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Sports action recognition helps athletes correct their action range and standardize their 

poses. But it is not an easy task to recognize sports actions, due to the individual difference 

in action execution. Besides, the difficulty of action recognition increases with the diversity 

of actions and the complexity of background. The previous studies have not fully considered 

temporal changes, and failed to determine the exact staring point of actions. To solve the 

problem, this paper proposes a new method to recognize dance actions and estimate poses 

based on deep convolutional neural network (DCNN). Firstly, the authors presented full-

effect expression of global and local features of dance actions, and derived an optimal model 

based on DeepPose. Next, a dance pose evaluation model was established based on time 

sequence segmentation network, and the sparse time sampling strategy was introduced to 

realize efficient and effective learning of the frame sequence of the whole video. 

Experimental results confirm the superiority of the full-effect expression of global and local 

features, and the effectiveness of the proposed model. The research results provide a 

reference for the application of deep learning (DL) in other scenarios of action recognition 

and pose estimation. 
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1. INTRODUCTION

Human action recognition involves multiple disciplines, 

such as image processing, machine vision, and artificial 

intelligence (AI). It is widely used in behavior capture and 

analysis, video surveillance, security control, and 

environmental prediction. Concerning the standardization of 

sports actions, human action recognition also has a huge 

application potential, and enables athletes to correct their 

action range and standardize their poses [1, 2]. 

In recent years, great functional progress has been made in 

visual object recognition and object behavior detection, thanks 

to deep learning (DL) algorithms like pattern recognition and 

machine vision [3-5]. Notably, deep convolutional neural 

network (DCNN) brings breakthroughs in image and video 

processing [6, 7]. Therefore, it is both theoretical and practical 

significant to recognize dance actions and estimate poses from 

the respective of DL. 

From simple to complex, the contents of human action 

recognition can be divided into three levels, namely, mobile 

vision, action vision, and behavior vision [8-12]. However, 

weakly correlated action frames are often poorly processed, 

and the current method for representation and information 

fusion cannot select desirable features. To overcome these 

defects, Ozcan and Basturk [13] designed an action sequence 

segmentation algorithm for aerobics: the authors provided an 

approach to eliminate the continuous extreme values of the 

pose variation curve in continuous frames, extracted the three-

dimensional scale-invariant feature transform (3D-SIFT) 

features and optical flow features of aerobic actions, calculated 

the similarity between action sequences, and imported the 

eigenvectors and calculated similarity into the classifier, 

which realizes the recognition of aerobic actions. 

Good pose control can improve the power chain 

transmission efficiency and sports performance in all body 

parts of the athlete [14-19]. Nguyen et al. [20] performed 

action recognition and pose analysis on the screenshots of 

athlete videos, determined high-quality metrics of the 

qualified lifting action of wrestlers based on the results of 

expert interviews, set up a test group and a control group to 

compare the action qualities before and after intervention in 

pose control, and effectively improved the strength, speed, and 

torso stability of athlete actions. 

Traditional motion parameter capture systems mostly use 

sensors to collect data [21-24]. Herath et al. [25] processed 

static and dynamic sports training images with OpenPose 

algorithm and the behavior sequence segmentation tool called 

derivative dynamic time warping (DDTW) algorithm, 

respectively, and identified the bone joint points based on 

optical flow and human motion continuity. Using OpenPose 

algorithm, Iosifidis [26] carried out body pose estimation and 

body tracking through measuring inter-frame pose distance, 

and greatly reduced the false positive, miss rate, and fallout 

ratio. Using the DDTW algorithm for behavior sequence 

segmentation, Faraki et al. [27] segmented the entry action 

sequence of divers, extracted the key frames of entry actions 

based on its relationship with the vertical motion trajectory of 

the athletes, and verified the feasibility and applicability of the 

algorithm by evaluating the extracted frames. Perera et al. [28] 

shot the golf swing actions of excellent athletes and 

professional students with fixed point, focus, and distance, 

extracted the features of rotation action from the three phases 
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of the action executed by excellent athletes, compared the 

rotation features and kinematic indices between excellent 

athletes and professional students under the 3D image analysis 

system of Ariel, and offered professional students suggestions 

on improving the rotation angles of hip and shoulder, the 

coordinates of upper limbs, the gravity center of the body, and 

the exercise time. 

