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 Mobile speech recognition attracts much attention in the ubiquitous context, however, 

background noises, speech coding, and transmission errors are prone to corrupt the incoming 

speech. Therein, building a robust speech recognizer requires the availability of a large 

number of real-world speech samples. Arabic language, like many other languages, lacks 

such resources; to overcome this limitation, we propose a speech enhancement step, before 

the recognition begins. For the speech enhancement purpose, we suggest the use of a deep 

autoencoder (DAE) algorithm. A two-step procedure is suggested: in the first step, an 

overcomplete DAE is trained in an unsupervised way, and in the second one, a denoising 

DAE is trained in a supervised way leveraging the clean speech produced in the previous 

step. Experimental results performed on a real-life mobile database confirmed the potentials 

of the proposed approach and show a reduction of the WER (Word Error Rate) of a 

ubiquitous Arabic speech recognizer. Further experiments show an improvement of the 

perceptual evaluation of speech quality (PESQ), and the short-time objective intelligibility 

(STOI) as well. 
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1. INTRODUCTION 

 

Extensive use of handheld and wearable devices 

exponentially increased the use of speech as communication 

means and favored the widespread of ubiquitous systems that 

aim to be accessible anywhere and at all times. Although these 

devices are widely used in Arabic countries, applications 

related to Arabic speech recognition are scarce, this is mainly 

due to the lack of resources such as mobile speech corpora; 

this contribution aims to overcome limitations related to the 

speech corpus scarcity and to develop an Arabic speech 

recognizer for real-life environments. 

Commonly, automatic speech recognition (ASR) is 

implemented through two main stages: extraction of the 

acoustic features from the incoming signal (this stage is known 

as the front-end part) and the decoding/recognition (this part 

stands for the backend part) [1]. Meanwhile, mobile speech 

recognition can be deployed in three architectures according 

to the resources’ availability, the components’ complexity, and 

the application’s location, namely network speech recognition 

(NSR), distributed speech recognition (DSR), and embedded 

speech recognition (ESR) [2]. The speech signal is always 

captured at the client-side while the application can reside 

either at the client or at the server-side. Server-based models 

(NSR and DSR) are concerned with speech coding which 

refers to the speech signal representation in a digital form with 

few bits, thereby enabling the signal transmission while 

preserving the quality required for further applications. 

While the front-end processing is less resource demanding, 

the back-end requires more resources owing to the huge 

number of acoustic models’ parameters [3] -usually, acoustic 

models are hidden Markov models: HMMs [4]. ESR systems 

are known as client-based systems where the two 

aforementioned parts are located at the client-side, this 

discarded them from ubiquitous use. In remote speech 

recognition (NSR and DSR), “the speech signal quality and … 

robustness are two important parameters for choosing DSR 

while the wide deployment of high-quality speech codecs 

makes NSR a favorite” [3]. Meanwhile, the use of NSR 

architectures is preferable as the decoding and recognition 

tasks are too complex for the client device. Moreover, NSR 

enables plug-and-play of the ASR system at the server-side 

without changes on the client devices, which is particularly 

suitable for ubiquitous systems. 

Although NSR architecture is suitable for ubiquitous 

applications, low-bit-rate codecs, background noises, and 

transmission errors degrade the performances of the speech 

recognizer. As ubiquitous systems deal with users everywhere 

and anytime, the speech signal is prone to be corrupted by the 

user background and altered by the quantization noise as well 

as the transmission errors. To make the speech recognition 

outputs reliable, the speech signal needs to be enhanced before 

the recognition process begins, or the acoustic models should 

be robust enough to recognize the transcoded (coded and 

transmitted) noisy speech.  

Noise reduction and speech enhancement (SE) are essential 

for languages where training corpus available for the 

construction of acoustic models are limited and/or do not allow 

the construction of robust ASR systems. Furthermore, 

important applications of remote ASR, such as pronunciation 

learning, remote control, or healthcare, need the input speech 

for the ASR system to be as close as possible to the uttered one. 

