, R. (2011). CloudSim: A toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource provisioning

algorithms. Softw. Pract. Exp., 41(1): 23-50.

https://doi.org/10.1002/spe.995

[54] Mahmud, M., Buyya, R. (2019). Modeling and

simulation of fog and edge computing environments

using iFogSim Toolkit. Fog and Edge Computing:

Principles and Paradigms Principles and Paradigms, 433-

465. https://doi.org/10.1002/9781119525080.ch17

[55] Wickremasinghe, B., Calheiros, R.N., Buyya, R. (2010).

CloudAnalyst: A cloudsim-based visual modeller for

analysing cloud computing environments and

applications. In 2010 24th IEEE International

Conference on Advanced Information Networking and

Applications, pp. 446-452.

https://doi.org/10.1109/AINA.2010.32

[56] SimGrid. https://simgrid.org/doc/latest/, accessed on

Nov. 04, 2020.

[57] Suryateja, P.S. (2016). A comparative analysis of cloud

simulators. Int. J. Mod. Educ. Comput. Sci., 8(4): 64-71.

https://doi.org/10.5815/ijmecs.2016.04.08

[58] Byrne, J., Svorobej, S., Giannoutakis, K.M., Tzovaras,

223

D., Byrne, P.J., Östberg, P.O., Gourinovitch, A., Lynn, T.

(2010). A review of cloud computing simulation

platforms and related environments. In Proceedings of

the 7th International Conference on Cloud Computing

and Services Science, pp. 679-691.

https://doi.org/10.5220/0006373006790691

[59] Kumar, R., Sahoo, G. (2014). Cloud computing

simulation using CloudSim. Int. J. Eng. Trends Technol.,

8(2): 82-86. https://doi.org/10.14445/22315381/IJETT-

V8P216

[60] Jarboui, B., Siarry, P., Teghem, J. (2013). Metaheuristics

for Production Scheduling. John Wiley & Sons, Inc.

https://doi.org/10.1002/9781118731598

[61] Rabadi, G. (2016). Heuristics, metaheuristics and

approximate methods in planning and scheduling. In

International Series in Operations Research &

Management Science, 236: 271.

https://doi.org/10.1007/978-3-319-26024-2

[62] Singh, P., Dutta, M., Aggarwal, N. (2017). A review of

task scheduling based on meta-heuristics approach in

cloud computing. Knowl. Inf. Syst., 52(1): 1-51.

https://doi.org/10.1007/s10115-017-1044-2

[63] Younis, M.T., Yang, S. (2018). Hybrid meta-heuristic

algorithms for independent job scheduling in grid

computing. Appl. Soft Comput., 72: 498-517.

https://doi.org/10.1016/j.asoc.2018.05.032

224

