
Behavioural account-based features for
filtering out social spammers in large-scale 
twitter data collections 1

Mahdi Washha, Manel Mezghani, Florence Sèdes

IRIT, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, 
France

{mahdi.washha,florence.sedes}@irit.fr;mezghani.manel@gmail.com

ABSTRACT. Online social networks (OSNs) have become an important source of information for a
tremendous range of applications and researches. However, the high usability and accessibility
of OSNs have exposed many information quality (IQ) problems which consequently decrease
the performance of OSNs dependent applications. Social spammers are a particular kind of ill-
intentioned users who degrade the quality of OSNs information through misusing all possible
services provided by OSNs. Given the fact that Twitter is not immune towards the social spam
problem, different researchers have designed various detection methods of a spam content. Ho-
wever, the tweet-based detection methods are not effective for detecting a spam content because
of the dynamicity and the fast evolution of spam. Moreover, the robust account-based features
are costly for extraction because of the need for huge volume of data from Twitter’s servers,
while most other account-based features don’t model the behavior of social spammers. Hence,
in this paper, we introduce a design of new 10 robust behavioral account-based features for filte-
ring out spam accounts existing in large-scale Twitter "crawled" data collections. Our features
focus on modeling the behavior of social spammers, such as the time correlation among tweets.
The experimental results show that our new behavioral features are able to correctly classify
the majority of social spammers (spam accounts), outperforming 75 account-based features de-
signed in the literature.

RÉSUMÉ. Les réseaux sociaux en ligne (OSN) sont devenus une source importante d’information
pour une vaste gamme d’applications et de recherches. Cependant, la grande facilité d’utilisa-
tion et l’accessibilité des OSN ont exposé de nombreux problèmes associés à la qualité de l’in-
formation qui, par conséquent, diminuent les performances des applications dépendantes des
OSN. Étant donné que Twitter n’est pas à l’abri du problème de spam social, les chercheurs ont
conçu diverses méthodes de détection de spam. Cependant, les méthodes de détection basées
sur le tweet ne sont pas efficaces pour détecter le contenu spam en raison de la dynamique et

1. This work is an extended version of a published work Washha et al. (2016a) in "32e Conférence sur la 
Gestion de Données - Principes, Technologies et Applications" (BDA 2016).
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l’évolution rapide du contenu spam. En outre, les méthodes basées sur les comptes sont coû-
teuses pour l’extraction en raison de la nécessité d’un énorme volume de données provenant
des serveurs de Twitter, tandis que la plupart des autres fonctionnalités basées sur le compte
ne modélisent pas le comportement des spammeurs sociaux. Par conséquent, dans cet article,
nous présentons une conception de nouvelles fonctionnalités robustes basées sur le compte
pour filtrer les comptes spam existant dans de grandes collections "aspirées".Nos fonctionna-
lités se concentrent sur la modélisation du comportement des spammeurs sociaux, comme la
corrélation du temps entre les tweets. Les résultats expérimentaux montrent que nos nouvelles
fonctionnalités comportementales sont capables de classer correctement la majorité des spam-
meurs sociaux (comptes spam), surperformant 75 fonctionnalités de l’état de l’art.
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1. Introduction

Online Social Networks (OSNs) have an enormous popularity over the Internet

because of the wide range of services they provide for their users. The most popular

OSNs such as Twitter, and Facebook have exceeded billions of registered users and

millions of daily active users (Chen et al., 2016). OSNs mainly rely on their users

as primary contributors in generating and posting information. Users’ contributions

might be exploited in different positive ways such as understanding users’ needs, and

analyzing users’ opinions for election purposes (Sedhai, Sun, 2016). However, the

usability of OSNs and the absence of effective restrictions on posting have exposed

different information quality problems such as social spam, and information overload.

These characteristics have subjected OSNs to different attacks by ill-intentioned users,

so-called social spammers, to post spam content (Agarwal, Yiliyasi, 2010). Social

spammers intensively post non-sensical content in different contexts (e.g., topics) and

in an automated way. For example, posting a tweet talking about "how to earn 100$

in 5 minutes" under the "#BBC" topic is a spam tweet because such a tweet has no

relation to the given topic at all. Generally, social spammers have a wide range of

goals to publish a spam content in OSNs, summarized in (Washha et al., 2016b, Yardi

et al., 2009): (i) spreading advertisements to generate sales; (ii) disseminating porn

materials; (iii) publishing viruses and malware; (iv) and creating phishing websites.

Motivation and Problem. As OSNs have many information quality problems, in

this work, we handle a particular issue related to the social spam problem in Twitter

platform. More precisely, we address the problem of filtering out spam accounts exis-

ting in large-scale "crawled" collections. The solution, that will be introduced in this

paper, has been integrated with our team researches on social networks. Our team has

researches addressing many issues related to OSNs such as tweet summarization (Ab-

delhamid et al., 2016), event detection (Hoang, Mothe, 2016), social profiling (Sirinya

et al., 2014), profiles enrichment (Mezghani et al., 2014), socio-semantic communi-
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ties detection (Rocío et al., 2015), and social interests (Manel et al., 2014) detection,

where Twitter platform has been adopted as information source. Thus, experimenting

and working on high quality of Twitter information is an indispensable step to obtain

and maintain high performance results in our team researches.

At the technical level, a considerable set of methods has been proposed to re-

duce and eliminate the social spam problem. Most of the existing works are dedicated

for detecting individual Twitter spam accounts (Ahmed, Abulaish, 2013, Meda et al.,
2014, Yang et al., 2012, Perdana et al., 2015, Amleshwaram et al., 2013, Guo, Chen,

2014, Singh et al., 2014, Cao, Caverlee, 2015, Yardi et al., 2009, Yang et al., 2011,

Fabricio et al., 2010, Hai, 2010b, Almaatouq et al., 2016, Washha et al., 2016b, Hu

et al., 2013, Chen et al., 2016) or spam campaigns (Zhang et al., 2012, Zi et al.,
2012). These methods mainly exploit the supervised machine learning approach com-

bined with the features extraction concept to produce binary classifiers using anno-

tated data-sets. The features introduced in the literature for spam accounts detection

are categorized into three types: (i) user-based features such as number of followers;

(ii) content-based features like number of URLs; (iii) and graph-based features such

as local-clustering. Most of the features introduced in the first two types are suitable

for processing large-scale collections of Twitter accounts because those features don’t

require too many information from Twitter’s servers like the graph-based features.

The methods of spam campaign detection are not appropriate for handling large-scale

collections since the features of this level require huge volume of information from

Twitter’s servers, making the treatment of large-scale collection almost impossible.

One might suggest the use of cloud systems to process big volumes of Twitter data

in parallelized and fast way. However, this solution is not applicable since the main

source of limits is from Twitter’s servers in which the number of API calls is constrai-

ned to a defined number of calls. Thus, to have a near-unlimited of API calls, we must

obtain a big number of hundred API tokens to getting access in Twitter data. Unfor-

tunately, obtaining big number of API tokens is not possible since it requires "phone

verified" Twitter accounts.

