
An Optimised Allotment and Tracking Using Django and Opencv

Mohan Goud Kathi*, Jakeer Hussain Shaik

Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur 522213, A.P., India

Corresponding Author Email: kathi.mohangoud@gmail.com

https://doi.org/10.18280/isi.260207 ABSTRACT

Received: 4 September 2020

Accepted: 23 March 2021

Developments in tracking of objects is one of the key breakthroughs in computer vision in

recent years. A video is a continuous flow of frames. By analysing the difference between

a frame to its successive, one can estimate the movement of object. In this paper, the

movement of person is detected with the help of two cameras facing opposite to each other.

The detected persons face is recognized with the faces in the database, his data about the

movement is updated in the excel sheet from time to time and the same is applied in the

real-world problem of vigilance on invigilators in the examination hall. Examinations are

inescapable to conclude a course. Devising the students and watchdogs into the examination

halls are the part of proper conduction of Examinations. One of the key things in the

administration of examinations is the issuance of invigilations. The faculty act as

invigilators. It is arduous to mull over his/her designation and experience while earmarking

the invigilations manually. This paper presents a cybernetic and contemplative method of

dole out using Django and tracking the movements of each invigilator using Opencv.

Keywords:

computer vision, Opencv, tracking, face

detection, face recognition

1. INTRODUCTION

Any course in the world origins with admission and ends

with an examination. In order to avoid malpractice at the

examination, a superintendent system is imperative which is

the invigilation system. Virtual invigilation [1] abstains human

negligence and assures reliable monitoring but it requisites a

HD camera in each and every examination hall and reliability

over that system is also under suspicion. Due to this most of

the firms still following the invigilation based monitoring

system and all the invigilations are allocated manually with

manpower. If the apportion is made with software then the

allotment errors can eliminate and can reduce the manpower.

The adaptations of computer vision techniques into the

invigilation system can make it more advanced. The

advancements inface detection and face recognition made it

involve in invigilation attendance system. But no much

research in tracking the invigilator or student in catching the

malpractice.

The face tracking is possible by extracting the face features

[2]. There were different methods available for tracking [3].

With the change in the pose, the tracking becomes difficult, an

efficient tracking model can able to track at different

orientations [4]. Not only pose, but the tracking must also

accurate at varying illumination conditions [5]. It is important

to address when to start or stop tracking and needs to consider

the detector efficiency. Hence a proper management system is

essential in long-term tracking [6]. Dornaika and Davoine [7]

proposed a framework for tracking face pose and local motion

of inner parts. In real-world, the situations arise for robots to

follow the human, the detection of human by skin color and

implementation of tracking by color [8] can make it achievable.

The CNN-based methods also prove their effectiveness in face

tracking [9]. Wang et al. [10] propose a method of tracking to

use in wireless sensor networks.

This paper concentrates on invigilator allotment and

tracking. For tracking invigilator per room, each room needs a

processing system along with a camera. Raspberry pi is used

as a processing device. In order to ensure the right person is in

motion, face recognition is implemented. In order to find the

person from both ends two processing system along with

cameras are implemented at both the opposite ends per room.

The central server allotted the invigilators as per the Room’s

strength and the implementation is presented in section 2 and

it sends the invigilator list with the image to client devices

placed inside the room. The client devices validate the

invigilator using Face recognition technique and track and

update their movements. The Tracking and Face recognition

implementation is presented in sections 3, 4 and 5.

2. IMPLEMENTATION

Django is used for the allotment purposes. It is fast, secure

and flexible. It provides database API. Instead of SQL, python

can use to create, update and delete the data of the database.

Since Guido Van Rossum [11] clasped different features from

different languages into python while developing it, it is easy

for developers to flourish an application using python.

Django can use to make Raspberry Pi a server [12].

Raspberry Pi is a tiny computer acquainted to the world in

2012. Even though, the purpose of it is to assist in education

[13]. Because of its versatility, it is utilizing in sundry

applications [14] like domicile security [15], Healthcare

system [16], Agriculture [17], Surveillance system [18],

Speech to text-based authentication [19], Artificial

Intelligence [20], Noise level Monitoring [21], Smart cities

[22] etc. Howbeit, practising it in micro applications is a

misapply. For example, it is rich in features when juxtaposed

with Arduino [13] but is not best suited for hoarding sensor

Ingénierie des Systèmes d’Information
Vol. 26, No. 2, April, 2021, pp. 201-209

Journal homepage: http://iieta.org/journals/isi

201

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.260207&domain=pdf

data than Arduino because of its cost and the absence of ADC.

The best applications where the raspberry pi can practice are

server-based applications because of its underpin of various

OSes [23]. Some of the server applications in which raspberry

pi is utilizing are the online tests from mobile in a university

without the internet [24], using as a server for an IoT

application [25].

Django can also, use in other single board computers like

Beagle bone black [26]. Hence it is facile to change to any

other single board computer if there is a requisite of resources.