This paper tackles speech enhancement, the step before the 

recognition one, and deals with the Arabic language, in the 
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absence of clean data for the training of the SE model. 

The recent emergence of deep learning algorithms (DL) has 

positively impacted research in speech enhancement. 

Research has dealt with speech enhancement and multiple 

deep architectures were applied [5]. A key component in these 

architectures is the speech corpus used in the training stage. 

Most of these researches have followed a supervised approach 

to train the deep architecture where the input speech is noisy, 

the output one is clean, and the SE model learns how to recover 

the clean speech given its corrupted version. 

In this paper, the proposed approach leverages the few 

available resources for the Arabic language and does not 

dependent on background subtraction due to the nature of 

ubiquitous applications which are often subject to various 

challenging environments. Therefore, the speech recognizer is 

trained using a clean Arabic corpus, while the suggested SE 

deep neural network is trained in an unsupervised way, both 

input and output speech signals are noisy. Meanwhile, as the 

deep autoencoder (DAE) algorithm is well suited for 

unsupervised learning [6, 7], we suggest its use to train the SE 

model. Particularly, overcomplete autoencoders architectures 

are investigated for this purpose. In this paper, the research 

question is: “Can a deep autoencoder trained in an 

unsupervised way, and without access to any clean training 

data, improve the speech recognition performance in a 

ubiquitous context”. To answer the question, a two-step 

procedure is suggested: in the first step, an overcomplete deep 

autoencoder (OAE) is trained in an unsupervised way using 

noisy/noisy pairs; in the second step, a denoising deep 

autoencoder (DDAE) is trained in a supervised way leveraging 

the previous step that produces a clean version of the speech. 

Experimental results performed on a mobile database 

confirmed the potentials of the proposed approach to improve 

the WER (Word Error Rate) of a ubiquitous Arabic speech 

recognizer in a real-life environment. To compare our results 

against state-of-the-art methods a traditional DDAE (an under 

complete AE) and a Fully Convolutional Networks (FCN) 

were built and their WER performances compared to the 

proposed approach. Further experiments are performed to 

explore the performances in terms of the perceptual evaluation 

of speech quality (PESQ), the short-time objective 

intelligibility (STOI) at different SNR (Signal-to-Noise Ratio) 

levels. 

This paper is organized as follows. The next section outlines 

the various deep learning algorithms in speech enhancement. 

The theoretical description of the proposed approach for the 

noisy transcoded (coded and transmitted) speech enhancement 

is detailed in Section 3. Section 4 reports the experimental 

results performed on an Arabic mobile dataset. Conclusions 

and future works are drawn at the end. 

 

 

2. RELATED WORKS 

 

In the few past years, various deep learning algorithms 

known as data-driven models have been proposed for speech 

enhancement, such as deep neural networks [8, 9], deep 

autoencoders [10, 11], convolutional neural networks [12-14], 

or fully convolutional networks [15, 16]. Deep neural 

networks (DNNs) are artificial neural networks with many 

layers, and autoencoders (AEs) “are simple networks that are 

trained to reconstruct the input X on the output layer X’ 

through one hidden layer H” [17]. Encoders reduce the 

dimensionality of the input data to represent them in a new 

space (encoding) while decoders reconstruct the data from the 

encoding [18]; DAEs consist of encoders followed by 

decoders. The denoising deep autoencoders (DDAE) are 

DAEs that given a corrupted version of a pattern, learn the 

submitted pattern’s essence during the encoding, and thus 

eliminate the superfluous at the decoding. Traditionally, 

DDAEs are under complete AE, i.e., the coding layers have a 

lower dimension than the input layer. 

Convolutional neural networks (CNNs) are DNNs that 

process data in local regions which drastically reduce their 

complexity compared to the fully connected models; CNNs 

are particularly suitable for image analysis and classification 

[19-21]. A typical CNN has convolutional layers interspersed 

with pooling layers, followed by fully connected layers as in a 

multilayer neural network [20, 22]. A convolution is a 

mathematical linear operation and convolutional layers are a 

set of filters that extract feature maps to describe the 

characteristics of input data, the pooling layers achieve 

translation and rotation invariance [23].  