The other less used approach (Chao et al., 2015, Chen et al., 2015, Martinez-

Romo, Araujo, 2013, Fabricio et al., 2010) detects spam tweets instead of spam ac-

counts. However, this tweet level approach is not effective since the content of any

tweet is up to 140 characters. Hence, the features that can be extracted from a tweet

are not useful to detect spam tweets effectively. Moreover, the existing attempts ba-

sed on spam account detection have critical limitations and major drawbacks. One of

these limitations is the ease of manipulation in the existing features by social spam-

mers. As a motivating example, the number of followers (i.e., the accounts that follow

a user) is one of many features used mainly in detecting social spammers; however,

this feature can be easily manipulated by social spammers through creating a huge

number of accounts and letting each account to follow each other. Another feature is

counting the words in a user’s tweets, where such a feature is used in discriminating

among spam accounts and non-spam accounts. Unfortunately, most of the user and

content features introduced in the literature are similar in performance to the given

two examples. Thus, this raises the need to search for new robust features that can
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detect spam accounts (or spam users) effectively and efficiently, with minimizing the

need for Twitter’s information as much as possible.

Contributions. In this paper, we introduce a design of a new set of features sui-

table for processing large-scale collections of Twitter users. Our features focus on mo-

deling social spammers’ behaviors by deeply analyzing their posting behavior such as

writing style similarity among user’s tweets. In designing our features, we assume

that social spammers have different behavior from normal (legitimate) users in post-

ing tweets. In other words, social spammers have systematic posting patterns, while

normal users have a kind of randomness in posting content on Twitter. We validate the

robustness of our features through a series of experiments conducted on a large-scale

data-set consisting of more than 400,000 annotated Twitter accounts, using different

supervised machine learning algorithms. The experimental results demonstrate that

our new features are able to correctly classify the majority of social spammers (spam

accounts) with more than 70% of accuracy, precision, recall, and f-measure, when

using Random Forest learning algorithm, outperforming 75 account-based features

designed in the literature.

The rest of the paper is organized as follows. Section 2 presents Twitter’s rules

followed in fighting social spammers, and the works that have addressed the social

spam in Twitter. Section 3 shows the formalization and the definition of the problem

we investigate, in addition to the design of our features. Section 4 describes the data-

set used in performing a series of experiments. Section 5 evaluates our features by

using machine learning algorithms, including a deep comparison with a wide set of

state-of-art features. Section 6 concludes the paper with giving some insights about

future directions in Twitter spam detection.

2. Background and Related Work

Social Spam Definition. Social spam is defined as a nonsensical or a gibberish

text content appearing on OSNs and any website dealing with user-generated content

such as chats and comments (Agarwal, Yiliyasi, 2010). Social spam may take tremen-

dous range of forms, including profanity, insults, hate speeches, fraudulent reviews,

personally identifiable information, fake friends, bulk messages, phishing and mali-

cious links, and porn materials (Chen et al., 2016). One might view the social spam as

an non-relevant information; however, this interpretation is quite not accurate. We jus-

tify this misinterpretation through the definition of information retrieval (IR) systems

(Manning et al., 2008). The relevancy of documents in IR systems is dependent on an

input search query. Thus, the irrelevant documents with respect to an input query are

"not" necessary to be a spam content. Hence, as an additional definition, social spam

might be defined as irrelevant information that doesn’t have an interpretation in any

context as long as the input query is not a spam.

Social Spam and Information Quality. Social spam has a strong relation to the

the information quality (IQ) field. As shown in Figure 1 (Agarwal, Yiliyasi, 2010),

four categories and different dimensions are adopted for evaluating applications and
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Information Quality (IQ)

Intrinsic IQ Contextual IQ Representational IQ Accessibility IQ
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Believability

Objectivity
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Completeness

Amount of data

Interpretability

Understandability

Consistency

Conciseness

Manipulability

Access

Security

Figure 1. Information quality categories with their dimensions

challenges that have a relation with information area. Social spam problem can be pro-

jected on five IQ dimensions. Spam content does not represent a real world data and

thus it has low degree in accuracy and believability dimensions. Similarly, the reputa-

tion of spam is also low because normal users tend to circulate accurate information.

Also, spam content doesn’t deliver any benefit for OSNs’ users, leading to have low

degree in terms of value-added and relevancy dimensions. Although projecting social

spam problem on IQ world could provide more insights for handling the problem effi-

ciently; social spammers spend great efforts to increase the degree of IQ dimensions.

Therefore, understanding and knowing facts about social spammers can contribute in

providing effective solutions for the social spam problem.

Social Spammers’ Trends. Social Spammers misuse all legal methods or services

supported by social networks to spread their spam contents. Regardless the targeted

social network, social spammers adopt same trends in their goals and behaviors, sum-

marized in (Washha et al., 2016b):

– Social spammers are goal-oriented persons targeting to achieve unethical goals

(e.g., promoting products), and thus they use their smartness to accomplish their spam-

ming tasks in an effective and a quick way.

– Social spammers often create and launch a campaign of spam accounts in a short

period (e.g., one day), to maximize their monetary profits and speedup their spamming

behavior.

– As a set of APIs is provided by social networks, social spammers leverage them

to automate their spamming tasks in a systematic way (e.g., tweeting every 10 mi-

nutes). More precisely, they avoid the random posting behavior because it may de-

crease their target profits.

Twitter’s Anti-Spam Mechanism. Twitter provides an option for its users to re-

port spam accounts through clicking on "Report: they are posting spam" option avai-

lable in all accounts. Once an account is reported, Twitter’s administrators manually

review that account to make a suspension decision. However, combating social spam-

mers using this reporting mechanism is inefficient because of the need for great efforts

from both users and administrators. Moreover, not all reports are trustworthy, meaning
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that some reported accounts might be for legitimate users, not for social spammers. In

addition to this manual reporting mechanism, Twitter has defined some general rules

(e.g., not allowed to post porn materials) for public in order to reduce the social spam

problem as much as possible with permanently suspending the accounts that violate

those rules (Twitter, 2016). However, social spammers can simply bypass Twitter’s

rules. For instance, social spammers may coordinate multiple accounts with distribu-

ting their desired workload among accounts to mislead the detection process. These

accounts tend to exhibit an invisible spam behavior. Thus, these shortcomings have

motivated researchers to introduce more robust methods for the applications that use

Twitter as information source. We categorize the Twitter social spam detection ap-

proaches into two different types based on the automation detection level: (i) machine

learning level as a fully automated approach; (ii) and social honeypot as a manual

approach requiring human interactions.

Machine Learning Approach. In this approach, researchers have built their me-

thods through employing three levels of detection, distributed between tweet-level

detection, account-level detection, and campaign-level detection.

Tweet-Level. Martinez-Romo and Araujo (Martinez-Romo, Araujo, 2013) have de-

signed a language model based method to detect spam tweets existing in trending

topics. The method computes the kullback-leibler divergence between the language

model of each tweet and the language model of the topic itself. However, this method

is not suitable for real-time filtering because of the need for the tweets that have been

posted in the same topic from Twitter’s servers. The works introduced in (Fabricio et
al., 2010, Chao et al., 2015, Chen et al., 2015) have proposed a set of light statistical

features such as number of words with a set of time-independent machine learning

algorithms such as support vector machine (SVM), and Random Forest, to build a bi-

nary classifier. Although of suitability of these works for real-time filtering; they have

a major drawback in efficiently detecting spam tweets (i.e., low spam recalling) due

to the evolving of spam content over time.