Initially, all the faculty details containing Name,

Department and Designation are stored into the database by

creating a project and app [23] and a class named faculty

details on models.py [23]. Django provides an Admin

interface [23], using which the faculty details can insert into

the database. So, admin interface is enabled and faculty details

class is registered into the admin. Also, to allow any others to

add the data, a POST method is created using the meta class.

This meta class is different from HTML’s Meta class and

python’s Meta class.

The post form is not created using HTML but using Django

forms [27]. Because of disadvantages using pure HTML forms.

There is a massive security hole because there is no data

validation. Django provides CSRF protection [27] for the

POST methods. Also, it is hard to make the form using HTML

than Django. Widgets are the way of creating HTML without

writing it. Django built-in widgets provide all forms of input

like text input, URL input, password input, hidden input and

so on.

There is a possibility that the duplicates are submitted. The

parameters are Name, Department and Designation. Using the

unique field option [27], the required field is made unique

throughout the table. Since under the same department there

can be many faculties, it can’t be made unique. Similarly, the

designation is also not unique. The Name is unique for the

same department and designation but the unique option makes

the Name unique throughout the table without considering the

department and designation. So unique_together [27] with

Name, Department and Designation refrains the replication of

data. While allotting invigilations, the user is bestowed with

three choices which is illustrated in Figure 1.

Figure 1. Working of the Invigilation system

202

The server waits for the request from the browser. When a

request detected, the server populates the choices form. The

choices form consists of three choices. The server finds one of

the choices selected and connects to the database. The database

consists of all the rooms, students and faculty data. If choice 1

or 2 are selected, it requests the ratio or percentages by

populating the form. Allot invigilators section take input of the

populated data and data from the database and produce the

allotted invigilations. The algorithm of allotting invigilators is

explained below.

Choice 1 – Allotting as per the ratio:

In this choice, the user is importuned for a ratio. This ratio

is not used directly to allocate invigilations category wise

[Algorithm1-step4]. Instead, the software appraises all the

faculty count category wise and convert to a new ratio

[Algorithm 1 – Step 3] and allot as per the new ratio. In the

end, the invigilations are allotted such that if the ratio of the

professor: Associate professor: Assistant professor = x:y:z

then if x±1 invigilations are allotted for each professor then

y±1 invigilations will be allotted for each of the Associate

professor and z±1 invigilations allotted for each of the

Assistant professor.

The total invigilations depends on the total sessions and

invigilations per session. The days or sessions as key with

number of invigilations as values are stored in the dictionary

named days. Let days = {'09-4-2020':14,'10-4-2020':9,'11-4-

2020':10,'13-4-2020':9, '14-4-2020':10,'15-4-2020':11, '16-4-

2020':9,'17-4-2020':6,'19-4-2020':12,'20-4-2020':13}. Now

the total invigilations are the sum of all the invigilations per

session. Python furnishes ‘sum’ using which all the values of

a dictionary can be added. And the ratio is solicited from the

user through a POST form and amass in database. The

calculations when ratio input is given can be done in the

database itself using F() but it alters all the elements of

previously submitted which results in the loss of aboriginal

ratio. So the calculations must be for last submitted and at the

exterior of the database. The final result will be saved in other

fields of the database in order to protect the originals. Let rc

and rcf be the model classes that stores ratio and final result

respectively. Since there may be many ratios that are

antecedently submitted, the views.py must access the latest

ratio for attaining the final result. The latest can access by the

combination of order_id of primary key (which returns the

queryset in ascending order of primary key) and last() (which

returns the last object in the queryset). Since Django adds

automatically the primary keys in ascending order, the last one

is the required element. Let the required element be p. In order

to make rc and rcf are mutually connected, one to one

relationship is used [28] and if rc is deleted, rcf related to it has

no meaning. Hence on_delete is used to delete rcf when rc is

deleted.

Algorithm 1 - Allotting as per the ratio:

Step 1: Get the faculty count from the database. Assume, p=a,

asstp=b and asscp = c. Where p is the Professor, asstp is

Assistant Professor and asscp is the Associate Professor and

l,m and n are their respective counts.

Step 2: Requesting for a ratio from user. Assume the ratio is

p:asstp: asscp = x:y:z.

Step 3: Converting the previous ratio to new ratio as category

value * category ratio/total ratio.

i.e., Now p:asstp:asscp = a * x/(x+y+z): b * y/(x+y+z) : c*

z/(x+y+z) = i:j:k (assumption).

Step 4: The invigilations assigned per category can be

calculated as,

for category p, Tp = Total invigilations * i/(i+j+k),

for category asstp, Tasstp = Total invigilations * j/(i+j+k),

for category asscp, Tasscp= Total invigilations * k/(i+j+k).

Step 5: Convert step 4 results to integers. The invigilations

assigned per individual is,

for category p, pin = Tp/a,

for category asstp, asstpin = Tasstp/b,

for category asscp, asscpin = Tasscp/c.

