
 

 
 
 

 
1. INTRODUCTION 

Due to the large size and high complexity of power 
systems, it is important to put forward sparsity promoting 
control models and algorithms for the purpose of economy 
and robustness of the feedback control system. As a result, 
the conventional centralized control tactics are neither 
necessary nor applicable due to their high computational 
burden and poor economy costs. For identifying the sparse 
structure and optional design of decentralized controllers for 
power grids, recent research efforts appeal to the method of 
alternating correction method of multipliers (ADMM). The 
ADMM method was developed in 1970s; and is well 
implemented for solving decentralized optimization problems 
in industry and academic. The ADMM method is a version of 
method of multipliers and dual decomposition. The advantage 
of ADMM is that it can lead to a separating minimization in 
each iteration.  

The interconnection of power grids improves the system 
economy of operation, and leads to more complex 
decentralized control of these heterogeneous generations like 
wind and solar energy source. New challenges are arising due 
to the increasing integration of renewable power generation in 
power systems. The clustering structure of systems leads to   
wide area oscillations on the order of 0.2–2 .0Hz [1]. This 
inter-cluster swings may cause instability even catastrophic 
blackouts. However, the damping of low frequency 
oscillations is still intractable due to the delayed measurement 
or failure to determine the source frequency instantly [2]. The 
prevailing method to design the controller by using PSS 
(power system stabilizer) and FACTS (Flexible AC 
transmission system). Solutions to automatic design of PSS 

controller have been proposed recently in [3]. A range of 
measurements and analyses have been proposed to choose the 
best control input signal for the sparse control scheme, such 
as bus voltage, relative rotor angel, generator power flow and 
current[4-8]. Recently, the rise of the wide-area measurement 
system (WAMS) technology facilitate the design of rotational 
synchronization of generator, because the phase information 
about remote generator is applicable due to the phasor 
measurement units (PMUs) ,the GPS-based location and 
synchronization, high speed sampling and communication [9-
10]. Most of the literatures mentioned above model the power 
system at nominal operating point due to the small amplitude 
of the disturbance in wide-area oscillations, authors of [11] 
have explored the robustness of power systems around off-
nominal operating points, and proposed a coordinated design 
of multiple model FACTS-based controllers. 

The structure of this paper is as follows: In Section 2, a 
general format for formulating the optimization problem as 
the linear state-space model is discussed. Section 3 analyzes 
the separating of the augmented Lagrangian and penalty 
function for the alternating direction algorithm. In Section 4, 
we study the application of Lq (0<q<1) norm as penalty 
function for the structure optimization problem. Section 5 
evaluates the effects of sparsity coefficient with L0, L1 and Lq 
norms by numerical experiments, and Section 6 concludes the 
paper. 

2. MODEL 

Consider the following general format of single machine 
infinite bus power system:  
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ABSTRACT  
 
Many problems of recent interest in the design of sparse control for power grids can be posed in the structure 
optimization. Different performance indices and sparsity promoting penalty functions have been proposed for 
different control goals and structural constrains. We study the application of Lq norm as penalty function for 
sparse control optimization for bulk power networks. Our emphasis focus on identifying the sparsity patterns 
of feedback matrix under different value of q in Lq norm, by incorporating our design into the optimization 
framework of the alternating direction method of multipliers, which is well developed in recent researches on 
sparse control for power networks. The advantage of the alternating method allows us to exploit the penalty 
function by separating the function and quadratic performance in each iteration of solving the augmented 
Lagrangian. Case studies are provided to demonstrate the effectiveness of the proposed algorithm. 
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We omit the higher-order terms of the dynamics of every 

generator, then get the swing equation as follows: 
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where M is the inertia matrix, D is the  damping matrix, θ is 
the generator rotor angle.  Within the scope of wide-area 
oscillations, the system described by (2) can be linearized at 
the steady operating point, and equivalent to the linear state-
space model [12]: 

 

M 0    D L                                                               (3) 

 
where L is the coupling weights matrix named Laplacian 
matrix. We formulate the states of generator as x = (θ, …), 
then have the system model with control factor as follows: 
 

1 2  x Ax B d B u                                                               (4) 

 
where d denotes the disturbance, u denotes the control input 
signal. The value of A, B1, B2 may depends on the current 
operating point of system. A two level control scheme using 
linear time-invariant had been proposed by [7].  With the 
widespread use of FACTS, controllers based on the device 
aiming at damping both local and wide-area oscillations are 
designed by using different measurement, such as generator 
and bus voltage [8]: 
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Actually, there are many measurement choices for the 

damping of low frequency wide-area oscillation. The control 
model (4) uses the rotor angel and rotating frequency as 
feedback input.  Recently, the robust of FACTS design under 
multi-working conditions poses was considered [9]. The 
sparse arrangement of controllers with SISO or MIMO 
working model also has been proposed [10]. 