Account-Level. The works introduced in (Fabricio et al., 2010, Washha et al.,
2016b, Wu et al., 2017, Hai, 2010b, McCord, Chuah, 2011, Stringhini et al., 2010,

Meda et al., 2016, Bara et al., 2015) have focused on extracting feature from users’

accounts, including the number of friends, number of followers, similarity between

tweets, and ratio of URLs in tweets. In more dedicated studies, the works proposed

in (Cao, Caverlee, 2015, Wang, Pu, 2015) have identified the spam URLs through

analyzing the shorten URLs behavior like the number of clicks and the length of re-

direction chain. However, the ease of manipulation in this type of features by social

spammers has given a motivation to extract more complex features by using the graph

theory. For instance, the studies presented in (Yang et al., 2011, 2012, Almaatouq et
al., 2016) have examined the relation among users using some graph metrics to mea-

sure three features, including node betweenness, local clustering, and bi-directional

relation ratio. Leveraging such complex features gives high spam accounts detection

rate; however, they are not suitable for treating large-scale collections because of the

huge volume of data that must be retrieved from Twitter’s servers.
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Campaign-Level. Chu et al. (Zi et al., 2012) have treated the spam problem from 
the collective perspective view. They have clustered a set of desired accounts accor-

ding to the URLs available in the posted tweets, and then a defined s et o f features 
is extracted from the accounts clustered to be incorporated in identifying spam cam-

paign using machine learning algorithms. Chu et al. (Chu et al., 2012) have proposed 
a classification model to capture the difference among bot, human, and cyborg with 
considering the content of tweets, and the tweeting behavior. Indeed, the methods 
belonging to this detection level have a major drawback. The features used in these 
methods require a great number of REST API calls to obtain information like users’ 
tweets and followers. Consequently, exploiting the current version of campaign-level 
methods is not appropriate for filtering large-scale collections of Twitter accounts due 
to the high volume of data required from Twitter’s servers.

Beyond the features design level, the works introduced in (Hu et al., 2014, 2013) 
have proposed two optimization frameworks which use the content of tweets and ba-

sic network information to detect spam accounts using an efficient o nline learning 
approach. However, the major limitation in these works is the need for information 
about the network from Twitter, making these methods inapplicable to large-scale data 
collections

Honeypot Approach. Social honeypot is viewed as an information system re-

source that can monitor social spammers’ behavior through logging their information 
such as the information of accounts and any available content (Lee et al., 2010). In 
fact, there is no significant difference between Twitter’s anti-spam mechanism and the 
social honeypot approach. Both of them need an administrative control to produce a 
decision about the accounts that have fallen into the honeypot trap. The necessity of 
administrative control is to reduce the false positive rate, as an alternative solution to 
blindly classifying all users dropped in the trap as spam users.

3. Account-Based Features Design

In this section, we introduce notations, definitions, and formalization of our target

problem. Then, we present the design of our features by which we distinguish among

spam accounts and non-spam accounts.

3.1. Notations and Problem Formalization

Let UCollection = {u1, u2, ...} be a finite set of Twitter users representing a target

data collection which requires processing to filter out the spam accounts (users) that

belong to social spammers. In order to minimize the size of information needed from

Twitter’s servers, for each user u• ∈ UCollection, we collect the top 100 tweets using

a single REST API call. This number of tweets is the maximum number that Twitter

can provide in a one single call. It is possible to retrieve more user’s tweets, if any;

however, this increases the number of API calls, doubling the required time to process

the entire users in the given collection. This number of tweets (100 tweets) per user is
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relatively enough to take a precises decision about user type. Hence, we model each

user u• ∈ UCollection by a 2-tuple, u• = (Tweets,Age). Each element in the tuple

and some additional functions are defined as follows:

Tweets. We model the tweets of user u• ∈ UCollection as a finite set, Tweets =
{t1, t2, ...}, where t• represents a tweet object consisting of simple meta-data. We mo-

del these meta-data by a 5-tuple t• = (T ime,Hashtags, URLs,Mentions,Words),
where T ime is the posting date of the tweet, t•, represented in seconds time unit com-

puted since 1970/1/1, Hashtags is a finite set containing all hashtags posted in the

tweet, URLs also represents a finite set of all URLs posted in the tweet, Mentions
is a set of users who are mentioned in the tweet extracted through searching for words

starting by @ symbol, and Words is a finite set consisting of words posted in the tweet

such that Words ∩Hashtags ∩Mentions ∩ URLs = ∅.

Age. The creation date of each account is registered on Twitter’s servers, when

users setup their accounts. We compute the age of a user’s account in days time unit

through calculating the difference between the current time date (T imenow) and the

creation date of the account (T imecreation), defined formally as Age = T imenow −
T imecreation.

Kullback–Leibler Divergence (KLD) (M1,M2, V ). Given two different language

models, M1,M2 and a set of terms V (e.g., words of a tweet), we compute the simi-

larity of the two language models using a customized version of KLD (Kullback,

Leibler, 1951), defined as:

KLD(M1,M2, V ) =
log |V | −

∑

w∈V P (w|M1) ∗min(| log P (w|M1)
P (w|M2)

|, log |V |)

log |V |
(1)

where P (w|M•) is the probability of the term w of being generated by the given

language model M•. We perform this customization since the range of the classical

KLD method is unbounded and thus the ∞ value appears when two language models

are dissimilar. Hence, our customization reverses the semantic of KLD values (i.e., 0

⇒ dissimilar and 1⇒ similar), with bounding its value between 0 and 1.

Problem Formalization. With the presented notations and definitions, our main

problem is to detect and filter out Twitter social spammers existing in a given col-

lection. Formally, given a collection of Twitter accounts (or users), UCollection, the

problem is turned to build a binary classification model with minimizing the number

of requests to Twitter’s servers, y : u• → {Social Spammer, Legitimate User},

u• ∈ UCollection.

3.2. Features Design

In designing our features, we have deeply analyzed a large set of spam accounts

suspended by Twitter. Unlike the state-of-the-art features, our features focus on mode-

ling user’s behaviors since, according to the social spammers’ trends, legitimate users

have completely different behaviors like the randomness in their tweets content and
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DolceAmore Engagement #KCA Opening the picture of brightness 
https://t.co/5VyG5QMJ50

DolceAmore Engagement #KCA How life can really be unfair 
https://t.co/5VyG5QMJ50

DolceAmore Engagement #KCA So quietly without a sound, 
https://t.co/5VyG5QMJ50

DolceAmore Engagement #KCA How life can really be unfair 
https://t.co/5VyG5QMJ50
Dolc
https

Dolc
https

DolceAmore Engagement #KCA How life can really be unfair 
https://t.co/5VyG5QMJ50

Dolc
https

DolceAmore Engagement #KCA How life can really be unfair 
https://t.co/5VyG5QMJ50

Figure 2. An example of a spam account posted three tweets having a correlation at
the writing style level

structure. Also, the design of any feature must be not easy to be manipulated by social

spammers. For instance, the number of tweet’s words feature can be easily manipu-

lated by social spammers through using low number of words in their tweets. Thus,

we introduce a set of behavioral features that can efficiently and effectively distin-

guish among spam and non-spam accounts (or users), with relying only on the top

100 tweets.