Step 6: Convert step 5 results to integers. The number of

faculty need the maximum invigilations are,

for category p, mp = Tp - pin x a,

for category asstp, masstp = Tasstp - asstpin x b,

for category asscp, masscp = Tasscp - asscpin x c.

Even though if any category is zero but specified some ratio,

it does not influence the other ratio.

In order to do the further processing views.py should get (a)

the total number of faculty (b) the total number of faculty

category wise. (a) can get by selecting all the faculty objects

[15] and then counting [15]. (b) can get by using filtering [15]

and then counting.

While doing step 5, there is a possibility of divide by zero

error because of any of the category count is zero. Hence, a

zero condition must be checked.

2.1 Error correction

The calculations in step 4 are floating point values. So, the

sum of all not exactly equal to total invigilations. The error is

only less than one but since humans count is integers, it must

be considered. So, the result of calculations are converted to

integers and now the maximum error is n-1 where n is the total

number of elements of the ratio. Even though the error is more,

all the parameters are integers. The error must add to any of

the category or all the categories equally. The best way is to

add to the category having the maximum number of

invigilators. Python provides max() function using which

maximum invigilators category can found and the error can

add to it.

2.2 Proper allocation of minima and maxima

The calculations of step 5 are also floating point values.

Suppose the value is 4.5 then 4 or 5 invigilations has to apport

for each of that catgeory. The assumption is 4 is minimum and

5 is maximum. The integer conversion presents the minimum.

The question now is how many are the minimum and how

many are the maximum which is calculated in step 6.

Since different categories having different minimum and

maximum invigilations, a seperate dictonary having the

invigilation count with name is exigent for alloting into the

rooms. Categorywise data can procure into views from

database by filtering [27]. The queryset now consists of name,

department and designation. The faculty name can get as

queryset[n].name from queryset. If name only stored as key

and invigilation count as value into the dictonary. The problem

is name is not unique and dictonary doesn’t support having

more than one same key. This can be solved by checking the

condition queryset[i].name in dict where dict is the dictonary.

when the same key is present changing the other key by

203

appending one to it. But this leaves in a dubiety that who is

who among them. If suppose department is appended, it

disentangles but still there is a feasibility that having name and

department is same but having the designation different for a

faculty. Hence appending both the department and designation

using + operator can unravel this.

Two count values are feasible. At first, the value of the

dictionary is filled with the minimum count. The value get

from step 6 faculty numbers are now necessitate to alter to the

maximum. By adding one to the minimum, can revise to the

maximum count. But from where to start. If added from the

start, always the first added faculty will obtain the maximum.

So different times different techniques need to endeavour. For

example one time from first, next time form last, next time

based on order etc. Instead, the best way is by effectuating

random numbers and then allot to that specific random

numbered invigilator. The random number must between the

1 and the length of that specific category and the random

number must not engender using random.randint because there

is a possibility of a same random number more than once.

Hence all the numbers must generate at a time using

random.sample which permits the unrepeated random values

in a list. Let df be the final dictionary consisting of the key as

faculty name and value as the number of invigilations.

Now invigilations has to dispense to days as per the

stipulation in the days dictionary. For the efficient allocation

of the invigilations the preference must be given for the value

having more invigilations in both the days and df dictionaries.

So, days and df dictionaries are sorted in descending order as

per the values. Python bestows sorted function for sorting the

dictionary. Even though because of less faculty or assigning

high ratio for specific category, it is feasible that a faculty in

df may have more invigilations than the total number of days

or sessions. In such instance apportionment is not possible. But

if the fount is ratio then the user is supplicated to modify the

ratio. In order to percieve the cause is ratio, the worst case ratio

1:1:1 is considered and find the allocation is possible or not.

Python supports list as a value for a key in a dictionary. Now

the days dictionary’s value (i.e., integer count) is replaced with

the list of invigilators selected from df. The care is taken to

disallow of repetition of the same invigilator for a session.

When an invigilator is allotted from df to days then the df’s

value of that key is reduced by one. If the value is zero then

that invigilator must not allow for any other session.

Choice 2 - Allotting as per the percentages of total:

Algorithm 2:

Step 1: Get the faculty values from database suppose, p=a,

asstp=b and asscp = c.

Step 2: Requesting from the user the percentage. Assume the

percentage of p is m, asstp is n, automatically the asscp is 100

- m – n.

Step 3: Total invigilations for category p is Tp =

(a+b+c)xm/100 , asstp is Ta = (a+b+c)xn/100 and asscp is Tas

= (a+b+c)x(100-m-n)/100.

Step 4: Minimum invigilations per p is Pmin = Total

invigilations of p / a = (a+b+c)xm/(ax100). Similarly, for each

asstp is Amin = (a+b+c)xn/(bx100) and for each asscp is

Asmin = (a+b+c)x(100-m-n)/(cx100) and maximum number

of invigilations = Minimum invigilations + 1.

