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ABSTRACT. This paper attempts to disclose the impact of localization uncertainty on path 

planning, a key function of mobile robot. Firstly, the localization uncertainty was analyzed in 

details, revealing that the uncertainty can be represented by the half length of the possible 

distribution area of the X-Y coordinates or the orientation variance. After that, the impact of 

uncertainty on path planning was evaluated in light of the path planning safety and 

performance. Then, two evaluation functions were put forward to evaluate the impact of 

uncertainty on path planning. Through simulation and experiment, the proposed functions were 

proved feasible and valid. The research findings shed new light on path planning under 

localization uncertainty. 

RÉSUMÉ. Cet article tente de révéler l'impact de l'incertitude de localisation sur la planification 

de chemin, une fonction clé du robot mobile. Premièrement, l'incertitude de localisation a été 

analysée en détail, révélant que l'incertitude peut être représentée par la demi-longueur de 

l'aire de répartition possible des coordonnées X-Y ou la variance d'orientation. Après cela, 

l'impact de l'incertitude sur la planification du chemin a été évalué à la lumière de la sécurité 

et de la performance de la planification du chemin. Ensuite, deux fonctions d’évaluation ont 

été proposées pour évaluer l’impact de l’incertitude sur la planification du chemin. Par la 

simulation et l’expérimentation, les fonctions proposées se sont avérées réalisables et valides. 

Les résultats de la recherche ont jeté un nouvel éclairage sur la planification de la trajectoire 

dans des conditions de localisation incertaine. 
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1. Introduction 

Mobile robots generally rely on the localization results to follow the planned path. 

Uncertainty in localization may negatively affect the path planning and path following. 

However, there is little report on the impact of localization uncertainty on path 

planning. 

The existing studies often describe localization uncertainty by the distribution 

covariance of locations and treat it the same as localizability. Roy et al. (1999) were 

the first to study the uncertainty in localization and localizability. Li and Franck 

measured the confidence of the information from the positioning system using map-

aided horizontal uncertainty level meter. References (Yang et al., 2015) explore the 

localization uncertainty and localizability in wireless network localization. 

The localization uncertainty and localizability have been extensively investigated 

in the map-based localization methods, in which the robot localizes itself by matching 

its perception with the given map through dead-reckoning (Qian et al., 2016). 

Assuming that the map is binary and the obstacle is differentiable, Censi (2007) 

determined the theoretical precision limit of map-based localization methods based 

on Cramér–Rao bound, defined localizability as the low bound of the localization 

uncertainty of the robot, and proposed a series of localizability estimation methods. 

Qian et al. (2016) introduced the influence factor of dynamic obstacles to estimate the 

localizability. Wang et al. (2015) developed a localizability-based action selection 

mechanism for mobile robots to speed up the convergence of global localization, in 

which the possible observation distinctness after a given action is predicted by a utility 

function. Ruiz-Mayor et al. proposed a new approach to estimate the perceptual 

ambiguity associated with localization uncertainty, and created a new probabilistic 

model of indistinguishability for perception with different kinds of range sensors 

(Murtra et al., 2008). 

The localization uncertainty has been taken into account in many recent studies on 

path or motion planning. For instance, Gonzalez and Stentz (2007) pursued the lowest 

expected cost, taking the localization uncertainty as a threat to the target reachability. 

Hu et al. (2012) presented a path planning algorithm for a mobile manipulator based 

on localizability, evaluated the localizability of a given path by adding up the fisher 

matrix along the path, and selected the path with the best localizability. Considering 

the localization uncertainty of the path, Robert et al. put forward a path planning 

algorithm after evaluating the uncertainties along the path and taking the localization 

uncertainty as a negative issue. 

To sum up, the previous research has shown that the localization uncertainty has 

a negative impact to path or motion planning. However, more analysis is needed to 

identify and evaluate the exact impact. Hence, this paper attempts to disclose the 

impact of uncertain localization on path planning and develop evaluation functions 

for the impact (Zhao et al., 2000). 

The remainder of this paper is organized as follows: Section 2 discusses the impact 

of localization uncertainty on path planning and path following; Section 3 puts 

forward the evaluation functions for this impact; Section 4 verifies the performance 
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of the functions through evaluation; Section 5 further validates the functions through 

an experiment in a close environment; Section 6 wraps up this paper with several 

conclusions. 