Writing Style Similarity (WSS): Computing the textual similarity of user’s tweets

is a widely used feature; however, some social spammers are tricky enough to avoid

tweets duplication. Given the fact that social spammers automate their posting in a

systematic way, the probability of finding a correlation in the writing style among

social spammers’ accounts tweets is relatively high. For instance, the spam tweets in

Figure 2 have a common style structure in writing tweets (word, word, hashtag, word,

word,word, word, word, and then URL). In this instance, the social spammer of these

tweets has been tricky in writing tweets so that no tweets duplicated in the content.

We model this feature through transforming tweet’s content to a higher level of

abstraction. Then, we measure the writing style similarity among tweets using Jac-

card similarity index. In a formal way, a transformation function, Type(ST, T ) ∈
{W,H,U,M}, is defined, which takes a string ST and a tweet T as parameters, and

returns the type of the input string (Word, Hashtag, Url, and Mention), formalized as:

Type(ST, T ) =























H ST ∈ T.Hashtags (2)

M ST ∈ T.Mentions

U ST ∈ T.URLs

W ST ∈ T.Words
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Figure 3. An illustrative example showing: (i) two correlated posting time probability
distributions of two instances (#H1 and #H2); and (ii) the cross-correlation among
the two probability distributions with the area (black shaded). The x-axis represents
the shifted time-stamp of the tweets, computed by subtracting the time-stamp of each
tweet from the most recent post tweet by the user. The 0 value on x-axis corresponds

to the recency in time

Hence, for a tweet, T•, posted by a user u ∈ UCollection, the writing style (WS)

of the tweet is given as:

WS(T•) = {(i, Type(S, T•))|S ∈ T•.Hashtags ∪ T•.Mentions ∪ T•.URLs ∪ T•.Words}

(3)

where i is the position of the string S that requires transformation.

As a concert example using first tweet of Figure 2, the writing style set will be WS =
{(1,W ), (2,W ), (3, H), (4,W ), (5,W ), (6,W ), (7,W ), (8,W ), (9, U))}. With these

definitions, for a user, u ∈ UCollection, we compute the writing style similarity among

user’s tweets, uTweets, as follows:

WSS(u) =

∑

T1∈u.Tweets

∑

T2∈u.Tweets
|WS(T1)∩WS(T2)|
|WS(T1)∪WS(T2)|

(|u.Tweets|)(|u.Tweets| − 1)
(4)

With this definition of WSS, the upper and lower bounds are between 1 and 0,

respectively. The increasing in its value means that the user, u, has high probability of

being a spam account. For instance, the writing style similarity of the user’s tweets in

Figure 2 is close to 1.

Posting Behavior. Social spammers are too dependent on the current events that

are circulated in Twitter (Washha et al., 2016b). For instance, trending topics of Twit-

ter are changing over time and thus social spammers may intensively post tweets in

a trending topic and then when that topic becomes not trending, they change to other

trending one. Hence, given the fact that social spammers leverage the Twitter REST
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APIs in automating the posting of spam content, a correlation might exist between the

posting time probability distribution of hashatgs, mentions, URLs, or textual words.

For example, Figure 3 shows two posting time probability distributions of tweets

containing two instances (#H1 and #H2) of the hashtag service. It is obvious that the

social spammer has focused on the #H2 when posting tweets and then after a while

has changed the attention towards #H1. Although the two probability distributions are

not identical in the posting time, they are correlated in the probability value and the

time period between each two consecutive tweets. The probability of having such a

correlation in a legitimate user’s tweets is quite low since legitimate users are random

in their posts and in using Twitter’s services.

We model this posting behavior through computing the cross-correlation between

different instances of a tweeting service: hashtags, URLs, and mentions services. In a

formal way, let Is be a set of all unique instances available in user’s, u ∈ UCollection,

tweets and posted with a tweeting service s ∈ {Mention,Hashtag, URL}. Also, let

Pi be the posting time probability distribution of the instance, i ∈ Is. Since the posting

time distributions time can be viewed as time shifted signals, we adopt the correlation

(Oppenheim, 1999) method to measure the posting behavior similarity among user’s

tweets of the user u, defined as:

ISu(Is) =

∑

i1∈Is

Area(Pi1 ⋆ Pi2)

|Is| ∗Area(Pimax
⋆ Pimax

)

i2 = argmax
i3∈Is∩i3 6=i1

Area(Pi1 ⋆ Pi3)

imax = argmax
i∈Is

Area(Pi ⋆ Pi)

(5)

where Area(•) is a function that computes the area of the new distribution resulted

by applying correlation (i.e., 0 area means dissimilar distributions), P• ⋆P∗ is a cross-

correlation between two different distributions, and P• ⋆ P• is a correlation between

same distribution known as an auto-correlation. The intuition behind i2 is to get the

instance that has the maximum correlation with the instance i1.

The summation of the maximum areas is normalized by the area of the instance

that has the maximum self-similarity multiplied by the number of instances. Thus,

the IS value is between 0 and 1, where 0 means that there are no instances having

same posting behavior, while 1 means that all instances have similar posting behavior.

As social spammers might use all possible posting services, we extract three features

through applying equation 5 on hashtags, URLs, and mentions services. The defini-

tion of the three instances sets are defined as Ihashtags =
⋃

t∈u.Tweets t.Hashtags,

IMentions =
⋃

t∈u.Tweets t.Mentions, and IURLs =
⋃

t∈u.Tweets t.URLs.

Posting Diversity. Legitimate users and social spammers may use hashtags, URLs,

and mentions tweeting services in an intensive way. In such a common scenario, the

classical statistical features existing in the literature such as number of URLs, number
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of hashtags, number of mentions, and percentage of URLs (Fabricio et al., 2010) don

not significantly contribute in distinguishing among users’ types. Our feature goes

beyond these statistical ones through computing the posting diversity for each service

separately such as the diversity of hashtags used in user’s tweets. As an intuition,

spammers intensively post their tweets with focusing on a single instance of a tweeting

service (e.g., hashtag), while legitimate users have a kind of diversity in posting their

tweets without focusing on a particular instance or even a tweeting service. By using

the same definitions used in posting behavior feature part, the diversity of an instance

set, Is, of a service s, is computed as:

PD(u, Is) =
|Is|

|u.Tweets|
(6)

The 0 value of PD means that the instances set is empty, while the 1 value means

that each instance in Is has been used only once in the user’s u tweets. We apply

this feature on four different tweeting services, including hashtags, mentions, URLs,

and textual words services. Hence, the definition of the four instance sets are defined

as Ihashtags =
⋃

t∈u.Tweets t.Hashtags, IMentions =
⋃

t∈u.Tweets t.Mentions,

IURLs =
⋃

t∈u.Tweets t.URLs, and IWords =
⋃

t∈u.Tweets t.Words.

Language Model-Based Tweets Similarity. Social spammers try to avoid de-

tection through non-duplicating exactly their tweets by generating random sentences

from a predefined dictionary of words. Thus, in this case, the exact similarity feature

can easily fail in capturing this spamming behavior.

We model this spamming behavior through computing first the uni-gram word

language model of user’s, u, tweets. Then, we measure the similarity between the

language model of each tweet and all user’s tweets language model, using the cus-

tomized version of Kullback-Leibler Divergence defined above. Formally, for a user

u ∈ UCollection, let MTweets be a uni-gram word language of the user’s u tweets, and

let MT be a uni-gram word language model of the tweet T ∈ u.Tweets, the tweets

similarity is computed as:

LMTS(u) =

∑

T∈u.Tweets

KLD(MT ,MTweets, T.Words)

|u.Tweets|
(7)

The upper and lower bound of LMTS are between 1 and 0, respectively. The high

value gives an indication that the user’s u tweets are almost similar in the content and

thus the probability of being a spam account (social spammer) is high, while the low

value means that most user’s tweets talking about different topics.