Step 5: The number of p having Pmin invigilations = Tp – a x

Pmin. Similarly, In the case of asstp is Ta – b x Amin and asscp

is Tas – c x Asmin.

Choice 3 - Allotting invigilations considering all are equal:

Algorithm 3:

Step 1: Get the total count of the faculty.

Step 2: Find the number of invigilations for each faculty. The

Minimum number of invigilations is min = Total invigilations

/ Total faculty and the maximum number of invigilations is

max = min + 1.

Step 3: The number of faculty for whom the min invigilations

are allotted is fmin= Total invigilations – Total faculty x min.

Step 4: The number of faculty for whom the max. invigilations

are allotted is fmax = Total faculty – fmin.

After finding the minimum and maximum invigilations per

category, the invigilations are allotted for the sessions in case

2 and case 3 is the same as case 1.

After allotting the faculty into rooms, the next step is

tracking followed by face recognition.

3. TRACKING

In many applications tracking is useful, for example it is

used in counting purposes [29], home surveillance [30] etc. If

face recognition is conducted prior to finding the movement,

it is necessary to recognise all the faces in room. Instead by

recognising only persons in motion, the processing power and

time can be reduced. If invigilator is not found in movement,

it is predicted as not in motion. The motion is estimated by

calculating the difference of the frames as illustrated in Figure

5 and their respective outputs are sketched at Figures 2, 3, 4,

6, 7, 8, 9 and 10.

Figures 2 and 3 are the successive frames. In order to find

the movement, the difference is calculated with absdiff method

and is illustrated in Figure 4 with background image as Frame2

and foreground image as Frame1. The amount of movement is

estimated by drawing the contours. In order to find the

contours, the image is thresholded (Figure 8) that highlights

the changed portion. In order to stress the moving parts, extra

pixels are added by the process of dilation and is illustrated in

Figure 9. The dark spots of Figure 9 is taken as contours and

drawn over frame 2 to predict the changed portion which is

illustrated in Figure 10.

Figure 2. Frame 1

204

Figure 3. Frame 2

Figure 4. Difference

Figure 5. Tracking using the difference of two frames

Figure 6. Gray Figure 7. Blur Figure 8. Threshold

205

Figure 9. Dilution Figure 10. Contours

4. FACE RECOGNITION

The primary task for the face recognition is the face

detection [31]. Eventhough haarcascade method [32] is faster,

HOG method is used for face detection because of the minimal

false detection. Face recognition involves two stages – Feature

Extraction and Face Classification. Feature Extraction

identifies the face and face clssification provide an identifier

for the recognized. The feature extraction stage is attained by

training with samples. The trained model can be used to

recognize any other face without retraining. The reliability of

the trained model can be estimated with triplet loss function.

4.1 Triplet loss function

One way to learn the parameters of the neural network so

that it gives a good encoding for faces is by defining an applied

gardient descent on the triplet loss function. To apply the

triplet loss, the requirement is the comparison of two images.

For example, Figure 11 and Figure 12 are of same person’s

images, Hence, their encodings must be similar but Figures 11

and 13 are different, hence it is required to get the different

encodings. In other words the difference between the

encodings of sample image to matched image(d(s,m)) is much

lesser than the difference between the encodings of sample

image to unmatched image(d(s,u)).

d(s,m) ≤ d(s,u)

‖𝐸(𝑠) − 𝐸(𝑚)‖2- ‖𝐸(𝑠) − 𝐸(𝑢)‖2≤ 0

One trivial that it satified is E(s)=E(m)=E(u) = 0 i.e., E (any

image) is a vector of all zeros, almost trivially satisfies this

equation. So to make sure that the neural network just outputs

zero like this for all the encodings. It also shouldn’t set all the

encodings to equal to each other i.e., encoding of every image

is identical to the encoding of the other image. In order to test

that it is required to add quite a small element to LHS.

‖𝐸(𝑠) − 𝐸(𝑚)‖2- ‖𝐸(𝑠) − 𝐸(𝑢)‖2+k ≤ 0

where, k is the another hyper parameter which prevents the

neural network in preventing the trivial solution. k is also

called margin parameter.

The loss function for a single triplet is L(s,m,u) =

max(E(s,m)-E(s,u)+k , 0).

The overall cause function for it can be J =
∑ 𝐿𝑛
𝑖=1 (s(i),m(i),u(i)).

Let’s say if the training set consists of 10,000 pictures. In

order to train the learning algorithm, there is a need of

generating triplets (sample, matched and unmatched) for each

of 10,000 pictures and then train the learning algorithm using

this type of cause functions drawn from the training set.

Figure 11. Sample

Figure 12. Matched

Figure 13. Unmatched

206

4.2 Face recognizer

Step 1: Detect the faces using HOG method.

Step 2: Isolate the faces and represent those with the 128D

facial embeddings using the neural network.

