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ABSTRACT. The flexible deformation is often neglected in cable modelling on CAD software. To 

solve the problem, this paper proposes a physical modeling and deformation simulation 

method for flexible cable under plane constraint based on the nonlinear statics theory of 

elastic rod. Specifically, a statics equation of the balanced cable was established under plane 

constraint in the cylindrical coordinate system. Taking the Euler angles as the generalized 

parameter, the cable space configuration was described through dynamic analogy by the 

semi-analytical method and the analytical expression in the form of elliptic integral. Then, the 

simulated cable shapes were compared with the actual shapes under different material 

parameters and constraint conditions. The results show that the proposed model and 

numerical solution can fully describe the deformation features of the cable under the plane 

constraint in an accurate and efficient manner. The research results lay a solid basis for the 

CAD in cable production. 

RÉSUMÉ. La déformation flexible est souvent négligée dans la modélisation de câbles par le 

logiciel de CAD. Afin de résoudre ce problème, cet article propose une méthode de 

modélisation physique et de simulation de déformation pour câble flexible sous contrainte 

plane basée sur la théorie statique non linéaire de la tige élastique. Plus précisément, une 

équation statique du câble équilibré a été établie sous contrainte plane dans le système de 

coordonnées cylindriques. En prenant les angles d'Euler comme paramètre généralisé, la 

configuration de l'espace du câble a été décrite par analogie dynamique en appliquant la 

méthode semi-analytique et l'expression analytique sous forme d'intégrale elliptique. Ensuite, 

les formes de câbles simulées ont été comparées aux formes réelles sous différents paramètres 

de matériau et conditions de contrainte. Les résultats montrent que le modèle et la solution 

numérique proposés peuvent décrire de manière précise et efficace les caractéristiques de 

déformation du câble sous la contrainte plane. Les résultats de la recherche jettent une base 

solide pour la CAD dans la production de câbles. 
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1. Introduction 

As the complex products such as automobiles and aircraft develop towards 

mechatronics, the proportion of cables in products is increasing, and the design and 

assembly of cables become the key factors affecting product quality (Xia et al., 

2013). However, traditional cable design and assembly methods are both based on a 

serial method, which leads to the problem of over-design of cable length and 

inaccurate routing path. 

With the development of computer engineering, graphics and numerical 

calculation, higher and higher requests have been put forward to computer aided 

design of electromechanical products. At present, although the design of cable can 

be modeled through spline curve fitting using CAD software, cables are still 

considered rigid body. In addition, the actual wiring scheme can only be determined 

by experience, mode installation and multiple actual wiring, and the optimal scheme 

cannot be obtained in the design stage. As a result, the reliability of cable in 

electromechanical products is poor during its usage. Such problems as bending 

damage, griping, fatigue, shell abrasion, and entanglement with protruding structural 

parts frequently occur to cables. 

The physics-based modeling can take a full consideration of the physical 

properties of cable such as materials, quality and stress, and can fully reflect the 

essential law of real cable movement 

combining the computer simulation technology. It has important theoretical 

significance and practical value for the optimization design of products 

(Hermansson et al., 2016). Because of the flexible deformation of cable, the 

modeling based on physical properties is a very challenging problem. The key 

technologies involved mainly include the mechanics modeling method and efficient 

and accurate numerical calculation. 

In recent years, many scholars both at home and abroad have simulated the 

geometrical configuration of the cable through different mechanical modeling 

methods and achieved good results. Gilles B conducted cable modeling based on the 

thought of finite element and used the frame model to simulate the cable shape, 

which can check the strain of the cable when it is deformed (Gilles et al., 2011). 

Klimowicz & Mihajlović, (2007). used a spline curve to describe the geometric 

shape of the centerline and carried out physical modeling of piping combining the 

thought of energy optimization. Servin & Lacoursière, (2008). analyzed the cable 

deformation during the cabling process based on the idea of multi-body hybrid 

dynamics system. Shang W proposed the assembly simulation of cable using the 

mass-spring method (Wei et al., 2012). The nonlinear mechanical method of elastic 

rod is considered to be the most effective modeling method for one dimensional 

flexible parts such as cable. It can meet the requirements of computer aided design 

and assembly of cable in both precision and efficiency. There are mainly two 

theories: Kirchhoff theory and Cosserat theory. Mireille Gregoire earlier applied the 