During the training stage, typical speech enhancement 

systems are fed with a noisy version of a signal as input and 

with its clean counterpart as output. To obtain the noisy 

version (input) of the clean signal (output), multiple noises 

(car, factory, gaussian), at different levels of SNR, are added 

to the clean signal. In the test stage, noisy signals are submitted 

to the SE system and it returns an enhanced version of the 

inputs, the obtained results outperform those obtained by 

conventional methods, such as Weiner filter [24] or the 

minimum-mean square error (MMSE) [25]. SE systems are 

mainly assessed in terms of measures related to speech quality 

and intelligibility, such as perceptual evaluation of speech 

quality [26] or short-time objective intelligibility [27]. Other 

speech evaluation criteria include noise reduction (NR), 

speech distortion (SD) [28], log spectral distortion (LSD), 

segmental SNR (SegSNR) [29], Mean Opinion Score (MOS) 

of the signal distortion (CSIG) and the MOS of background 

noise (CBAK) [30]. Herein, we mention that the widely used 

measures PESQ, as well as STOI, require the existence of a 

reference signal. Table 1 summarizes some key works for SE, 

notice that for almost all of them the supervised approach is 

followed during the training stage via noisy/clean speech pairs. 

Lu et al. [11] have used a DAE algorithm for noise reduction 

and speech enhancement. They reported experiments where 

the input and the output of the DAE were clean speech. Thus, 

the DAE is expected to only encode statistical information of 

the clean speech. In their further experiments reported by Lu 

et al. [28], the DAE was trained using the noisy speech as input 

and clean speech as output. Thereby, DAE is expected to 

explicitly learn the difference between clean and noisy signals. 

Fu et al. [12] investigated the CNN model to restore clean 

speech from a noisy version and improve denoising 

performance using SNR-aware algorithms. Later, they applied 

an FCN to model simultaneously the high and the low-

frequency components of a raw waveform [16]. The results of 

the FCN outperformed those of the CNN and the DNN based 

on waveform inputs. 

Zhao et al. [14] have implemented a CNN algorithm to 

enhance the coded speech. The proposed CNN architecture 

included three kinds of layers: convolutional layers, max-

pooling layers, and up-sampling layers. The authors compared 

their solution to the G.711 post-processing as a baseline and 

found that their proposition improved the speech quality in 

terms of PESQ for G.711, G.726, and AMR-WB codecs. 
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Table 1. Summary of different deep learning algorithms for speech enhancement 

 
Reference Year Language Noise Input / 

Output 

DL 

algorithm 

Measures 

[11] 2012 Japanese White, Car, Factory, Babble Clean/ Clean DAE Phone recognition 

accuracy 

[28] 2013 Japanese Factory, Car Noisy/ Clean DDAE NR, SD, PESQ 

[8] 2014 English AWGN, Babbles, CarRestaurant, Street Noisy/ Clean DNN LSD, SegSNR, 

PESQ 

[31] 2015 English Car, Crowd, Traffic Noisy/ Clean DNN PESQ 

[32] 2015 English Home (children, TV, Radio) Noisy/ Clean LSTM-RNN WER, SDR 

[10] 2016 English Office environment (stationary and non-

stationary) 

Noisy/ Clean DNN PESQ, STOI, SD, 

NR 

[12] 2016 Mandarin Babble, Car, Jackhammer, Pink, Street, 

WGN, Engine 

Noisy / Clean CNN MSE, SegSNR 

[16] 2017 English Bable, Car, Jackhammer, Pink, Noisy/ Clean FCN PESQ, STOI 

[33] 2017 English Babble, Domestic, Office, Public, 

Transportation, Nature, Street 

Noisy/ Clean GANs PESQ, SegSNR 

CSIG, CBACK 

[34] 2018 English More than 25 types of noises Noisy/ Clean RNN, CNN PESQ, SNR, WER 