Step 3: Compare the embeddings using the Euclidean distance

=

√(𝑎1 − 𝑏1)
2 + (𝑎2 − 𝑏2)

2 + − − −− +(𝑎𝑝 − 𝑏𝑝)
2

=

√∑ (𝑎𝑖 − 𝑏𝑖)
2𝑝

𝑖=1

Step 4: if the Euclidean distance < threshold then the faces are

said to be matched else un matched.

5. MOVEMENT ESTIMATION

The estimated movement is identified and drawn contours

over them and invigilator movement is detected through these

countours which is illustrated in Figure 14. Using the contour

image from the Tracking algorithm, each contour is separated

from the image using a contour separator. Each contour is

processed with a face detector. Because of its high accuracy

and speed, HOG is selected as the Face detector. If any face is

found in the contour, it is processed with Face recognizer, it

compares with the faces of invigilators and decides that the

invigilator is in motion and his data would be updated.

Figure 14. Movement Estimation

6. RESULTS AND DISCUSSION

The software is tested by taking the following faculty of

which five are professors, nine are Associate Professors and

sixteen are Assistant Professors.

L Roja - ECE - Prof

S Mounika - CSE - Prof

P Sandhya - IT - Prof

A Sujata - EEE - Prof

E Lavanya - CSE – Prof

E Rahul - IT - Assocprof

B Vasu - CSE - Assocprof

C Chndram - ECE - Assocprof

L Ramu - CSE - Assocprof

P Durga - EEE - Assocprof

J Tarak - ECE - Assocprof

K Sushmitha - IT – Assocprof

Z Meena - EEE – Assocprof

M Madan - ECE – Assocprof

K Malavya - CSE - Asstprof

J Karthik - CSE - Asstprof

S Jeevan - ECE - Asstprof

Y Muneeth - EEE - Asstprof

L Munaiah - IT - Asstprof

P Mani - CSE - Asstprof

G Ramesh - ECE - Asstprof

J Jagadesh - EEE - Asstprof

R Manikarnika - IT - Asstprof

K Syed - CSE - Asstprof

M Joseph - ECE - Asstprof

P Sonia - EEE - Asstprof

J Ashraf - IT - Asstprof

L Rajesh - CSE - Asstprof

V Ravi - ECE - Asstprof

L Basha - ECE - Asstprof

The invigilators allocation is initiated once the students

allocation is completed. The requirement of invigilators count

is estimated based on the rooms into which students are

allotted. The required invigilation count is calculated and

stored with date as dictionary named days.

days={'09-4-2020':14,'10-4-2020':9,'11-4-2020':10,'13-4-

2020':9,'14-4-2020':10,'15-4-2020':11,'16-4-2020':9,'17-4-

2020':6,'19-4-2020':12,'20-4-2020':13}

Next is the choice selection, if the choice 1 is selected, it

will prompt for ratio. The ratio here entered is

Prof:Assoc.Prof:Assistant.Prof = 1:3:5, it will generates the

number of invigilations needed per faculty and is stored in

dictonary inv.

Inv = {'K Malavya,CSE,Asstprof': 4, 'J Karthik,CSE,Asstprof':

5, 'S Jeevan,ECE,Asstprof': 4, 'Y Muneeth,EEE,Asstprof': 5,

'L Munaiah,IT,Asstprof': 4, 'P Mani,CSE,Asstprof': 4, 'G

Ramesh,ECE,Asstprof': 5, 'J Jagadesh,EEE,Asstprof': 5, 'R

Manikarnika,IT,Asstprof': 4, 'K Syed,CSE,Asstprof': 5, 'M

Joseph,ECE,Asstprof': 5, 'P Sonia,EEE,Asstprof': 5, 'J

Ashraf,IT,Asstprof': 5, 'L Rajesh,CSE,Asstprof': 5, 'V

Ravi,ECE,Asstprof': 5, 'L Basha,ECE,Asstprof': 5, 'K

Sushmitha,IT,Assocprof': 2, 'Z Meena,EEE,Assocprof': 3, 'M

Madan,ECE,Assocprof': 2, 'E Rahul,IT,Assocprof': 2, 'B

Vasu,CSE,Assocprof': 3, 'C Chndram,ECE,Assocprof': 3, 'L

Ramu,CSE,Assocprof': 3, 'P Durga,EEE,Assocprof': 3, 'J

Tarak,ECE,Assocprof': 3, 'S Mounika,CSE,Prof': 0, 'P

Sandhya,IT,Prof': 1, 'A Sujata,EEE,Prof': 1, 'L Roja,ECE,Prof':

1, 'E Lavanya,CSE,Prof': 1}

207

Using days and Inv dictionaries, the invigilators for a day is

generated using Algorithm1, which is presented below.