Cosserat theory to cable laying in a virtual environment and determined the 

equilibrium position of the cable using the energy optimization principle. This 
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model can be used in the basic wiring planning and strength checking of cables 

(Grégoire and Schömer, 2007). Based on Cosserat theory, Hermansson T put 

forward a simulation model of cable geometry, which considers the position 

constraint of cable joint. Based on the principle of energy minimization, the position 

of centerline is calculated and the configuration simulation of the cable in the 

vehicle door is carried out (Hermansson et al., 2013). According to Kirchhoff’s 

elastic rod theory, J. Linn described the cable configuration of assembly simulation 

in a virtual environment using energy. The conjugate gradient method is used to 

numerically solve the equations, with the distance between the two ends and 

torsional angle as the parameters (Lann et al., 2011).  

In the study of the physical modeling of cables, most scholars only consider the 

situation that the position of both ends of the cable are known, without considering 

the actual constraints of cables. In fact, cables are often subjected to complex 

constraints such as plane and surface contact in product. In this paper, the physical 

modeling and deformation simulation of flexible cable under plane constraint are 

studied.  

Aiming at the particular object of cables under plane constraint, this paper 

artfully obtained the analytical integral expression of Kirchhoff equation in the 

cylindrical coordinate system when the constraints at both ends are already known. 

The Euler angles are taken as the generalized parameter and analytical solution in 

the form of elementary function is provided. This paper also develops the 

deformation simulation module of cable under the plane constraint based on existing 

virtual assembly simulation platform and verifies the validity of the model and 

algorithm proposed in this paper. 

2. Spatial constraint cable modeling 

For the curve cable in space, it is assumed that the cross section is a circular 

section, and the cable material satisfies the linear constitutive relation. The 

distributed force and contact force imposed to the cable is not considered.  

Arc coordinate s of the cable centerline (all variables in this paper are a function 

of the arc coordinate s) is established, and the spatial configuration of the cable is 

regarded as consisting of the shape of the centerline and the rotation angle of of the 

cross section relative to the centerline. The centerline is expressed with curvature 

and torsion. The following three coordinates are established: reference rectangular 

coordinate system (O-ξηζ), Frenet coordinate system (P-NBT) and principal axis 

coordinate system (P-xyz). The geometry configuration of the cable in space can be 

regarded as the sum of the rotation of the principal axis coordinate system around 

the Frenet coordinate system and the rotation of Frenet coordinate system based on 

the fixed reference system. The twisting vector is introduced to describe the 

curvature of the space cable. The physical significance is the change rate of the 

infinitesimal angular displacement of the cable cross-section relative to the fixed 

coordinate system to the arc coordinate s. 

The following assumptions are made about the cable:  
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1) The cable material is uniform isotropy and the material coefficient is a constant. 

The stress and strain satisfy the linear constitutive relation; 

2) For the time being, the distributed force such as the body force of the cable and 

the gravitation or contact force between cables are not considered; 

3) The cable is straight in an unrestrained relaxation state and its original curvature 

and torsion are not considered; 

Based on the basic balance equation of rigid body force and moment, the statics 

equations of the cable balance described by Euler Angles are obtained, i.e. Kirchhoff 

equations, which are shown as follows. 
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Where, α(s), β(s) and γ(s) are the Euler angles that describe the relative rotation 

of the dynamic and static coordinate system. A, B and C are the bending stiffness 

and torsional stiffness of the cable section respectively, and F is the force on the 

cable end. 

To sum up, as long as the force F on the cable end, the initial values of Euler 

angles and the initial value of the derivative of Euler angles are given, the law of 

change of the three Euler angles α(s), β(s) and γ(s) with the arc coordinate can be 

obtained from the integral of formula (1). Furthermore, it is possible to determine 

the change rule of the posture of an arbitrary cross section of the cable along the arc 

coordinates. Finally, the spatial configuration of the cable is determined. 

However, it is found in the actual analytic solving process that the analytical 

integral of Euler Angle is easy to obtain, but the transformation from the analytic 

integration of Euler angles to the integration of the spatial position coordinates of 

cable is hard to achieve. In view of this problem, the cylindrical coordinate system 

(ρ, ψ, Z) is introduced to describe the spatial pose of the cable.  