4. Data-set Description and Ground-Truth

In the literature, there is no publicly available data-sets for research uses. Moreo-

ver, for privacy reasons, social networks researchers provide only the IDs of objects in



Account-based features for detecting social spammers 77

Figure 4. An example of tweet JSON object describing the accessible meta-data
in any tweet object

their data-sets (e.g., tweets, accounts) to retrieve them from the OSNs’ servers. Howe-

ver, inspired by the nature of the spam problem, providing IDs of spam tweets or ac-

counts is not enough because Twitter might already have suspended the corresponding

accounts and thus nothing to retrieve from Twitter’s servers. Our data-set described in

(Washha et al., 2016b) consists of no more than 8,000 accounts manually annotated

between spam and non-spam accounts. However, we have enlarged that data-set to

draw more precise and accurate results.
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Table 1. Detailed statistics of our data-set used in performing the experiments

Social Spammers Legitimate Users

Statistic Name Value Ratio (per 100 users) Value Ratio (per 100 users)

Number of users 11,451 (2.8%) — 409,170 (97.2%) —

Number of geo-enabled users 2,542 (1.7%) 22 (38.6%) 147,200 (98.3%) 35 (61.4%)

Number of verified users 48 (0.3%) 0 (0.0%) 15,585 (99.7%) 4 (100%)

Number of users’ followers 126,078,117 (0.11%) 1,101,022 (26.1%) 12,779,787,065 (99.8%) 3,123,344 (73.9%)

Number of users’ followees 54,493,725 (3.6%) 475,886 (54.4%) 1,636,779,971 (96.4%) 400,024 (45.6%)

Number of tweets posted 146,626,275 (2.9%) 1,280,466 (51.1%) 5,024,219,375 (97.1%) 1,227,905 (48.9%)

Number of tweets retrieved 874,557 (2.6%) 7,637 (49.5%) 32,007,284 (97.4%) 7,822 (50.5%)

Number of retweeted tweets 331,995 (2.8%) 2,899 (50.7%) 11,464,552 (97.2%) 2,810 (49.2%)

Number of replied tweets 104,848 (2.4%) 915 (45.9%) 4,425,005 (97.6%) 1,081 (54.1%)

Number of URLs 185,925 (1.9%) 1,623 (39.9%) 10,011,831 (98.1%) 2,446 (60.1%)

Number of Hashtags 468,593 (3.3%) 4,092 (55.1%) 13,677,994 (96.7%) 3,342 (44.9)

Crawling Method. We exploit our research team crawler to collect accounts and

tweets, launched since 1st June 2016. The streaming method is used to get an access

to 1% of global tweets, as an unbiased crawling way. For each tweet being streamed,

we extract the user ID of the tweet and then we retrieve the top 100 users’ tweets using

Twitter REST APIs. We store uesrs’ tweets in JSON format where the meta-data that

Twitter provides in any tweet is shown and annotated in Figure 4.

Data-set Description and Ground-Truth Building. We perform our experiments

on a data-set consisting of around 420,000 Twitter accounts, after merging our pre-

vious data-set used in (Washha et al., 2016b). These accounts are a result of 60 days

of crawling from 1/June/2016 to 31/July/2016. To evaluate the effectiveness of our

features and the state-of-the-art ones, we created an annotated data-set through labe-

ling each account (user) as a spam or non-spam. However, with the huge amount of

accounts, using manual annotation approach to have labeled data-sets is an impractical

solution. Hence, we leverage a widely followed annotation process in the social spam

detection researches, named as "Twitter Suspended Spammers (TSS)" (Hu et al., 2013,

2014), summarized in Figure 5. The process checks whether each user was suspended

by Twitter. In case of suspension, both the user and his tweets are labeled as a spam;

otherwise we assign non-spam to both of them. In total, as reported in Table 1, we

have about 11,500 spam accounts suspended by Twitter, forming around 3.0% of all

accounts in our data-set. It is important to mention that not all non-spam accounts are

truly non-spam, since Twitter might not have suspended some of them yet. However,

on the other side, all accounts suspended by Twitter in our data-set are truly belonging

to social spammers. Thus, the ratio of social spammers in our data-set is more than

the percentage reported in Table 1. Although our data-set is not balanced; the norma-

lized (per 100 users or accounts) statistics in Table 1 show the effectiveness of social

spammers in polluting Twitter content. For example, Twitter social spammer averagely

posts about 12K of tweets, which is almost equal to legitimate users’ tweets. Also, the

given statistic about the average number of hashtags posted by 100 users shows how

much the hashtag service is used by social spammers in spreading their spam content.

One important thing is the number of followers and followers. Indeed, according to
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Figure 5. A digram showing the process used in building ground-truth data-set
for an input set of tweets or accounts

the recent statistics 2 released in the 4th quarter of 2016, the number of Twitter active

users is about 320 million, while the numbers reported about followers and followees

are exponentially higher than that number. Indeed, we compute these two numbers by

summing the followers and followees counters available in user’s object as meta-data,

without deleting the duplicated accounts. These unimaginable numbers of follower

and followees show the impracticality of graph-based features to process our data-set

because of the need to retrieve almost all users (320 million) from Twitter’s severs.

5. Results and Evaluations

5.1. Experimental Setting

Performance Metrics. As the ground truth class label about each user is available,

we exploit the accuracy, precision, recall, F-measure, average precision, average re-

call, and average F-measure, computed according to the confusion matrix of Weka

tool (Hall et al., 2009), as commonly used metrics in classification problems. As our

problem is two-class (binary) classification, we compute the precision, recall, and F-

measure for the "spammer" class, while the average metrics combine the both classes

based on the ratio of each class (e.g., 4.9% * "spammer precision" + 95.1% * legiti-

mate user precision" ).

Baselines. We define two baselines to compare our method with them: (i) baseline

"A" which represents the results when classifying all users as legitimate users directly

without doing any kind of classification; (ii) and baselines "B" and "C" reflect the

results when using the account user and content features that have been introduced in

the literature, respectively. We adopt 77 of the state-of-the-art features listed in Table 2

and 3, distributed between user features and content features (Meda et al., 2014, Yang

et al., 2012, Amleshwaram et al., 2013, Guo, Chen, 2014, Hai, 2010a, Stringhini et
al., 2010, Yardi et al., 2009, Yang et al., 2011,?, Hai, 2010b, Almaatouq et al., 2016,

McCord, Chuah, 2011, Lee et al., 2010). We avoid the comparison with the graph

2. https://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
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Table 2. A set of state-of-the-art of user-based features adopted in the comparison
with our new account-level features

Index Feature Name Description

User Features

1 Number of tweets Number of tweets that have been posted by the user.

2 Verified user Boolean indicator showing whether the user is verified by

Twitter.
3 Account age Number of milliseconds spent since the creation date of

the user’s account.
4 Existence of Spam words in

the screen-name attribute

Boolean indicator checking whether the screen name at-

tribute contains a spam word.
5 Number of lists Number of groups that have listed the user.