The domestic and foreign studies on the detection and 

recognition of human actions have achieved fruitful results. 

However, the recognition of dance actions is challenged by the 

diversity of such actions. From the angle of standardization, 

there is a certain degree of individual difference in the 

execution of the same action. Besides, the difficulty of action 

recognition increases with the diversity of actions and the 

complexity of background. The effect of action recognition is 

greatly affected by the identification of starting point of each 

action. It is of great necessity to take account of temporal 

change while identifying the starting point. 

For the above reason, this paper put forward a novel method 

for dance action recognition and pose estimation based on 

DCNN. Section 2 explains the full-effect expression of global 

and local features of dance actions, constructed an optimal 

model based on DeepPose, and realized the fusion between the 

results detected by local convolution model and the output of 

the global model. Section 3 develops a dance pose evaluation 

model based on time sequence segmentation network, and 

ensures effective and efficient learning of the frame sequence 

of the whole video by the sparse time sampling strategy. 

Finally, experiments were conducted to verify the superiority 

of the full-effect expression of global and local features, and 

to confirm the effectiveness of the proposed model. 

 

 

2. FULL-EFFECT EXPRESSION OF GLOBAL AND 

LOCAL FEATURES OF DANCE ACTIONS  

 

 
 

Figure 1. Process of full-effect expression of dance actions 

 

Figure 1 explains the process of full-effect expression of the 

global and local features for dance actions. It is clear that our 

models are premised on the fusion between the local and 

global features of the frames in the dance action video. The 

dance actions involving L joints can be expressed as a vector 

H=(…, hi, …)T, i∈{1, …, L}, where the coordinates of joint i 

are hi=(ai, bi). Let P be the data of a dance action image; H and 

H* are the actual pose and estimated pose, respectively. Then, 

a labeled image sample of dance actions can be described as 

(P, H). 

 

2.1 Image preprocessing  

 

Image enhancement generally includes four steps: rotation, 

translation, scaling, and flipping. Here, the origin of the 

coordinates is defined as the first pixel in the upper left corner 

of the dance action image. Taking the horizontal direction as 

the a-axis and the vertical direction as the b-axis, the original 

dance action image of the size (Pa, Pb) was rotated clockwise 

by an angle of Ψ, 0≦Ψ≦π/2. Then, the coordinates of joint i 

under the rotated coordinate system can be represented by 

hi
s=(ai

s, bi
s): 

 

2 2 2

2 2 2

s

s a b a

i

s

s b a b

i

P P P
a a cosΨ b sinΨ

P P P
b b cosΨ a sinΨ

    
= − − − +    

    


    = − − − +       

  (1) 

 

The size of the rotated dance action image Ps can be 

described by:  

 

( )

( )

s

a b a a

s

b a b b

P P P tanΨ sinΨ P cosΨ

P P P tanΨ sinΨ P cosΨ

 = − +


= − +
  (2) 

 

Let p1 and p2 be the coordinates of the upper left and lower 

right corners in the cropped area of the image, respectively. To 

translate the rotated image, the first step is to determine the 

minimum cropped area based on the labels of the dance actions: 

 

( ) ( )( )

( ) ( )( )

1 1 1

2 1 1

s s s s

L L

s s s s

L L

p min a ,...,a ,min b ,...,b

p max a ,...,a ,min b ,...,b

 =



=


  (3) 

 

By randomly enlarging the minimum cropping area (3), new 

images P' can be obtained for different translation actions. Let 

hp
i be the coordinates of joint i on image P'; Φ be the 

displacement of p1. Then, the labels of dance action image 

samples can be converted to the new coordinate system by: 

 

( )1

p s

i ih h p Φ= − −   (4) 

 

Translation is followed by scaling. Let (Pr
a, Pr

b) be the size 

of the scaled dance action image; Ka and Kb be the index 

matrices of a-axis and b-axis, respectively; ωa and ωb be the 

weight matrices of a-axis and b-axis, respectively; s×e be the 

size of convolution kernel. Then, the four matrices Ka
P

r
a×s, 

Kb
P

r
a×e, ωa

P
r
a×s, and ωb

P
r
b×e can be solved through interpolation.  