2. Impact of localization uncertainty on path planning 

Let S(x, y, θ) be the position of the robot. The estimated position �̂� obeys the 

Gaussian distribution �̂�~𝑁(𝑆, �̂�𝑆) , where �̂�𝑆  is the covariance matrix of the 

uncertainty of �̂�𝑆. If the covariance of the estimated X-Y coordinates of the robot is 

denoted as �̂�𝑋𝑌 , then �̂�𝑆  can be expressed as (�̂�𝑋𝑌 , �̂�𝜃) by ignoring the covariance 

between the estimated 𝜃 and the X-Y coordinates. It can be found that �̂�𝑆 defines an 

ellipsoid shape probability distribution of �̂�, and �̂�𝑋𝑌 defines the projection of �̂�𝑆 onto 

the plane of X-Y coordinates, which obeys an ellipse shape probability distribution. 

The impact of localization uncertainty under the above assumptions is illustrated 

in Figure 1, where the triangles are the robot poses, the dashed ellipses are defined by 

the �̂�𝑋𝑌, and the solid line is the given path. To tolerate motion and localization errors, 

all obstacles are generally inflated by a safe radius rs, and the destination by another 

safe radius ra. In Figure 1, the obstacles are in black, the destination is in red and the 

inflated regions are circled by dash lines. The localization uncertainty directly affects 

path following before acting on path planning. Thus, the impact of localization 

uncertainty on path planning is here converted into that on path following. The blue 

point in Figure 1 stands for the following target, which is generally employed in path 

following algorithms (Egerstedt et al., 2001). 
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Figure 1. The impact of localization uncertainty on path following 

2.1. The impact of �̂�𝜽 

Generally, the robot moves to reduce the angle difference ∆𝜃𝑇 between its 

orientation and the direction of the following target. Thus, the motion control of robot 

orientation can be simplified as: 



438     JESA. Volume 50 – n° 4-6/2017 

 

𝜃k=𝜃k-1-𝛾∆𝜃T                                                     (1) 

where k is the value at time k; γ is a variable related to control policy. Without 

considering the limited turning ability of the robot, the value of γ was set to 1. 

Let �̂�𝑘  be the estimated 𝜃𝑘  which conforms to the Gaussian distribution 

(�̂�𝑘~𝑁(𝜃𝑘 , 𝛿𝜃)). Then, the current post �̂�𝑘 can be estimated from the robot motion 

model: 
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where v is the translational speed of the robot; ∆𝑡 is the time span between two time 

steps. According to the knowledge of variance, we have 𝜃𝑘−1 − �̂�𝜃𝑘−1 ≤ �̂�𝑘−1 ≤

𝜃𝑘−1 + �̂�𝜃𝑘−1 with the probability of about 0.683. Since the limited turning ability of 

the robot is not taken into account, the robot can always turn to the desired orientation 

in one time step and the estimation error of �̂�𝑘−1  always reaches �̂�𝜃𝑘−1 . Then, 

equation (1) can be rewritten as:  
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Assuming that the start point is S0(X0,0,0), X0=50 and ra=5, the path of the robot 

can be plotted from S0 to the destination with a fix estimation error �̂�𝜃 in accordance 

with equations (2) and (3). Figure 2 presents the paths obtained by different �̂�𝜃 values, 

in which the cross is the start point, the red dot is the destination and the red dashed 

line is the ra. It can be seen that the path became longer as �̂�𝜃 increased from 0.3 to 

1.97, and that the robot could never each the destination if �̂�𝜃 ≥
𝜋

2
. Figure 3 illustrates 

the exponentially increasing relationship between �̂�𝜃 and the path length L(cm). 
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Figure 2. The robot paths obtained at different �̂�𝜃 values 
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Figure 3. The relationship between �̂�𝜃 and L 

Figure 4 shows the relationship between �̂�𝜃  and L under different start points 

X0=(50cm, 100cm, 200cm), where the value of X0 refers to the distance between the 

start point and the destination. It can be seen that the relationship differed greatly with 

the distances. However, if the L is replaced by 
𝐿

𝑋0
, then the relationships in Figure 4 

can be converted to the three solid lines in Figure 5, where the green, red and black 

solid lines represent the relationships under different values of X0.  
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Figure 4. The relationship between �̂�𝜃 and L at different X0 values 

Next, the relationships in Figure 5 were fitted in the Matlab, yielding a unified 

relationship with a RMSE 0.07373. Thus, the impact of �̂�𝜃 on path following can be 

described as: 
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where p1=-6,375; p2=3.766e+04; q1=-1.436e+04; q2=2.669e+04. 
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Figure 5. The relationship between 
𝐿

𝑋0
 and �̂�𝜃 at different X0 values and that between 

Eθ(�̂�𝜃) and �̂�𝜃 at different k2 values 

2.2. The impact of �̂�𝑿𝒀  

The X-Y coordinates of the robot are most likely to fall in the ellipse region of 

�̂�𝑿𝒀. Let ||�̂�𝐷|| be the half length of the longer axis of the ellipse of �̂�𝑿𝒀. According to 

the knowledge about bivariate normal distribution, it is easy to learn that ||�̂�𝐷|| can be 

derived from equation (5) if 1−α is the probability that the robot is located within the 

ellipse whose longer axis is ||�̂�𝐷|| in length.  