6 Default account image Boolean indicator checking whether the image of the

user’s profile is the default one.
7 Geo-enabled Boolean indicator showing whether the geographical lo-

cation of the user’s account is activated or not.
8 Screen-Name length Length of the screen-name attribute of the user.

9 Profile description length Number of words of the profile description.

10 URL in profile description Boolean indicator stating whether the description of the

user’s profile has a URL.
11 Number of followers Number of accounts that follow the user.

12 Number of followees Number of accounts that the user follows.

13 Fraction of followers to followees Ratio of the user’s followers to the user’s followees.

14 Following to Followers Ratio Ratio of the user’s followees to the user’s followers.

15 Number of Friends Number of accounts that the user follows them and they

follow the user in the same

time (i.e., intersection of followers and followees).
16 Reputation Ratio of number of followers to the sum of both followers

and followees sets.
17 Number of spam words in

the account description

Number of the spam words that exist in the description of

the user’s account.

features because of the huge number of information needed from Twitter’s servers to

extract them, requiring months to collect these information.

Balanced Data-sets. It is obvious that our data-set is imbalanced in the class label

distribution where the ratio of social spammers class is less than 3%. In fact, conven-

tional supervised machine learning algorithms are often biased towards the majority

class (Wallace et al., 2011). The biasing problem happens because the loss functions

of these algorithms attempt to optimize quantities such as error rate without taking the

distribution of classes into consideration. In our problem, the worst case happens when

the minority class (social spammers) examples are treated as outliers with respect to

the majority class (legitimate users). Thus, these learning algorithms simply generate

trivial classifiers that classify every example as the majority class. The recommended

solution for such a problem is performing either oversampling or undersampling as

a preprocessing step (Wallace et al., 2011). However, applying oversampling method

is not suitable in our case since to make the data-set balanced, we have to increase

the number of social spammer examples to around 400,000 and thus the over-fitting

problem might easily occur. Hence, we adopt the undersampling approach to have a

balance data-set. In order to utilize all labeled examples, we have created 35 ≈ 409,170
11,451

sub-datasets where each one has 22, 902 examples distributed equally between the so-
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Table 3. A set of state-of-the-art of content-based features adopted in the comparison
with our new account-level features

Index Feature Name Description

Content Features

1 Number of mentions Number of accounts that have been mentioned in the user’s tweets

2 Number of unique mentions Size of the unique set of accounts that have been mentioned in the user’s tweets.

3 Number of mentions per tweet Total number of mentions in the user’s tweets to the number of the tweets.

4 Number of numeric

characters per tweet

Ratio of the total number of numeric characters existing in the user’s tweets to the number of the

user’s tweets.
5 Number of replied to Number of tweets that Twitter users have replied to the user.

6 Number of user’s replies Number of tweets that contain a reply to other users.

7 Ratio of replied tweets Ratio of the number of replied tweets to the number of user’s tweets.

8 URL ratio Ratio of the tweets that contain URLs to the number of user’s tweets.

9 Tweets Similarity Textual similarity degree among the user’s tweets.

10 Time weighted Tweets similarity Similarity between the user’s tweets with weighting it using the difference time between tweets.

11 Number of words per tweet Ratio of the number of words existing in the user’s tweets to the number of user’s tweets.

12 Duplicated Tweets Ratio of tweets that have been duplicated by the user.

13 Number of Hashtags Number of hashtags that are available in the user’s tweets.

14 Max Hashtag frequency Maximum probability value of the probability distribution of the hashtags mentioned in the user’s

tweets.
15 Mentions ratio Ratio of the number of mentions in the user’s tweets.

16 Unique mentions ratio Ratio of the number of unique mentions in the user’s tweets.

17 Unique URLs ratio Ratio of the number of unique URLs in the user’s tweets.

18 Interaction rate Ratio of the number of tweets that have been replied to the user’s followees and followers.

19 Cosine similarity Average content similarity over all user’s tweets using the standard cosine similarity over the bag-

of-words vector representation.
20 Hashtaged tweets ratio Ratio of the number of the user’s tweets that contain at least one hashtag to the total number of the

user’s tweets.
21 Avg Hashtags per tweet Average number hashtags that exist in each user’s tweets.

22 Retweeted tweets ratio Ratio of the number of retweeted tweets to the total number of the user’s tweets.

23 Average tweet length Average number of characters of the user’s tweets.

24 Number of URLs Number of URLs existing in the user’s tweets.

25 Number of unique URLs Length of the unique set URLs posted in the user’s tweets.

26 URL repetition frequency Average repetition frequency of a URL posted in the user’s tweets.

27 Average number of spam words Average number of the spam words that exist in the user’s tweets.

28 Average number of hashtags

per word

Average number of hashtags per word in the user’s tweets.

29 Average number of

URLs per word

Average number of URLs per word in the user’s tweets.

30 Hijacking Topics Cosine similarity between the user’s tweets and the tweets of the topics that have been mentioned in

the user’s tweets.
31 Intersection with trending topics Ratio of the number of trending topics mentioned in the user’s tweets to the total number of all topics

in the user’s tweets.
32 Duplicated domain names ratio Ratio of the number of unique domains that exist in the user’s tweets to the number of tweets that

contain at least one URL.
33 IP-to-Domain ratio Ratio of the unique IP addresses resolved from the existing domains in the user’s tweets to the

number of unique domains.
34 URL and Tweet Similarity Cosine similarity between the content of a tweet containing URL and the landing page content of

that URL.
35 One-gram characters Number of alphabetical characters in the user’s tweets.

36 Number of favorites Total number of tweets that the user has liked them.

37 Number of retweets Total number of retweets that the user’s tweets have gained.

38 Ratio of retweeted tweets Ratio of the number of retweeted tweets to the number of user’s tweets.

39 Mean tweets similarity The average pairwise tweets similarity based on the term frequency inverse document frequency.

40 Number of Hashtaged tweets The number of tweets that contain at least on hashtag in the user’s tweets.

41 Hashtags density The number of hashtags in the user’s tweets normalized by the number of the user’s tweets.

42 Tweets with links The number of tweets that contain at least one URL link.

43 Links density The number of URLs in the user’s tweets normalized by the number of the user’s tweets.

44 Average number of characters Total number of characters in the user’s tweets divided by the number of user’s tweets.

45 Min, Max, Avg, Median of

number of tweets posted per

day

Minimum, maximum, average, and median of the number of tweets that are posted daily by the user.

46 Min, Max, Avg, Median of

number of tweets posted per

week

Minimum, maximum, average, and median of the number of tweets that are posted per week by the

user.

47 Min, Max, Avg, Median of

the time tweets

Minimum, maximum, average, and median of the time difference between two consecutive tweets.

48 Tweets time distribution Distribution of the posting time of the user’s tweets over 24-hour period.

49 Variance in tweet intervals Variance in the posting time interval between each two consecutive tweets.

50 Active days Number of days between the oldest tweet and newest tweet in the user’s tweets.

51 API Ratio Ratio of the number of the user’s tweets posted by an API tool to the total number of the user’s

tweets.
52 API URL Ratio Ratio of the number of the user’s tweets containing a URL posted by an API tool to the total number

of the user’s tweets posted by API.
53 API Tweet Similarity Content similarity of the tweets posted only by an API tool.

54 Country changes per month Number of times per month that a user moves across country boundaries between consecutive tweet.