The pixels of the original image used to derive the l-th pixel 

on the a-axis of the scaled dance action image can be expressed 

as the l-th row of the index matrix Ka, whose size is Pr
a×s. The 
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pixels of the original image used to derive the l-th pixel on the 

b-axis of the scaled dance action image can be expressed as 

the l-th row of the index matrix Kb. 

The weight matrices ωa and ωb have one-to-one 

correspondence with Ka and Kb, and characterize how much 

the relevant original image pixels contained in Ka and Kb 

contribute to the scaled images.  

Based on Ka
P

r
a×s, Kb

P
r
a×e, ωa

P
r
a×s, and ωb

P
r
b×e, it is possible 

to update the scaled coordinates for the labels of the image 

samples under the old coordinate system. 

The scaling is ensued by horizontal flipping. Let PFH be the 

flipped image; (ar
i, br

i) be the coordinates of the left joint in 

the original image. Then, the flipped coordinates of the j-th 

right joint, which is symmetric to the left joint, can be 

expressed as: 

 
FH r r

i a i

FH r

i i

a P a

b b

 = −


=
  (5) 

 

Formula (5) shows that the flipping can be done by 

calculating the value of ai
FH, and swapping the coordinates of 

left joints with those of the right joints. Through rotation, 

translation, scaling, and flipping, the training samples for our 

dance action recognition model not only grew in number, but 

also became more diversified. 

The bounding box of dance actions can be obtained through 

target detection on the preprocessed new image and its label 

(PFH, HFH). Let (pa, pb) be the coordinates of the upper left 

corner in the original image. Then, the are cropped from the 

original image based on the bounding box can be determined 

as:  

 

( ) ( ), ,p p

a ba b a p b p= − −   (6) 

 

Thus, as long as (pa, pb) are known, the coordinates of the 

cropped area can be mapped to the original image: 

 

( ) ( ), ,p p

a ba b a p b p= + +   (7) 

 

The cropped image PB needs to be further scaled by the 

above steps. After preprocessing, the joint coordinates of each 

dance action image can be predicted by our dance action 

recognition model as hFH
*=(aFH

*, bFH
*). By looking up the 

pixel mapping table, the predicted values of the dance action 

recognition model on the original image can be obtained as: 

 

( ) ( ), ,a b

FH a FH ba b e a p e b p      = + +      (8) 

 

2.2 Construction of global model 

 

To realize the adaptive full-effect expression of human 

dance actions, richer local details must be included, without 

sacrificing the expression of global features of the actions. 

This can be achieved through optimization of rough action 

description. Based on DeepPose, this paper constructed an 

optimal model to describe dance action recognition and pose 

estimation.  

The traditional DeepPose mainly faces four problems: (1) 

The dance action recognition and pose estimation are treated 

as a regression problem, adding difficulty to the training of the 

neural network model; (2) Some local information of the 

original image gets lost in the three pooling operations of the 

model; (3) Global reasoning makes the mapping between 

images and dance actions highly nonlinear; (4) Global 

reasoning and local optimization adopt the same neural 

network. 

 

 
 

Figure 2. Structure of the global model 

 

This paper improves the DeepPose to address the above four 

problems. The improved model consists of a global model, and 

a local convolution model. The structure of the global model 

is shown in Figure 2. 

Let DP and EP be the height and width of the pooling 

window of the global model, respectively; lP be the step length 

of each sliding of the pooling window. Then, a convolution 

can be described as CON(DP * EP, lP), and a max pooling can 

be expressed as POO(DP * EP, lP). Before and after local 

response normalization, the value of point (a, b) in the feature 

map of the i-th dance action can be respectively denoted as ui
a,b 

and vi
a,b. The number of feature maps in the current layer and 

that of feature maps participating in calculation can be 

respectively denoted as MC and mC. The hyperparameters can 

be denoted as γ, δ, and ξ. Then, the local response 

normalization of the mC adjacent feature maps can be 

described as:  

 

( )( )

( )( )21 2

0 2

C c

C

i

a,bi

a,b ξ
min M ,i m / i

a,bj max ,i m /

u
v

γ δ u
− +

= −

=

+ 
  

(9) 

 

The above normalization can enhance the generalization 

ability of dance action features. 