We derive the equation (6) based on the Taylor expansion 
of (4): 
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Let x Vz , then we have: 
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where the modal controllability and observability denote as: 
 

1 ,  B V B C CV  

 
 

3. OPTIMIZATION MODEL 

Consider the Mechanical energy and electrical energy of 
generator, then [13] 
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In (7), the output is the function of system state and control 

factor. Consider the H2 norm of the transfer function from d 
to z, then we have: 
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Hilbert-Schmidt norms denotes the power spectral 

distribution as follows: 
 

      
2 * 2trac ( ( ))e      iHS

i

H j H j H j H j        (10) 

 
According to the result of Lyapunov equation, we got the 

controllability Gramian solved by  
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     The H2 norm of transfer function denotes as follows: 
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Combined with the feedback control the norm can be 

formulated as follows, see [4] for more details: 
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H∞ control may provide robust solution for power systems, 

however, not stable transient property [14]. Consider our 
sparse control problem, there are two objects in the whole 
scheme: minimizing the H2 norm of transfer function; 
minimizing the number of the control links and optimizing 
the effect of control. For the quadratic control problem, 
ADMM method is preferred [2, 4]. Then the structure of the 
object function is formulated as follows: 

minimize   γ gJ F G  subject to  

 

0 F G                                                                           (14) 

 
We form the augmented Lagrangian for (14): 
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ADMM consists of the iterations 
 

1 argmin (F,G , ) k k kF L y                                               (16a) 

 
1 1arg min (F , , y ) k K kG L G                                             (16b) 
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1 1 1( )    k k k ky y F G                                                (16c) 

 
The advantage of the ADMM is the separating of F-

minimizing step and G-minimizing step. For the (16a), 
interior point method, Newton method both have good 
performance. For the (16b), soft threshold operators are used 
for solving. The value of F is not equals G in the process. 

When  F G ( 1.e 2   ), iteration exits.    

 
 

4. PENALTY FUNCTION  

4.1 L0 norm (q=0) 

For the L0 Norm, it acts as the Card function, which counts 
the number of nonzero elements 
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For the structure sparse problem, the L0 norm is the straight 

answer. However, the nonconvex property of L0 norm needs 
the L1 norm as an alternative convex-release version in 
practices. 

4.2 Lq norm (0<q<1) 

For the Lq norm, it denoted as  
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Because the Lq norm is non-convex, non-smooth, and non-

Lipschitz, there is no general theoretical algorithms for 
solving the (16b). The shrinkage threshold operators provide 
the analytic solution for some special point [15]. For q=1/2, 
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For q=2/3, 
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By using the threshold operator to (16b), we have 
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Lq (0<q<1) norm proves a good method to obtain the sparse 

structure of object function, as Fig 1 shows. In a 2-axis data 
space, only the solutions of Lq (q=1/2) and log norm obtain 
sparse structures. The solutions from other norms, L1 (q=1), 
weighted L1, L2 (q=2), Lp (p=1.5), which are the intersections 

of constrains set and minimal concentric circles of J (F), are 
not located on the axis. 

4.3 L1 norm (q=1) 

For the L1 Norm, it acts a weighted version of L0 norm, a 
convex release version, which counts the absolute value 
number of nonzero elements. 
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Figure 1.  The advantage of Lq (q=1/2) norm 

 
 

5. RESULTS 
 

We use MATLAB software as the tools for our simulation. 
We solve the optimal control problem (16) for about 20 
iterations with line spaced values of γ in the interval. Our 
sparse structure results are reported in Fig. 2.  

 

 
Figure 2. Sparse structure for L0,Lq,L1,and log norms 

 
Our performance results are reported in Figs. 3. For γ =0, 

the optimal feedback gain is fully populated, thereby 
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requiring centralized implementation. As γ increases, the off-
diagonal elements of the feedback matrix become 
significantly sparser whereas the relative cost increases only 
slightly; see Figs. 3. Especially, for the Lq norm (q=1/2), 
when r>=2, the sparse process works in a low effect, while 
there is a persistent deterioration of the performance. For the 
performance analyze of the logarithmic norm, as γ increases, 
sparse structure and performance all have a bad 
discrimination. Compared with L0 norm, the performance of 
L1 norm has an increasing worsen due to its more sparse 
structure. Additionally, as γ increases, the performance of Lq 
norm shows a nearly linear power law changing, which is 
suitable for analyze and design of the control problem.  

 

 
Figure 3.  Performance for L0 norm  

 
 

6. CONCLUSIONS 

In this paper, the effect of Lq (0<q<1) norm played as 
penalty function of an optimization scheme was presented. 
The optimization scheme uses the ADMM algorithm to 
minimize the steady-state variance of the sparse controlled 
system. The designed ADMM scheme consists two separating 
steps in which the penalty functions played as L0, L1 and Lq 
regularized term. The simulation results showed that r has a 
nearly linear relationship with sparse structure and 
performance when at low value, and saturation effect 
appeared with the increasing of r. The results and analysis in 
this paper have potential applications to wide-area control in 
actual power systems. 
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