According to the Saint-Venant principle, the cylindrical coordinate system is 

established by boundary force constraints at both ends to replace the original 

rectangular coordinate system. The cylindrical coordinate system is established 

according to the following principles. The principles for the foundation of the 
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coordinate origin O are determined by the end constraints (F0, M0) and (FL, ML), 

which are shown in Figure 1. 
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Figure 1. Cable VA system framework 

The analytic expressions of the three cylindrical coordinates describing the 

center line of the curved cable can be obtained based on the basic idea of variable 

substituting integral and by virtue of the mathematical calculation software, which 

are shown as follows: 
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Where, a, p, λi, m, l and Ω are integral constants which are introduced for the 

simplicity of the expression. They are related to the material parameters of the cable 
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and the size of the boundary constraining force. Please refer to literature for details. 

Although Formula (2-4) present the analytic expressions of the three cylindrical 

coordinates describing the form of the cable centerline, but the form of the 

expression is not elementary function. It is necessary to further simplify the 

expressions according to the constraints to the cable. In literature, the deformation 

morphological analysis of the symmetric constrained cable is studied. This paper 

focuses on the cable under plane constraint. 

3. Solution of configuration of cable under plane constraint 

For the cable under completely plane constraint, it is assumed that the center line 

of the cable is the plane curve passing the Z-axis of the fixed coordinate system, and 

then the rate of change of the cylindrical coordinate Ψ to the arc coordinate is zero. 

Formula (5) can be inferred from formula (3). 
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In the physical sense, the component of the applied moment of the cross-section 

on Z-axis in the fixed coordinate system and in the principal-axis coordinate system 

Z1 is both zero, i.e. only when the two ends of the cable are subjected to the 

independent effect of the axial force F0, will the cable be plane bending in two 

dimensions. Formula (6) can be obtained through inference. 
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According to the above analysis, the connection line between the two endpoints 

of the cable can be taken as the Z-axis of the fixed coordinate system, and the 

midpoint of the connection line is viewed as the origin of the fixed coordinate 

system. Because of the symmetry, the center line of the cable is symmetrical to the 

middle point C, and the tangent line axis at the C point is parallel to the Z-axis. The 

Euler angle β corresponding to C is equal to 0. 

The coordinate system is established as shown in Figure 2. Let Ψ=π/2, then the 

X3 axis of the cylindrical coordinate system coincides with the Y-axis of the 

Cartesian coordinate system. According to equation (5), a=h. It is substituted into 

formula (2) and (4) and formula (7) can be inferred. 
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Figure 2. Establishment of coordinate system of cable under plane constraint 
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The above formula shows that the first and third Euler angles remain constant 

along the arc coordinates, that is, there is no torsion occurring to the cable under 

plane constraint in the plane (Y, Z), i.e. α=γ=0. When the two ends of the cable are 

subjected to pressure, i.e. the acting force of the cross section is negative along the 

Z-axis, the integral constant p is negative, which is shown as follows: 

02F
p

A
= −

                                                       (8) 

The above equation is substituted to (4) and formula (8) is obtained. Let 

λ=cosβ>0. 

( )
2

cosh p
p

  = +

                                          (9) 

It can be seen that the maximum curvature radius R of the center line of the cable 

under plane constraint is at the end point C. The upper equation is simplified using 

the half Angle formula and the following equation is obtained: 
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According to equation (9), it can be learned that h is greater than or equal to -p, 

and the parameter k is introduced, which is defined as follows: 

2 21 1
1

8 2

h
k p R

p

 
= = +  

                                         (11) 

In order to solve the cylindrical coordinate ρ conveniently, the following variable 

substitution is carried out. 
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Formula (10) can be changed to 

( ) cosR  =
                                              (13) 

At the starting end Q0 of the cable, because ρ=0, the corresponding variable 

Ф=π/2 and the corresponding second Euler angle is recorded as β0, the following 

equation is obtained: 
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Substitute formula (13) into (3) and (4) and the formula (15) is obtained: 
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The analytic solution of the first kind of elliptic integrals is found in the above 

formula. In addition, the change rule of the variable Ф with the arc coordinate can be 

confirmed, which is shown in formula (16) and (17). EllipticF is the first class of 

incomplete elliptic integral and JacobiAm is the amplitude of the elliptic function. 
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In order to get the Z coordinate of an arbitrary point Q on the plane cable’s 

center line, the formula (12) and (17) can be substituted to formula (5) and equation 