The global model contains a fully-connected layer gp
1 of 

1,024 neurons, and the other fully-connected layer gp
2, which 

serves as the output layer. The latter is equally divided into 

two parts gp-a
2 and gp-b

2, which presents the a-axis and the b-

axis of the image coordinate system, respectively. To facilitate 

model training and learning, it is necessary to set independent 

loss functions for the two fully-connected layers. 

Let ca={ca
1, …, ca

ET} and cb={cb
1, …, cb

DT} be the outputs 

of gp
1 and gp-b

2, respectively, with ET and DT being the width 

and height of the input image, respectively. Based on the 

independence between the outputs of gp
1 and gp-b

2, either ca or 

cb can be expressed as c={c1, …, cDT}. In this way, the action 
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features can be described more clearly. Let Pmc be the 

probability of joint coordinates falling on a=mc or b=mc. Then, 

the probability distribution form of the outputs can be 

transformed by the maximum flexibility function: 

 

( ) ( ) ( ) ( )

( )

1

1

..., ...,
c T

c

c T

T

m D

cm

m D cj

j

P c P c P c P c

e
P c

e
=

  =  



=
 

  (10) 

 

Let β be the true value; Γ{·} be the indicator function. If 

Γ{·}=1, the parameter is true; if Γ{·}=0, the parameter is false. 

The gap between the predicted and actual dance actions can be 

measured by cross entropy:  

 

( )   ( )
1

T

c

c

D

c m

m

Loss c, || m logP c 
=

= − =   (11) 

 

The loss function (11) can be minimized through stochastic 

gradient descent:  
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m log e c
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m

e
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
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





=
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=

=

 
= − =  
 

  
= = −   

  

 
 = = −
 
 

= =



 




 ( )( )1c −

  (12) 

 

Judging by the independent observations of the 

backpropagation gradients of gp-a
2 and gp-b

2, the main 

difference between our model and traditional CNN lies in the 

calculation of both loss functions. Hence, two gradients 

generated by gp-a
2 and gp-b

2 will propagate reversely through 

the output layer gp
2. Both will affect the adjustment and update 

of network parameters. 

Let g1={g1
1, …, c1024

1} be the output of gp
1. For simplicity, 

the output will be referred to as g={g1, …, c1024}. Besides, the 

connections between gp
1 and gp

2 can be described as 

ω={ω1, …, ωm, …, ωDT}, where ωm stands for all the 

connections between the m-th neuron of ωm and gp
1. Let (βa, 

βb) and (ωβa, ωβb) be the true coordinates of a joint and the 

weight of the corresponding neuron, respectively; ca
β=ωT

βag 

and ca
β=ωT

βbg be the output of the βa-th neuron in gp-a
1 and that 

of the βb-th neuron in gp-a
2, respectively. Then, the partial 

derivative of ωβ can be calculated by:  
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ge
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e
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









 

 

 

=

= =
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=

 
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 

  
=  = −   
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 
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  
 
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

 




  
(13) 

Substituting the β in formula (13) with βa or βb, it is possible 

to obtain the backpropagation gradient of gp-a
2 or gp-b

2. 

 

2.3 Construction of local convolution model 

 

The global model only outputs the ROI of dance actions. To 

pinpoint the joints of the dancer, local convolution is needed 

to prepare a thermal diagram. The global and local results can 

be combined to obtain a thermal diagram synthetizing visual 

information on both global and local scales. Figure 3 illustrates 

the structure of our local convolution model. 

 

 
 

Figure 3. Structure of local convolution model 

 

The outputs of gp-a
2 and gp-b

2 are respectively an N×1 vector 

ca and an M×1 vector cb. The serial number of the neuron that 

returns the maximum input vector can be denoted as REmax(·). 