2
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Let 𝑥2
2(𝛼) denote the upper (100α)-th percentile of a 2DOF x2 distribution and λmax 

denote the maximum eigenvalue of δXY. Then, �̂�𝑋𝑌 can be safely represented by ||�̂�𝐷||, 

indicating that the probability that the robot position lies in the circle with a radius of 

||�̂�𝐷|| is no less than 1 – α. For simplicity, it is assumed that 𝑥2
2(𝛼) = 1. Then, δs can 

be described by (||�̂�𝐷||, �̂�𝜃). 

In path planning, the optimal path is generally close to the edge of the obstacles to 

reduce the total length. Thus, if a position has a large ||�̂�𝐷||, that is, a large area of 

probability distribution, then path traversing this position is highly likely to collide 
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into obstacles. In other words, the larger the ||�̂�𝐷|| of the pose, the worse the path 

traversing the pose. To reduce the possibility of collision, ||�̂�𝐷 || should satisfy the 

following condition: 

Ds R
r r +                                                  (6) 

where rR is the safe radius of the robot. Equation (6) means the localization error 

should fall within the tolerance range defined by rR and rs. To reduce the risk that the 

robot cannot reach the destination due to localization error, the position estimation 

error should satisfy the following condition: 

D
 < a

r                                                       (7) 

where ra is the given tolerance range. 

3. Evaluation functions for the impact of localization uncertainty 

3.1. Evaluation function for the impact of �̂�𝜽  

In path planning, an evaluation function is required to map the negative impact to 

a limited value domain. Some path planning approaches prefer to use a differentiable 

evaluation function. In light of the previous analysis, a sigmoid function was adopted 

to evaluate the impacts of ||�̂�𝐷|| and �̂�𝜃 separately. 

Considering the negative impact of �̂�𝜃 on the path, the evaluation fuction 
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where θu2 is a manually adjusted parameter, which comes from the fact that the robot 

cannot reach the destination if 𝛿𝜃 ≥
𝜋

2
 and 𝐸𝜃 (

𝜃𝑢2

2
) = 0.5; k2 is the increasing rate of 

the evaluation value. k2 is also manually adjusted parameter. The evaluation value of 

𝐸𝜃(�̂�𝜃) is negatively correlated with the impact of �̂�𝜃. 

In Figure 5, the dashed curves depict the relationships between 𝐸𝜃(�̂�𝜃) and �̂�𝜃. 

Focusing on the right vertical axis, with θu2=2, k2 can be set to 6.1, 10.1 and 14.1, 

respectively. Here, the parameter values are configured as k2=14.1 and θu2=2. In this 

case, 𝐸𝜃(1) = 0.5 and 𝐸𝜃(1.4) ≈ 1. 
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3.2. Evaluation function for the impact of ||�̂�𝑫|| 

The impact of ||�̂�𝐷|| can be evaluated by the following evaluation function E(||�̂�𝐷||): 
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where ru is the lowest bound; k1 is the increase rate of the evaluation value. The value 

of E(||�̂�𝐷||)is negatively correlated with the impact of ||�̂�𝐷||. The lowest bound can be 

obtained from equations (6) and (7): 

ru=min( -
s R
r r ,

a
r )                                            (10) 

Figure 6 shows six curves on the relationship between ||�̂�𝐷|| and E(||�̂�𝐷||) at k1=0.2, 

0.6, 1, 2, 3 and 4, respectively. In our research, the value of k1 was set to 1 such that 

E(ru)≈1 and the value of rs, rR and ra were set to 50cm, 30cm and 50cm, respectively. 
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Figure 6. E(||�̂�𝐷||) at different values of k1 and ||�̂�𝐷|| 

4. Simulation verification 

To prove the effect of the proposed approach, a simulation was carried out on 

Matlab in a typical indoor environment (Figure 7). During the simulation, a TurtleBot 

robot was required to move from the current position S0 to the start point S1 and then 

to the destination S5 following a given path. The localization results were provided by 

augmented Monte-Carlo localization (AMCL). The virtual vehicle approach was 

employed to control the robot in this simulation and the subsequent experiment. The 

other parameters were configured as follows: the maximum perception range of the 

laser scanner falls in [0.1m, 3m]; the look ahead distance is 0.4m; the translational 

speed is 0.3m/s; the maximum rotational speed is 1rad/s. 
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The robot paths in the simulation are recorded in Figure 8, where the black dots 

are the estimated robot positions, the magenta dots are the true robot positions and the 

red curve is the given path which starts from S1. The four key uncertainty evaluators 

||�̂�𝐷||, �̂�𝜃, E(||�̂�𝐷||) and Eθ(�̂�𝜃) were calculated for each position along the path and 

plotted as Figure 9, where the blue and black solid curves near the left vertical axis 

are the ||�̂�𝐷|| and the �̂�𝜃 values, respectively, the red and magenta dashed curves near 

the right vertical axis, denoted as Es, are the E(||�̂�𝐷||) (simplified as ED) and the Eθ(�̂�𝜃) 

(simplified as Eθ), respectively, and the horizontal axis is the kp of the robot along the 

path. These curves and the horizontal axis have the same meanings in the following 

Figures 8.  