[14] 2019 English, 

German 

Cafeteria, Car, Traffic road, Coding Noisy/ Clean CNN PESQ 

[35] 2020 Arabic G.711 Coding Noisy/Clean DDAE Accuracy 

 

Zhao et al. [34] used a convolutional-recurrent neural 

network to enhance the speech submitted to the speech 

recognizer. To overcome the “mismatch between clean data 

used to train the system and the noisy data encountered when 

deploying the system …[that] often degrade the recognition 

accuracy in practice” (p.1), the authors “created a synthetic 

dataset” (p.3) to obtain the clean/noisy pairs of speech. For the 

recognition purpose, an existing deep neural network was used. 

While the WER of the clean speech is 2.19%, that with speech 

corrupted with seen noise is 15.40%, and it reaches 14.64% 

after the enhancement pre-processing. For the speech with 

unseen noise, the WER is 18.4% and it grows to 16.71% after 

the proposed enhancement. 

 

 

3. A UBIQUITOUS ARABIC SPEECH RECOGNITION 

SYSTEM 

 

The implementation of the ubiquitous speech recognition 

system is a complex task that requires a holistic approach to 

apprehend it; Figure 1 depicts the system’s modules and their 

location; the modules are detailed below as speech coding, 

speech enhancement, and speech recognition. 

 

 
Figure 1. Block diagram for the proposed ubiquitous Arabic 

speech recognition system 

 

3.1 Speech acquisition and coding 

 

As depicted in Figure 1, the uttered speech is captured at the 

client-side. Afterward, the speech signal is coded before its 

transmission, using the software tool library G.191 

standardized by ITU-T [36]. The used G.728 is an ITU-T 

standard for speech coding [37]; it is based on the Low-Delay 

Code Excited Linear Prediction (LD-CELP) compression 

principles, and it provides a bit rate at 16 kbps. G.728 was 

chosen for its low bit rate since a low bitrate allows, eventually, 

the use of the remaining bandwidth for video transmission 

(this is of amount interest for mobile applications involving 

other modalities than speech). 

 

3.2 Speech enhancement 

 

The transcoded speech signal is received at the server-side, 

then, the enhancement stage starts before the recognition one. 

The received signal was windowed into frames of 512 samples. 

To obtain the frequency representation, from each temporal 

frame were extracted coefficients corresponding to the log 

power spectrum [38]; as the SFFT (Short Fast Fourier 

Transform) produces a symmetric vector, only 257 values 

were kept for each frame. 
 

 
 

Figure 2. The two-step based DL proposed approach for 

speech enhancement 
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The obtained vector was submitted to a denoising deep 

autoencoder to produce the enhanced version; we called it 

UAE (for Under Complete AutoEncoder). The UAE has an 

input layer and an output layer of 257 neurons, each 

representing a log power spectrum coefficient (LPS). To build 

the UAE model, a two-step approach was followed. Figure 2 

depicts the several phases of the proposed approach. 

First, an overcomplete autoencoder (OAE) was trained in an 

unsupervised way using Adam optimizer [39] at a learning rate 

of 0.0001. An overcomplete AE is an AE “in which the hidden 

code has dimension greater than the input” [18]. During the 

training stage of the OAE, both the input and the output were 

transcoded noisy speech signals. As the OAE maps the data 

into a higher-dimensional space, it is intended to capture the 

stable structure from the inputs. Indeed, the speech signal is 

known as being redundant, thus the speech signal regularities 

should be “easy” to capture if compared to those relating to 

unexpected and complex noises. Once the OAE was trained, it 

served to produce clean data. These noisy/clean pairs of the 

speech signal stood for the training corpus for the denoising 

deep autoencoder (UAE). Finally, the speech enhancement 

stage is wherein the received signal is enhanced by the UAE 

model and sent to the ASR system. 

The performance of the SE based on the two-step DAE 

proposed algorithm is indirectly assessed in terms of the WER 

score obtained after the recognition stage, given that the 

speech recognition task is the end-user application. 