55 Speed limit per month Monthly average number of times that the user has a traveling speed exceeding a defined speed

threshold.
56 Mean speed Average tweeting speed.

57 Max speed Maximum tweeting speed that the user followed in his tweets.

58 Unique countries per month Average monthly number of countries that the user has been in.
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cial spammer and legitimate user classes. In all of these sub-datasets, we have used the

same social spammer examples without duplicating legitimate user examples across

the sub-datasets.

Learning Algorithms. In experimenting the performance of our features and the

state-of-the-art ones, we use five supervised machine learning algorithms widely

adopted in building binary classification models for Twitter social spam detection.

These algorithms are: Naive Bayes, Random Forest with #Trees ∈ {100, 500, 1000},

J48 with Confidence Factor CF ∈ {0.1, 0.5, 1.0}, K-nearest neighbor with K ∈
{2, 5, 10}, and support vector machine (SVM) with radial basis function kernel (RBF)

and γ ∈ {0.5, 1.0}. We select these parameters since they have direct impact on pro-

ducing high performance classification models, with taking the over-fitting problem

into the consideration. We use Weka tool (Hall et al., 2009) as an implementation for

these algorithms.

Experiments Procedure. For each type of features (User, Content, and our Be-

havioral) and for a particular learning algorithm (Naive Bayes, Random Forest, J48,

K-NN, or SVM ), we perform the following steps: (i) we extract the selected type of

features from each sub-dataset, producing 35 (number of sub-datasets) feature spaces;

(ii) we apply 10-fold cross validation on each feature space using the learning algo-

rithm chosen, resulting 35 confusion matrices; (iii) finally, we compute the final per-

formance metrics for the chosen features type using the summation of the 35 confusion

matrices, avoiding the computation of the variance across the 35 sub-datasets.

5.2. Experimental Results

Baseline Results. The results of the three baselines are reported in Table 4. The

baseline "A" has accuracy of 50% because all social spammer examples have been

classified as legitimate users in sub-dataset of the 35 sub-datasets. Thus, in such a

case, the precision, recall, and F-measure of social spammer class are "0.0%" since no

account is classified as a social spammer at all. This baseline is easy to be bypassed

in all metrics when using supervised learning methods. For instance, the baseline "B"

of the 17 user features has performance of 69,4% of accuracy as a best result when

applying Random Forest learning method with #Trees = 1000, compared to the

other learning methods. We expect this behavior from Random Forest since it creates

various classification models through constructing a multitude of decision trees (e.g,

1,000). However, in terms of precision metric, SVM has better performance than other

learning methods. According to the low recalls and high precisions of social spammer

class, the SVM method has effectively modeled very small sets of social spammer

class examples, the rest of examples has been modeled as legitimate users. Moreover,

the average precision of SVM is lower than the precision of social spammer class

by about 24%. We interpret this behavior because our method followed in annotating

our data-set is not too precise from legitimate users class view (i.e., not all legitimate

users are truly legitimate users). The Naive Bayes learning method does not have an

acceptable performance, especially in recalling social spammers (35.6%). On the other
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Table 4. Performance results of the three baselines, our behavioral features, and the 
combination of user+content+behavioral features when applying the five mentioned 

machine learning algorithms in terms of different performance metrics

Model Accuracy Precision Recall F-Measure Avg. Precision Avg. Recall Avg. F-measure