(18) can be obtained. 
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When Ф = 0, Z = 0. The above formula can be integrated and the following 

formula can be obtained: 
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To sum up, because of the symmetry of the centerline of the cable under plane 

constraint, the endpoint C is selected as the starting point of the arc coordinate, and 

then s0=0. In summary, for the cable under plane constraint, as long as the cable 

constraining force F0 and the initial value of the Euler angle β0 is provided, the 

integral constants k, p and R can be calculated under the condition that the material 

constant is already known. When these constants are substituted into formula (13), 

(17) and (20), the three cylindrical coordinates describing the spatial form of the 

cable under plane constraint are determined eventually. 

4. Simulation and verification of the cable form under plane constraint 

Based on the model and algorithm proposed in this paper, the wiring module of 

the cable under plane constraint is developed based on the strength of existing 

virtual assembly system. In addition, this method is very suitable for the interactive 

cable wiring application program. The geometric expression of the cable is realized 

based on Open Cascade, an open source geometric kernel system. The OpenGL 

engine is used for contour rendering. When the cable is drawn, the cable is skinned 

with b-spline interpolation surface mesh. Rigid parts are modeled in Pro/E and are 

introduced into this system in the format of *.step. Based on the above algorithm, 

the geometric shape of the cable is calculated. On the account of the Visual Studio 

development environment, the hybrid programming idea is adopted to achieve the 

purpose. Mouse and keyboard are the input devices to operate the cable. 

The simulation module of the cable configuration under the plane constraint is 

shown in Figure 3. 



480     JESA. Volume 50 – n° 4-6/2017 

 

The basic thought of cable configuration simulation is to obtain the specific 

expression of formula (4) based on the provided boundary condition and initial 

condition firstly, and then the numerical integration of three cylindrical coordinates 

of the cable space position is solved using the Gauss-Legendre quadrature formula. 

The obtained series of point coordinates are scanned by the one-dimensional 

pipelines provided by OCC to generate function, and then the actual spatial 

configuration of the cable is obtained. 

 

Figure 3. Simulation interface of cables under plane constraint 
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Figure 4. Development flow chart of cable module under plane constraint 
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This function first reads the spatial coordinates of the discrete points of a given 

cable series. The center line shape of the cable is obtained through using the B-

spline curve to interpolate the adjacent nodes. Then, scanning and enveloping of the 

circle is carried out along the center line and the circle is of the actual size of the 

cross section. Finally, the three-dimensional model of the cable is obtained. The 

actual design process is shown in Figure 4. 

In order to verify the model establishment proposed in the first and second part 

of the paper, the correctness of the algorithm is solved and simulated with the given 

cable parameters and initial boundary conditions as shown in Table 1. 

Table 1. Material parameters for cable 

Parameters Value 

Starting external Force, N (0,0,4.75 10-3) 

End external Force, N (0,9.5 10-3,0) 

Young’s module, N/m2 3.89 109 

Passion ratio 0.25 

Diameter, mm 4 

Length, mm 350 

Euler angle β0, degree 20 

 

According to the given boundary conditions, the integration constant can be 

calculated, and the concrete expression of the centerline of the cable under plane 

constraint can be obtained. These three coordinates are the Cartesian coordinates 

under the reference coordinate system, which are shown as follows: 

0

y= 0.945 Cos[JacobiAmplitude[0.724 x, 0.342]

z=2.76 EllipticE[JacobiAmplitude[0.724 x, 0.342], 0.342] - 

    1.38 EllipticF[JacobiAmplitude[0.724 x, 0.342], 0.342]

x =




                   (21) 

The shape of the center line is shown in Figure 5. 