Date - Invigilators

09-4-2020 - ['J Karthik,CSE,Asstprof', 'Y

Muneeth,EEE,Asstprof', 'G Ramesh,ECE,Asstprof', 'J

Jagadesh,EEE,Asstprof', 'K Syed,CSE,Asstprof', 'M

Joseph,ECE,Asstprof', 'P Sonia,EEE, Asstprof', 'J

Ashraf,IT,Asstprof', 'L Rajesh,CSE,Asstprof', 'V

Ravi,ECE,Asstprof', 'L Basha,ECE,Asstprof', 'K

Malavya,CSE,Asstprof', 'S Jeevan,ECE,Asstprof', 'L

Munaiah,IT,Asstprof']

10-4-2020 - ['S Jeevan,ECE,Asstprof', 'L

Munaiah,IT,Asstprof', 'P Mani,CSE,Asstprof', 'R

Manikarnika,IT,Asstprof', 'Z Meena,EEE,Assocprof', 'B

Vasu,CSE,Assocprof', 'C Chndram,ECE,Assocprof', 'L

Ramu,CSE,Assocprof', 'P Durga,EEE,Assocprof']

11-4-2020 - ['J Karthik,CSE,Asstprof', 'Y

Muneeth,EEE,Asstprof', 'G Ramesh,ECE,Asstprof', 'J

Jagadesh,EEE,Asstprof', 'K Syed,CSE,Asstprof', 'M

Joseph,ECE,Asstprof', 'P Sonia,EEE,Asstprof', 'J

Ashraf,IT,Asstprof', 'L Rajesh,CSE,Asstprof', 'V

Ravi,ECE,Asstprof']

13-4-2020 - ['L Munaiah,IT,Asstprof', 'P Mani,CSE,Asstprof',

'R Manikarnika,IT,Asstprof', 'Z Meena,EEE,Assocprof', 'B

Vasu,CSE,Assocprof', 'C Chndram,ECE,Assocprof', 'L

Ramu,CSE,Assocprof', 'P Durga,EEE,Assocprof', 'J

Tarak,ECE,Assocprof']

14-4-2020 - ['L Basha,ECE,Asstprof', 'K

Malavya,CSE,Asstprof', 'S Jeevan,ECE,Asstprof', 'L

Munaiah,IT,Asstprof', 'P Mani,CSE,Asstprof', 'R

Manikarnika,IT,Asstprof', 'Z Meena,EEE,Assocprof', 'B

Vasu,CSE,Assocprof', 'C Chndram,ECE,Assocprof', 'L

Ramu,CSE,Assocprof']

15-4-2020 - ['J Karthik,CSE,Asstprof', 'Y

Muneeth,EEE,Asstprof', 'G Ramesh,ECE,Asstprof', 'J

Jagadesh,EEE,Asstprof', 'K Syed,CSE,Asstprof', 'M

Joseph,ECE,Asstprof', 'P Sonia,EEE,Asstprof', 'J

Ashraf,IT,Asstprof', 'L Rajesh,CSE,Asstprof', 'V

Ravi,ECE,Asstprof', 'L Basha,ECE,Asstprof']

16-4-2020 - ['P Mani,CSE,Asstprof', 'R

Manikarnika,IT,Asstprof', 'P Durga,EEE,Assocprof', 'J

Tarak,ECE,Assocprof', 'K Sushmitha,IT,Assocprof', 'M

Madan,ECE,Assocprof', 'E Rahul,IT,Assocprof', 'P

Sandhya,IT,Prof', 'A Sujata,EEE,Prof']

17-4-2020 - ['J Tarak,ECE,Assocprof', 'K

Sushmitha,IT,Assocprof', 'M Madan,ECE,Assocprof', 'E

Rahul,IT,Assocprof', 'L Roja,ECE,Prof', 'E

Lavanya,CSE,Prof']

19-4-2020 - ['J Karthik,CSE,Asstprof', 'Y

Muneeth,EEE,Asstprof', 'G Ramesh,ECE,Asstprof', 'J

Jagadesh,EEE,Asstprof', 'K Syed,CSE,Asstprof', 'M

Joseph,ECE,Asstprof', 'P Sonia,EEE,Asstprof', 'J

Ashraf,IT,Asstprof', 'L Rajesh,CSE,Asstprof', 'V

Ravi,ECE,Asstprof', 'L Basha,ECE,Asstprof', 'K

Malavya,CSE,Asstprof']

20-4-2020 - ['J Karthik,CSE,Asstprof', 'Y

Muneeth,EEE,Asstprof', 'G Ramesh,ECE,Asstprof', 'J

Jagadesh,EEE,Asstprof', 'K Syed,CSE,Asstprof', 'M

Joseph,ECE,Asstprof', 'P Sonia,EEE,Asstprof', 'J

Ashraf,IT,Asstprof', 'L Rajesh,CSE,Asstprof', 'V

Ravi,ECE,Asstprof', 'L Basha,ECE,Asstprof', 'K

Malavya,CSE,Asstprof', 'S Jeevan,ECE,Asstprof']

After generating the invigilator’s list per day, they were

allotted into rooms such that for each 30 pupil one invigiltor.