 

Figure 7. Simulation environment 
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Figure 8. Simulated robot paths 
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Figure 9. The four key uncertainty evaluators along the path 

It can be seen from Figure 9 that, as the robot moved from the 18th position to the 

60th position, the value of ED mostly increased to 1 and that of ||�̂�𝐷|| mostly surpassed 

0.942m. This means the uncertainty in the estimation of X-Y coordinates is so large 

that the robot cannot follow the given path.  

As shown in Figure 8, the robot deviated greatly from its true position before the 

60th position, indicating that the robot motion is very unreasonable. In fact, before the 

18th position, the value of ED already reached 1 while that of ||�̂�𝐷|| was less than 0.5m, 

which is unsafe for the robot. This is backed up by the corresponding section of the 

path in Figure 8: the localization results show that the robot went into a gate. 

Fortunately, the robot still moved across the gate despite the huge deviation between 

the estimated and true positions. 

From the 60th positions onward, the robot’s X-Y coordinates were estimated very 

accurately, which ensures the precision of the path following behavior. Figure 9 also 

shows that the value of Eθ was excessively large, which is proved by the 

corresponding path segment in Figure 8 that the robot failed to reach the destination. 

5. Experimental verification 

To further validate the proposed evaluation functions, the author conducted an 

experiment in an artificial environment (Figure 10 (a)). The experiment map and the 

2 optimal paths are displayed in Figure 10(b). The map was drawn by simultaneous 

localization and mapping technology. In this experiment, a Pioneer 3-DX robot with 

a UTM-30LX laser scanner (Figure 11) was asked to follow the given path. The 

localization results were provided by the AMCL, while the maximum perception 

range of the robot was set to 2m. As in the previous simulation, the virtual vehicle 

path following algorithm was adopted at the translational speed of 0.2m/s and the 

rotational speed of 1 rad/s. 
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(a) Experiment environment (b) Experiment map, the optimal paths and the tracks 

Figure 10. Experiment environment and settings 

Figure 10(b) presents the two given paths in solid curves. Specifically, the blue 

curve is new optimal path determined by the proposed evaluation method considering 

localizability, while the red curve is the traditional optimal path obtained by the 

traditional method, which does not consider the localizability in path planning. The 

actual tracks of the robot in the experiment are also presented in Figure 10(b), with 

the black dotted curve being the track obtained by following the new optimal path and 

the brown dotted curve being the track acquired by following the traditional optimal 

path (Zhou and Lin, 2011). 

 

Figure 11. The robot 

As can be seen in Figures 10(a) and (b), the robot following the traditional optimal 

path lost its direction at about 78s into the experiment. By contrast, using the optimal 

path determined by our approach, the robot successfully arrived at the destination at 

127s after the start of the experiment (Lankenau and Rofer, 2002). The same results 
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were observed from the evaluations of the uncertainty impact along the path. It can be 

seen from Figure 12(a) that the four key uncertainty evaluators were very small along 

the new optimal path, indicating that the uncertainty is so small that the robot can 

reach its destination safety. On the contrary, the results along the traditional optimal 

path in Figure 12(b) reveals that the AMCL outputted an excessively large ||�̂�𝐷|| since 

the 75th position, resulting in a huge deviation from the given path in Figure 10(b). 

The values of the ||�̂�𝐷|| and the ED remained too high until the 115th position. As a 

result, the robot moved randomly and the localization results were totally wrong. 
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(a) Following the new optimal path 
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(b) Following the traditional optimal path 

Figure 12. Evaluation of uncertainty impact 

6. Conclusions 

This paper mainly discusses the impact of localization uncertainty on path 

planning and path following. Assuming that the localization error reaches the 

covariance, the uncertainty of localization was safety represented by the half length 

of the possible distribution of X-Y coordinates and the variance of orientation, 
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separately. Then, the negative impacts of these factors on the path following of the 

robot were analyzed based on a simplified robot motion model. On this basis, two 

evaluation functions were developed to measure the uncertainty impacts. Simulation 

and experiment show that the evaluation functions successfully described the impacts 

of the uncertainty, and the function values are negatively correlated with the impact. 
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