 

3.3 Speech recognition 

 

Once the speech enhancement was performed, the resulted 

speech was fed to a speech recognizer. For the recognition, 

Hidden Markov Models (HMMs) stood for the acoustic 

models [4, 40]. Sphinxtrain was used to process and to create 

the acoustic models [41]; acoustic models were built from the 

clean modern standard Arabic corpus described by Almeman 

et al. [42]. During the test stage, the real-world noisy mobile 

utterances were decoded using PocketSphinx and the WER 

score computed using SphinxTrain tools. The HMM-based 

speech recognizer was used as a black box without tuning 

during our experiments related to speech enhancement. 

 

 

4. EXPERIMENTS 

 

The effectiveness of the proposed SE approach is validated 

by the improvement of the ubiquitous speech recognition 

WER score, and the evaluation of speech quality and objective 

intelligibility using PESQ and STOI metrics respectively. 

The first experiments were conducted on a mobile dataset 

to show the validity of the proposition presented in Figure 2. 

The performance in terms of WER is reported in Table 2 

through Table 4. 

Once the effectiveness of the proposition was stated, other 

experiments were conducted in more challenging 

environments by considering complex noises (stationary and 

non-stationary) at different SNR levels applied to the 

recordings. These experiments focused on computing different 

metrics (PESQ, STOI, and WER) to compare the previous 

proposition against the state-of-the-art models. For that 

purpose, a denoising deep autoencoder is trained in a 

supervised way, and the UAE of the proposition (see Figure 2) 

is replaced by an FCN. 

Additional experiments were carried out on a second corpus 

to confirm the results obtained with the first one. 

 

4.1 Data sets  

 

The Arabic mobile parallel multi-dialect speech corpus is a 

free Arabic corpus [43]. It contains four Arabic dialects: 

Modern Standard Arabic (MSA), Levantine, Gulf, and 

Egyptian. The corpus consists of 67132 wave files, sampled as 

48 kHz with a precision of 16 bits, uttered by 52 speakers. For 

our experiments, the MSA subset is considered, it contains 

15492 utterances from 12 speakers. The data were collected in 

four different environments, inside the home, in a moving car, 

in a public place, and in a quiet place. The chosen public areas 

and the streets used in the experiment varied between high 

noise and medium noise [43]. The noises that occur in the 

background can be divided into non-human (door closing, 

cutlery sounds, car horns, road traffic) noise, and human noise 

(crying, shouting, speaking). Besides, “Mobile call quality can 

be affected by many additional factors, such as network signal 

quality, recording quality, the distance between the mobile and 

the mouth, etc.” [43]. The speech from the dataset [43] is 

called NS1.  

Besides the inherent noises, the recordings from the study 

[43] were corrupted using some noises from 100 non-speech 

sounds [44]. Different noise types, ranging from stationary car 

noise to non-stationary noise (crowd and door moving) at 

different SNR levels, were considered. About 75% of the 

corrupted speech signals were used for the training set at SNR 

0 dB, 15 dB, and -5 dB. For the testing set, the remaining 25% 

corrupted speech signals were considered at -5dB, 0 dB, and 

15dB SNR levels. The NS1 speech corrupted with the noises 

from the study [44] is called NS2. 

The second dataset is presented in the study [45]; it is an 

Arabic speech corpus for isolated words. The corpus has been 

developed by the Department of Management Information 

Systems, King Faisal University. It contains 9992 recorded 

utterances of 50 speakers pronouncing 20 words. Recordings 

from this corpus were corrupted using the real-world 

UrbanSound8K dataset [46] at different SNR levels (-15dB, -

10dB, -5dB, 0dB, 5dB, and 10dB). The urban sound data set 

contains 8732 clip sounds. In our case, three environmental 

noises were considered the air conditioner, the engine idling, 

and the jackhammer noises. 

 

4.2 Results and discussion  

 

The first experiment deals with the real-world mobile 

corpus and aims to validate the proposition considering the 

final application, herein the ASR. First, we report the WER 

score on real-world mobile speech signals. The real-life 

transcoded speech signal was received at the server-side (NS1), 

and the HMM-based recognition took place without prior 

enhancement of the incoming signal. Figure 3 reports 

performances of the ASR system compared to those obtained 

after the recognition that took place at the client-side (before 

coding and transmission). 