For the date 09-04-2020, the invigilators allotted for rooms is

presented below,

RM1 - ['J Karthik,CSE,Asstprof', 'Y Muneeth,EEE,Asstprof',

'G Ramesh,ECE,Asstprof']

RM2 - ['J Jagadesh,EEE,Asstprof', 'K Syed,CSE,Asstprof']

RM3 - ['M Joseph,ECE,Asstprof']

RM4 - ['P Sonia,EEE, Asstprof','J Ashraf,IT,Asstprof', 'L

Rajesh,CSE,Asstprof']

RM5 - ['V Ravi,ECE,Asstprof', 'L Basha,ECE,Asstprof', 'K

Malavya,CSE,Asstprof']

RM6 - ['S Jeevan,ECE,Asstprof', 'L Munaiah,IT,Asstprof']

After allotting into the rooms, the two cameras fixed per

room send the pics to django server. The Estimation of

movement per invigilator per room is accomplished by

drawing the contours over the difference of the frames. The

tool used for image anlysis is opencv.

7. CONCLUSIONS

The invigilation system starts with invigilator allocation.

Django is used for allocation by considering the faculty, room

strength and the students from the Postgres database. The

central server shares the allotted invigilator data with the client

devices placed inside the examination halls. The tracking

algorithm tracks the movement by extracting each frame. The

present tracking algorithm uses the difference in frames which

is efficient than others. KLT tracking method takes more

training time. PHD filtering and Practicle filtering tracking

methods are inaccurate in detecting small movements. The

trace learning tracking method is strongly dependent on weak

classifiers. All these disadvantages are overcome by the

present frame difference method. The motion found parts are

drawn contours and are processed with a Face detector. The

face detector used in this paper is HOG. The Haar cascade

method is faster than HOG but inaccurate to use in real-time.

CNN is accurate than HOG and Haar Cascade but too slow

with CPUs. Hence HOG method is found to be best suited for

the realtime application. The found face is validated with the

face recognizer and is based on 128D embeddings whose

accuracy is 99.38% which is the best accuracy to use in real-

time.

REFERENCES

[1] Meena, R., Sujeetha Devi, T., Vinodhini, R., Vishwam,

R., Yamini Priya, H. (2016). Design and Implementation

of Virtual invigilation System and Smart Examscheduler.

Advances in Natural and Applied Sciences.

[2] Lin, G., Tsai, T. (2012). A face tracking method using

feature point tracking. 2012 International Conference on

Information Security and Intelligent Control, Yunlin,

Taiwan, pp. 210-213.

https://doi.org/10.1109/ISIC.2012.6449743

[3] Alqahtani, F., Banks, J., Chandran, V., Zhang, J. (2020).

3D face tracking using stereo cameras: A review. IEEE

Access, 8: 94373-94393.

https://doi.org/10.1109/ACCESS.2020.2994283

208

[4] Wang, P., Ji, Q. (2008). Robust face tracking via

collaboration of generic and specific models. IEEE

Transactions on Image Processing, 17(7): 1189-1199.

https://doi.org/10.1109/TIP.2008.924287

[5] La Cascia, M., Sclaroff, S., Athitsos, V. (2000). Fast,

reliable head tracking under varying illumination: an

approach based on registration of texture-mapped 3D

models. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(4): 322-336.

https://doi.org/10.1109/34.845375.

[6] Duffner, S., Odobez, J. (2013). Track creation and

deletion framework for long-term online multiface

tracking. IEEE Transactions on Image Processing, 22(1):

272-285. https://doi.org/10.1109/TIP.2012.2210238.

[7] Dornaika, F., Davoine, F. (2006). On appearance based

face and facial action tracking. In IEEE Transactions on

Circuits and Systems for Video Technology, 16(9):

1107-1124.

https://doi.org/10.1109/TCSVT.2006.881200

[8] Vadakkepat, P., Lim, P., De Silva, L.C., Jing, L., Ling,

L.L. (2008). Multimodal approach to human-face

detection and tracking. IEEE Transactions on Industrial

Electronics, 55(3): 1385-1393.

https://doi.org/10.1109/TIE.2007.903993

[9] Qi, Y., Zhang, S., Jiang, F., Zhou, H., Tao, D., Li, X.

(2020). Siamese local and global networks for robust

face tracking. IEEE Transactions on Image Processing,

29: 9152-9164.

https://doi.org/10.1109/TIP.2020.3023621

[10] Wang, G., Bhuiyan, M.Z.A., Cao, J., Wu, J. (2014).

Detecting movements of a target using face tracking in

wireless sensor networks. IEEE Transactions on Parallel

and Distributed Systems, 25(4): 939-949.

https://doi.org/10.1109/TPDS.2013.91

[11] Charles Severance, University of Michigan. (2015).