In order to further illustrate the effectiveness of the proposed model and 

algorithm, aiming at the cable under plane constraint, the constraints to both ends 

are changed, and the deformation shape of the cable is calculated in real time to 

simulate the change rule of cable under plane constraint in the actual assembling 

process. The constraining force F0 at both ends of the cable and the initial value of 

the Euler angle β0 are changed, making the pressure on the plane cable increase 

constantly. The deformation process of the cable from straightness to the gradual 

rise of curvature is studied, which is shown in Figure 6. 
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Figure 5. Shape of the center line of cable under plane constraint 

 

Figure 6. Dynamic change process of the cable under plane constraint 

5. Concluding remarks 

Considering the nonlinear mechanical properties of plane constrained cables in 

mechanical and electrical products, this paper proposes a physical modeling and 
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geometric shape simulation method of the cable under plane constraint based on the 

theory of nonlinear statics theory of elastic rod. On the basis of arc coordinate, the 

statics equations of the double-end constrained cables are described in the form of 

Euler angle. Skillfully following the Saint-Venant principle of elastic mechanics, 

this paper establishes the cylindrical coordinate system and obtains the analytical 

solution describing the geometric shape of the cables under plane constraint. The 

expression is in the form of elliptic integral, and the elliptic integral is calculated 

using the Gauss-Legendre quadrature formula. This method is efficient and simple 

and solves the difficulty of the transformation from arc coordinate to Cartesian 

coordinate for the cable under plane constraint and can ensure the accuracy and 

efficiency of the simulation of geometric shape. Finally, in view of the cables under 

plane constraints and based on the existing virtual assembly system, the cable 

geometry simulation module has been developed and the dynamic deformation 

pattern of the cable when the boundary conditions are changing is studied. The 

results show that the model and algorithm are effective enough. 

The proposed method in this paper can be used as the physical modeling method 

of the cable geometry under different constraint conditions. The key is to solve the 

relation between the constraint condition and the integral constant. In the future, we 

will focus on more complex constraints, such as surfaces, overpasses, and clamps 

that appear during cable assembly. The results of this paper have strong guiding 

significance and reference value for the computer aided design and assembly 

verification of flexible cable. 

Acknowledgements 

The work in this paper was supported by the National Natural Science Foundation 

of China (51175053) and the Fundamental Research Funds for the Central 

Universities of China (3132016353 and 3132018210) and Liaoning Provincial 

Natural Science Foundation of China (201601068). 

References 

Gilles B., Bousquet G., Faure F., Pai D. K. (2011). Frame-based elastic models. Acm 

Transactions on Graphics, Vol. 30, No. 2, pp. 1-12. 

https://doi.org/10.1145/1944846.1944855 

Grégoire M., Schömer E. (2007). Interactive simulation of one-dimensional flexible parts. 

Computer-Aided Design, Vol. 39, No. 8, pp. 694-707. 

https://doi.org/10.1016/j.cad.2007.05.005 

Hermansson T., Bohlin R., Carlson J. S., Söderberg R. (2016). Automatic routing of flexible 

1d components with functional and manufacturing constraints. Computer-Aided Design, 

Vol. 79, pp. 27-35. https://doi.org/10.1016/j.cad.2016.05.018 

Hermansson T., Carlson J. S., Björkenstam S., Söderberg R. (2013). Geometric variation 

simulation and robust design for flexible cables and hoses. Proceedings of the Institution 

of Mechanical Engineers, Journal of Engineering Manufacture, Vol. 227, No. 5, pp. 681-

689. 



484     JESA. Volume 50 – n° 4-6/2017 

 

Klimowicz A. N. F., Mihajlović M. D. (2007). Modelling 3D semi-deformable tubes in real 

time. Applied Mathematics. Computation, Vol. 184, No. 1, pp. 52-62. 

https://doi.org/10.1016/j.amc.2005.12.072 

Lang H., Linn J., Arnold M. (2011). Multi-body dynamics simulation of geometrically exact 

Cosserat rods. Multibody System Dynamics, Vol. 25, No. 3, pp. 285-312. 

https://doi.org/10.1007/s11044-010-9223-x 

Servin M., Lacoursière C. (2008). Rigid body cable for virtual environments. IEEE 

Transactions on Visualization Computer Graphics, Vol. 14, No. 4, pp. 783. 

https://doi.org/10.1109/TVCG.2007.70629 

Wei S., Ning R., Liu J., Zhibin A.W. (2012). Assembly process simulation for flexible cable 

harness in complex electromechanical products. Journal of Computer-Aided Design 

Computer Graphics, Vol. 24, No. 6, pp. 822-831. 

Xia P., Lopes A. M., Restivo M. T. (2013). A review of virtual reality and haptics for product 

assembly: from rigid parts to soft cables. Assembly Automation, Vol. 33, No. 2, pp. 157-

164. https://doi.org/10.1108/01445151311306672 