Baseline (A): All Users Labeled as Legitimate Users

— 50,0% 0,0 % 0,0 % 0,0 % 50,0% 50,0% 50,0%

Baseline (B): User Features

Naive Bayes 57,7 % 63,8 % 35,6 % 45,7 % 59,6 % 57,7 % 58,6 %

Random Forest (#Trees=100) 65,4 % 65,2 % 60,4 % 62,7 % 65,8 % 65,4 % 65,6 %

Random Forest (#Trees=500) 67,1 % 66,5 % 63,5 % 65,0 % 67,3 % 67,1 % 67,2 %

Random Forest (#Trees=1,000) 69,4 % 68,4 % 65,4 % 66,9 % 68,1 % 69,4 % 68,7 %

K-NN(K=2) 60,4 % 72,7 % 45,5 % 56,0 % 66,5 % 60,4 % 63,3 %

K-NN(K=5) 62,8 % 67,1 % 64,4 % 65,7 % 66,4 % 62,8 % 64,5 %

K-NN(K=10) 66,5 % 71,6 % 58,8 % 64,6 % 68,3 % 66,5 % 67,4 %

J48 (Confidence Factor=0,1 ) 62,1 % 72,1 % 63,5 % 67,5 % 69,8 % 62,1 % 65,7 %

J48 (Confidence Factor=0,5 ) 61,2 % 70,5 % 62,4 % 66,2 % 68,4 % 61,2 % 64,6 %

J48 (Confidence Factor=1,0 ) 60,5 % 70,3 % 62,2 % 66,0 % 68,2 % 60,5 % 64,1 %

SVM (Gamma=0,5) 51,0 % 98,8 % 2,0 % 3,9 % 74,6 % 51,0 % 60,6 %

SVM (Gamma=1,0) 52,1 % 97,8 % 4,0 % 7,7 % 74,6 % 52,1 % 61,4 %

Baseline (C): Content Features

Naive Bayes 55,6 % 65,2 % 24,0 % 35,1 % 59,3 % 55,6 % 57,4 %

Random Forest (#Trees=100) 66,2 % 67,3 % 58,1 % 62,4 % 66,6 % 66,2 % 66,4 %

Random Forest (#Trees=500) 67,4 % 68,5 % 59,3 % 63,6 % 67,4 % 67,4 % 67,4 %

Random Forest (#Trees=1,000) 68,3 % 69,3 % 60,5 % 64,6 % 69,2 % 68,3 % 68,7 %

K-NN(K=2) 61,2 % 69,0 % 40,5 % 51,0 % 63,5 % 61,2 % 62,3 %

K-NN(K=5) 61,4 % 62,3 % 57,8 % 60,0 % 61,5 % 61,4 % 61,4 %

K-NN(K=10) 62,3 % 66,9 % 48,9 % 56,5 % 63,3 % 62,3 % 62,8 %

J48 (Confidence Factor=0,1 ) 60,7 % 61,4 % 57,4 % 59,3 % 60,7 % 60,7 % 60,7 %

J48 (Confidence Factor=0,5 ) 59,7 % 60,1 % 57,6 % 58,8 % 59,7 % 59,7 % 59,7 %

J48 (Confidence Factor=1,0 ) 59,6 % 60,0 % 57,5 % 58,7 % 59,6 % 59,6 % 59,6 %

SVM (Gamma=0,5) 51,8 % 89,9 % 4,1 % 7,8 % 70,4 % 51,8 % 59,7 %

SVM (Gamma=1,0) 53,2 % 90,4 % 5,3 % 10,0 % 72,6 % 53,2 % 61,4 %

Behavioral (Our) Features

Naive Bayes 62 % 66,2 % 9,3 % 16,3 % 57,6 % 52,0 % 54,7 %

Random Forest (#Trees=100) 68,3 % 72,5 % 56,6 % 63,6 % 61,4 % 61,3 % 61,3 %

Random Forest (#Trees=500) 72,5 % 76,4 % 64,5 % 69,9 % 64,6 % 72,5 % 68,3 %

Random Forest (#Trees=1,000) 78,5 % 78,6 % 67,8 % 72,8 % 67,4 % 78,5 % 72,5 %

J48 (Confidence Factor=0,1 ) 68,8 % 70,9 % 69,5 % 70,2 % 59,1 % 58,8 % 58,9 %

J48 (Confidence Factor=0,5 ) 69,7 % 70,8 % 68,8 % 69,8 % 59,0 % 58,7 % 58,8 %

J48 (Confidence Factor=1,0 ) 74,7 % 70,8 % 68,8 % 69,8 % 59,0 % 58,7 % 58,8 %

K-NN(K=2) 67,2 % 72,9 % 55,4 % 63,0 % 58,9 % 57,2 % 58,0 %

K-NN(K=5) 69,7 % 68 % 65,8 % 66,9 % 57,7 % 57,7 % 57,7 %

K-NN(K=10) 71,7 % 71,5 % 66,4 % 68,9 % 59,2 % 58,7 % 58,9 %

SVM (Gamma=0,5) 65,4 % 72,3 % 67,4 % 69,8 % 60,0 % 59,4 % 59,7 %

SVM (Gamma=1,0) 67,4 % 73,1 % 65,5 % 69,1 % 60,2 % 59,4 % 59,8 %

Baseline (B)+Baseline (C)+Behavioral (Our) Features

Naive Bayes 56,5 % 68,4 % 24,3 % 35,9 % 61,2 % 56,5 % 58,8 %

Random Forest (#Trees=100) 70,3 % 73,7 % 63,2 % 68,0 % 70,8 % 70,3 % 70,5 %

Random Forest (#Trees=500) 72,5 % 75,6 % 65,8 % 70,4 % 73,5 % 72,5 % 73,0 %

Random Forest (#Trees=1,000) 76,5 % 76,3 % 67,5 % 71,6 % 74,5 % 76,5 % 75,5 %

K-NN(K=2) 61,8 % 70,7 % 40,3 % 51,3 % 64,5 % 61,8 % 63,1 %

K-NN(K=5) 63,5 % 64,9 % 58,9 % 61,8 % 63,6 % 63,5 % 63,5 %

K-NN(K=10) 64,3 % 69,6 % 50,8 % 58,7 % 65,4 % 64,3 % 64,8 %

J48 (Confidence Factor=0,1 ) 63,9 % 64,2 % 62,9 % 63,5 % 63,9 % 63,9 % 63,9 %

J48 (Confidence Factor=0,5 ) 62,4 % 62,4 % 62,4 % 62,4 % 62,4 % 62,4 % 62,4 %

J48 (Confidence Factor=1,0 ) 62,3 % 62,3 % 62,4 % 62,3 % 62,3 % 62,3 % 62,3 %

SVM (Gamma=0,5) 50,3 % 99,3 % 0,6 % 1,2 % 74,7 % 50,3 % 60,1 %

SVM (Gamma=1,0) 52,4 % 97,5 % 1,4 % 2,8 % 76,4 % 52,4 % 62,2 %

side, the average recall value of Naive Bayes, 57.7% , shows that the method can recall

about 80% of legitimate users.

The results of the third baseline ,"C", when using 55 content features exploited

in the literature are worse than the user features in terms of all metrics. Although
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of the great number of content features, their performance shows that the content

features designed in the literature cannot effectively model the behavior of social

spammers. Also, in our case, the combination of weak features have not produced

a strong classification model. This behavior occurs probably because of possible cor-

relation among features. Similarly to the results of baseline "B", the Random Forest

with #Trees = 1000 is almost the best one in all metrics.

Behavioral Features Results. Our behavioral features, which are 10 features (one

by Writing Style Similarity, one by Language Model-Based Tweets Similarity, four by

Posting Behavior, and four by Posting Diversity), perform better than the three base-

lines ("A","B","C") in most performance metrics. As expected, Random Forest has a

classification accuracy more than 78%. As SVM has the highest social spammer class

precision and almost the lowest recall, using the F-measure metric is the right way to

compare with other baselines since this metric combines the precision and recall me-

trics. Thus, compared to the other baselines, the F-measure of our behavioral features

is higher than other two kinds of features by 5% ∼ 7%. Differently from baselines’

results, the performance of SVM when using our features is completely different at

the recall level. The use of RBF (Gaussian) kernel with γ of 0.5 gives an indication

that the distribution of our features for social spammer class might be correlated with

the Gaussian distribution and thus such a knowledge might help in building unsupervi-

sed advanced models like Gaussian mixture model. Finally, the results of our features

ensure our hypothesis about the need to focus on designing features that model the

behavior of social spammers.

All Features Results. To provide more insights into the performance of our fea-

tures, we report the results when using our features with the user and content features.

Unfortunately, we observe a slight degradation in the accuracy, recall and F-measure

of social spammer class, while we expect the opposite behavior exactly. In the machine

learning world, this phenomenon appears when the classification model over-fits the

input data. In other words, the increasing of the features dimension has separated well

the examples of both classes. However, separating well examples of different classes

is not always something perfect since the learning algorithms build a model for some

examples while those examples are truly noise.

False Positive v.s. High Quality. As our main problem has direct relation with the

information quality field, it is necessary to discuss the results from quality point of

view. As known in the spam email filtering, the efforts are directed towards the false

positive problem that occurs when a truly "non-spam" email is classified as "spam".

However, in the context of social spam, the false positive problem is less important

because of the availability of large-scale data collections, meaning that classifying

"non-spam" account as a "spam" one is not a serious and relevant problem to worry

about. Thus, the attention is turned in social networks context to increase the quality

of data where a wide range of Twitter based applications (e.g., tweets summarization)

has a high priority to work on noise-free collections. For choosing the appropriate mo-

del that can effectively filter out spam accounts, the recall of social spammer class is

the right metric that must be considered at models selection step. Thus, the J48 with
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confidence factor of 0.1 produces the best model which gives the highest recall when

leveraging our 10 behavioral features. F-measure of social spammer class comes after

the recall metric since it considers both recall and precision in the computation. In

the case of F-measure metric, the classification model that is produced by the Ran-

dom Forest learning method with #Trees = 1000 when adopting our 10 behavioral

features.

As the computational time aspect is significant when targeting large-scale col-

lections, the extraction of our features is completely suitable to process large-scale

collections with providing high quality collections. For instance, the time required to

process our Twitter data-set is no more than few hours, distributed between crawling

data from Twitter (Top 100 tweets) and features extraction, and predicting the class

label of each account using an already learned classification model. Although of our

features are suitable for handling large-scale collections, they are not suitable for real-

time detection because of the need for information from Twitter’s servers to process

each Twitter account (user).

6. Conclusion

In this paper, we have approached the problem of filtering out social spammers

existing in large-scale Twitter data collections. We have introduced a design of new

features which focus on modeling the social spammers’ behaviors, after analyzing

deeply a large set of spam accounts. The experimental results show that reducing the

social spam problem starts from understanding first the behavior of social spammers

in posting spam content. Thus, the simple design of our new 10 behavioral-based

features has performed better than 75 features introduced in the state-of-the-art. We

cannot conclude that our features have completely solved the social spam problem;

however, our features are able to detect the Twitter social spammers that have surly

and massive behavior in polluting Twitter content. As a future work, we intend to

apply unsupervised learning approach methods with designing more robust features.
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