Then, the coordinates of the target joint can be calculated by 

the serial number of the neuron making the largest response 

by: 

 

( ) ( ) ( )( )i i a ba ,b REmax c ,REmax c  =   (14) 

 

Let GTD be the global thermal diagram; NO(c) be 

normalization; SO(·) be smoothing. Then, the two output 

vectors of the global model can be superimposed into a global 

thermal diagram:  

 

( )

( )

( ) ( )... ,..,

T

a

N M b b

T

b

NO c

GTD SO NO c NO c

NO c



  
  
 =      
  
    

  (15) 

 

First, the NO(ca)T was duplicated for m times, and sorted in 

rows, creating a matrix; meanwhile, the NO(ca) was duplicated 

for n times, and sorted in columns, creating another matrix. 

Then, the two matrices were multiplied, and the product was 

subject to Gaussian smoothing. Hence, the authors obtained 

the global thermal diagram about the distribution of human 

joints in the target image. 

Then, a threshold was set up as μMAX(GTD), μ∈[0, 1], 

where MAX(GTD) is the largest element value in the global 

thermal diagram. Then, the pixels whose values are greater 

than the threshold were selected from the diagram, forming an 

ROI O. Let ti be the value of the i-th element. Then, the ROI 

extraction process can be defined as:  
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 

( ) 

1,..., ,...

||

j

j i

O u u

u i t MAX GTD

=

=   
  (16) 

 

The thermal map helps to increase the accuracy of joint 

positioning. Let GTDLC be the thermal diagram obtained by 

local convolution; ξ ∈ [0, 1] be a hyperparameter of the 

confidence of the global thermal diagram. Then, the results of 

local convolution model can be fused with those of global 

model by: 

 

( ) ( )( )1i i LCa ,b REmax ξ GTD ξ GTD  =  + −    (17) 

 

 

3. DANCE POSE EVALUATION BASED ON TIME 

SEQUENCE SEGMENTATION NETWORK  

 

Dance pose evaluation requires the analysis of the frame 

sequence in the entire video of dance actions. This section 

designs a dance pose evaluation model based on time sequence 

segmentation network, and adopts the sparse time sampling 

strategy to realize efficient and effective learning of the frame 

sequence in the entire video. Figure 4 explains the workflow 

of the proposed model. The time sequence segmentation 

network for video-level prediction consists of a spatial flow 

convolutional network and a time flow convolutional network. 

 

 
 

Figure 4. Flow chart of dance pose evaluation model based 

on time sequence segmentation network 

 

The given dance action video SP was divided into L 

segments of equal length: {L1, L2, …, Ls}. Then, these 

segments form a sequence (R1, R2, …Rs). The processing of 

the CNN on segment Rs can be denoted as G(Rs; Q), where Q 

is the neural network parameter. Let PC be the segment 

consensus function. The consensus between segments on the 

class of dance pose s can be derived from the estimated classes 

of dance poses based on different segments Rs. The temporal 

sequence segmentation network can model a series of 

segments by:  

 

( )

( ) ( ) ( )( )( )
1 2

1 1

, ,...

, , , ,..., ,

s

s

T R R R

F PC G R Q G R Q G R Q=
  (18) 

 

Let TO be the number of estimated classes of dance poses; 

bi be the true value of class i. Then, the probability that the 

frame sequence of the entire dance action video belonging to 

each class can be calculated by the dance pose estimation 

function F. The cross entropy loss function for the standard 

classification of part of the consensus can be expressed as: 

 

( ) ( )1 1

j
TO TO PC

i ii j
Loss b,PC b PC log e

= =
= − −    (19) 

 

The consensus function PC can be described as 

PCi=f(Gi(R1), Gi(R2), …Gi(Rs)), where f is the aggregate 

function reflecting the final accuracy of pose evaluation by the 

averaging method. The score of a class PCi can be obtained 

based on the averaging by f, from the segments belonging to 

the same class. Figure 5 shows the workflow of the time 

sequence segmentation network. 