Guido van rossum: The early years of python. IEEE

Computer Society. https://doi.org/10.1109/MC.2015.45

[12] Varma, R.K., Raju, P.L.N., Priyanka, M. (2017). An IoT

application for environmental monitoring and control

using Raspberry-Pi. International Journal of Engineering

and Technology (IJET), 9(3): 546-552.

https://doi.org/10.21817/ijet/2017/v9i3/170903S082

[13] Text book: Adrian McEwen. Designing the Internet of

Things. Wiley.

[14] Coughlin, T. (2017). Supersize My Pi. IEEE Consumer

Electronics Magazine.

https://doi.org/10.1109/MCE.2017.2685038

[15] Jose, A.C., Malekian, R. (2017). Improving smart home

security: Integrating logical sensing into smart home.

IEEE Sensors Journal, 17(13): 4269-4286.

https://doi.org/10.1109/JSEN.2017.2705045

[16] Yeh, K.H. (2017). A secure IoT-based healthcare system

with body sensor networks. IEEE Access, 4: 10288-

10299. https://doi.org/10.1109/ACCESS.2016.2638038

[17] Kamath, R., Balachandra, M., Prabhu, S. (2019).

Raspberry Pi as visual sensor nodes in precision

agriculture: A study. IEEE Access, 7: 45110-45122.

https://doi.org/10.1109/ACCESS.2019.2908846

[18] Goyal, S., Desai, P., Swaminathan, V. (2017). Multi-

level security embedded with surveillance system. IEEE

Sensors Journal, 17(22): 7497-7501.

https://doi.org/10.1109/JSEN.2017.2756876

[19] D’haro, L.F., De Córdoba, R., Rojo, J.I., Díez, J.,

Avendaño, D., Bermudo, J.M. (2014). Low-cost speaker

and language recognition systems running on a raspberry

Pi. IEEE Latin America Transactions, 12(4): 755-763.

https://doi.org/10.1109/TLA.2014.6868880

[20] Lee, C.H. (2017). Location-aware speakers for the virtual

reality environments. IEEE Access, 5: 2636-2640.

https://doi.org/10.1109/ACCESS.2017.2672556

[21] Segura-Garcia, J., Felici-Castell, S., Perez-Solano, J.J.,

Cobos, M., Navarro, J.M. (2015). Low-cost alternatives

for urban noise nuisance monitoring using wireless

sensor networks. IEEE Sensors Journal, 15(2): 836-844.

https://doi.org/10.1109/JSEN.2014.2356342

[22] He, J.H., Wei, J., Chen, K., Tang, Z.Y., Zhou, Y., Zhang,

Y. (2018). Multitier fog computing with large-scale IoT

data analytics for smart cities. IEEE Internet of Things

Journal, 5(2): 677-686.

https://doi.org/10.1109/JIOT.2017.2724845

[23] Text book: Arshadeep Bahga, Vijay Madisetti, “Internet

of Things”, University Press-2018.

[24] Rodríguez, R.A., Cammarano, P., Giulianelli, D.A., Vera,

P.M., Trigueros, A., Albornoz, L.J. (2018). Using

raspberry Pi to create a solution for accessing educative

questionnaires from mobile devices. IEEE Revista

Iberoamericana de Tecnologias del Aprendizaje, 13(4):

144-151. https://doi.org/10.1109/RITA.2018.2879387

[25] Zhao, C.W., Jegatheesan, J., Loon, S.C. (2015).

Exploring IOT application using raspberry Pi.

International Journal of Computer Networks and

Applications, 2(1): 27-34.

[26] Alvarado, A., Bajaña, B., Munoz, J.A., Velásquez, W.

(2017). Bicycle protection within an university area

using geolocation and perimeter security. IEEE Latin

America Transactions, 15(6): 1137.

[27] Text book: Adrian Holovaty, Jacob K. Moss. Django:

The Definitive Guide to Django: Web Development

Done Right. https://doi.org/10.1007/978-1-4302-1937-8

[28] Text Book: Sanjeev Jaiswal, Ratan Kumar, “Learning

Django Web Development”, PACT publishers – 2015.

[29] García, J., Gardel, A., Bravo, I., Lázaro, J.L., Martínez,

M., Rodríguez, D. (2013). Directional people counter

based on head tracking. IEEE Transactions on Industrial

Electronics, 60(9): 3991-4000.

https://doi.org/10.1109/TIE.2012.2206330

[30] Cucchiara, R., Grana, C., Prati, A., Vezzani, R. (2005).

Computer vision system for in-house video surveillance.

IEEE Proceedings-Vision, Image and Signal Processing,

152(2): 242-249. https://doi.org/10.1049/ip-

vis:20041215

[31] Hsu, R.L., Abdel-Mottaleb, M., Jain, A.K. (2002). Face

detection in color images. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 24(5): 696-706.

https://doi.org/10.1109/34.1000242

[32] Huang, J., Shang, Y.Y., Chen, H. (2019). Improved

viola-jones face detection algorithm based on HoloLens.

EURASIP Journal on Image and Video Processing.

https://doi.org/10.1186/s13640-019-0435-6

209