 

 
 

Figure 5. Training flow of the time sequence segmentation 

network 

 

Let L be the number of video segments used by the time 

sequence segmentation network. The model parameter Q can 

be optimized through backpropagation based on multiple 

segments. The gradient of Q about the loss function can be 

obtained by: 

 

( )

( )

( )
1

Loss k

l
k

Loss b,PC G RLoss PC

Q PC G R Q=

  
=

   
   (20) 

 

To position the dance poses based on temporal sequence, 

this section improves the framework of three-stage 3DCNN. 

As shown in Figure 6, the improved model consists of a 

proposal network, a classification network, and a positioning 

network.  

First, the frame size was adjusted to a fixed size. Then, NT 

time windows of different lengths yet with an overlap ratio of 

533



 

3/4 were slid over the original video A. The set of candidate 

areas θ={(δt, θt, Δθt)}NT
t=1 generated by A were imported to the 

proposal network, where θt and Δθt are the starting time and 

ending time of the frames in the dance pose video, respectively. 

Figure 7 shows the flow chart of the precise positioning of 

starting and ending boundaries of dance actions. 

 

 
 

Figure 6. Framework of dance pose positioning model 

 

 
 

Figure 7. Precision positioning of starting and ending boundaries of dance actions 
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Responsible for initializing the positioning network, the 

classification network only works in the training phase. This 

network outputs the probabilities of L classes of dance poses 

and one class of background. During the training, the samples 

with an intersect over union (IOU) greater than 0.7 and smaller 

than 0.3 were judged as positive samples and negative samples, 

respectively. In the meantime, the background class was 

sampled according to the average number of samples in each 

dance pose class. 

The positioning network initializes and finetunes the 

parameters of the classification network. It also outputs the 

probabilities of dance pose classes and background class. 

Different from the classification network, the positioning 

network adopts a loss function related to the degree of overlap 

in time. Let μB be the scale factor. Then, the loss function of 

the positioning network can be defined as: 

 

SM B OLLoss Loss Loss= +   (21) 

 

Let RCm and IOUm be the true classes of dance poses and 

IOU in a video segment; OSm be the output of the positioning 

network; υ be a hyperparameter. Then, we have: 

 

( )
( )

2

1 1
1 , 0

2

mRC

m

OL m m

m

OS
Loss RC

M IOU


  
  = − 
   

  

   (22) 

 

By suppressing non-maximal values and removing 

overlapped video segments, it is possible to remove the dance 

pose classes with relatively low scores, leaving only those with 

relatively high scores. 

 

 

4. EXPERIMENTS AND RESULTS ANALYSIS 

 

Table 1. Mean average precisions (mAPs) of different 

models in target detection 

 
IOU threshold 0.1 0.2 0.3 0.4 0.5 

Traditional CNN 1.4 0.8 0.6 0.2 0.1 

Recurrent neural network 

(RNN) 
18.2 16.5 13.7 11.9 8.7 

3DCNN 37.9 37.1 27.5 21.4 15.2 

Two-flow CNN 45.8 42.3 36.2 28.8 19.3 

Our model 46.2 46.5 37.4 30.6 20.5 

 

The dance pose evaluation model based on temporal 

sequence segmentation network was compared with three 

other models through experiments, including traditional CNN, 

RNN, and two-flow CNN. Table 1 compares the mAPs of 

different models in target detection. The traditional CNN had 

a very low recognition rate, and only recognized some simple 

actions. The RNN improved the recognition rates of the CNN 

by at least 10% at different IOU thresholds. The 3DCNN 

further improved the recognition rates by 7-21%, which 

significantly enhances the precision of dance action 

recognition. The two-flow CNN continued to improve the 

recognition rates by 4.5-8%, through full use of the 

spatiotemporal features of the dance action video, and 

demonstrated high innovativeness and good practical effect. 

Our model, that is, the 3DCNN with temporal sequence 

segmentation network and sparse sampling strategy, achieved 

better recognition rates than the other models on the ballet 

dance action image set at different IOU thresholds. 

 
(a) Rotation 

 
(b) Jump 

 

Figure 8. Recognition rates of different classes of dance 

actions 

 

Next, the full-effect expression of global and local features 

was compared with other action recognition methods, namely, 

principal component analysis (PCA), independent component 

analysis (ICA), Gaussian process latent variable model, 

random walk model, local linear coordination, Gaussian 

process dynamic model, scale-variable Gaussian process 

latent variable model, and hybrid expert model in terms of the 

precision on dance action image set. The recognition rates of 

rotation and jump actions are recorded in subgraphs (a) and (b) 

of Figure 8, respectively. The vertical axis “precision” was 

obtained through the weighted averaging of the recognition 

rates of the features for the left and right joint actions of the 

subjects; the horizontal axis is the PDJ standard tolerance. 

Overall, Gaussian process latent variable model and our 

model achieved relatively high recognition rates on the dance 

actions. The former was more convenient and easy to operate 

than our model. Comparing the recognition rates of various 

classes of dance actions, our model, Gaussian process latent 

variable model, scale-variable Gaussian process latent 

variable model, and Gaussian process latent variable model 

had a large lead in recognition rate, which verifies the 

superiority of the proposed full-effect expression of global and 

local features. 
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Figure 9. Training error curves of global models 

 

The global network is the foundation of the full-effect 

expression of global and local features. This paper tests and 

analyzes the proposed global network by performance and 

efficiency. According to the training error curves of global 

models (Figure 9), from the 0th to 18,000th iteration, the loss 

function values of gp-a
2 and gp-b

2 declined with fluctuations, 

and tended to be stable at about the 24,000th iteration, while 

the loss of regression model did not decrease with oscillations. 

This means the global network can effectively train and learn 

the useful information for the determination of joint 

coordinates.  

The spatiotemporal distribution of interest points in the ROI 

of dance action images reflects the evolution of interest points 

in time and space during the dance movement. Figure 10 

presents the spatiotemporal distribution of interest points in 

different ROIs during rotation and jump actions. Different 

joint angles are represented by different shapes. Obviously, the 

interest points of the ROIs of the two actions had different 

spatiotemporal distributions. That is, the spatiotemporal 

distribution plays an important role in the recognition of dance 

actions and the estimation of poses. 

Furthermore, 3D dance poses were estimated based on the 

dance action image set. The training results of four models are 

compared in Figure 11, including motion history map, space-

time body, motion energy map, and our model. The four 

models were compared in terms of total training time, mean 

estimation error, the inclusion/exclusion of time factor, and the 

inclusion/exclusion of dimensionality reduction (Table 2). 

Figure 12 provides the mean error curves of dance pose 

estimation at different joint angles. It can be seen that our 

model consumed a short time in training, and minimized the 

training error and mean error at different joint angles, under 

the premise of considering the time factor and data 

dimensionality. 

 
(a) Rotation 

 
(b)Jump 

 

Figure 10. Spatiotemporal distribution of interest points in 

different ROIs 

 

 
 

Figure 11. Training results of different pose estimation 

models 

 

Table 2. Performance of different pose estimation models 

 

Model 
Total training 

time 

Mean estimation 

error 

Time factor 

considered? 

Dimensionality 

reduction? 

Motion history map 1 s 17.5 No Yes 

Space-time body 12 s 9.8 No No 

Motion energy map 2 s 8.6 Yes Yes 

Our model 1.5s 6.6 Yes Yes 
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Figure 12. Pose estimation errors at different joint angles 

 

 

5. CONCLUSIONS 

 

This paper develops a novel DCNN-based strategy for 

dance action recognition and pose estimation. After detailing 

the workflow of full-effect expression of global and local 

features for dance actions, an optimal model was built up 

based on DeepPose. Next, a dance pose evaluation model was 

created on temporal sequence segmentation network, and the 

sparse time sampling strategy was adopted to realize effective 

and efficient learning of the frame sequence in the entire video. 

Through experiments, the authors compared the mAPs of 

different models in target detection, and the recognition rates 

of multiple methods in dance action recognition. The 

comparison confirms the superiority of the proposed full-

effect expression of global and local features. In addition, 

experiments were conducted on the spatiotemporal 

distribution of interest points in different ROIs, and the 

estimated dance poses of 3D body. The results demonstrate the 

advantages of our model in total training time, mean 

estimation error, time factor consideration, and data 

dimensionality. 
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