Figure 3 shows that the noisy background causes 

degradation of the WER. Indeed, the worst WER is seen in 

“public place” where the noise is unknown and from plural 

sources while the best WER is seen in the “inside home”. 

Figure 3 also shows that the coding and transmission processes 

decrease yet the WER. 
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Figure 3. The ASR performance for original and transcoded 

speech 

 

(1) The DAE-based SE effect on speech recognition 

performance 

As already said, the DDAE used as the SE system has 257 

neurons in the input layer as well as in the output one. The 

hidden layer has 200 neurons: it is UAE(200). The OAE, 

which served to produce clean speech for the UAE training, 

has the same input and output neurons’ number, and it has 

1024 hidden neurons: it is OAE(1024). Table 2 reports the 

WER values when UAE(200) is used as the SE system. Table 

2 also reports the WER after the received speech was enhanced 

using the well-known MMSE method. 

 

Table 2. WER (%) without and with SE 

 
Environment Without SE DAE-based 

SE 

MMSE-

based SE 

Quiet place 30.28 28.76 58.44 

In moving car 29.59 25.19 57.02 

In public place 51.76 47.56 84.46 

Inside Home 26.97 20.82 57.50 

Average WER 34.65 30.58 66.33 

 

Table 2 shows the positive impact of the DAE-based SE on 

the WER score even in the absence of clean data to train the 

SE model. The use of the MMSE method makes the 

recognition worse than that performed without enhancement. 

It is known that the MMSE method does not perform well in 

presence of non-stationary or multiple sources’ or noises. 

(2) Investigating the DAEs architectures 

When using autoencoders, the choice of the right degree of 

compression, i.e., dimensionality reduction is often a hyper-

parameter that requires tuning for optimal results. Thus, once 

the positive effect of the proposed SE approach was proved, 

additional experiments were performed to fine-tune the DAEs 

models through the investigation of their depth and the number 

of the neurons in each layer as well. 

Tables 3 and 4 report experiments where the OAE and UAE 

structures are investigated. In Table 3, the UAE hidden layer 

is set to 200 neurons, while multiple OAE configurations are 

tested. In Table 4, the UAE is set to two hidden layers each of 

200 neurons. 

In Table 3, all the configurations show an improvement of 

the WER score, stating the effectiveness of the suggested SE 

approach, this could be explained by the projection of the 

signal characteristics by the OAE in a higher dimensionality 

space which allows the isolation of noises’ features. 

Table 4 results confirm yet the potential of the SE proposed 

approach as all the tested configurations improved the WER 

of the ubiquitous speech recognition system. 

Table 3. WER (%) of the ASR system for a DDAE of 200 

neurons in the hidden layer 

 
Models Quiet 

place  

Moving 

car 

Public 

Place 

Inside 

Home 

Average 

Without SE 30.28 29.59 51.76 26.97 34.65 

OAE(1024) 

UAE(200) 

28.76 25.19 47.56 20.82 30.58 

OAE(1024,1024) 

UAE(200) 

28.07 25.42 47.48 21.01 30.49 

OAE(400) 

UAE(200) 

27.91 24.96 48.09 20.51 30.36 

OAE(400,400) 

UAE(200) 

28.71 25.08 46.65 20.74 30.29 

 

Table 4. WER (%) of the ASR system for a UAE of 200 

neurons in each of the two hidden layers 

 
Models Quiet 

place  

Moving 

car 

Public 

Place 

Inside 

Home 

Average 

Without SE 30.28 29.59 51.76 26.97 34.65 

OAE(1024) 

UAE(200-200) 

28.57 25.57 47.67 20.44 30.56 

OAE(1024,1024) 

UAE(200-200) 

28.18 24.96 47.60 21.01 30.44 

OAE(400) 

UAE(200-200) 

28.71 24.43 47.33 20.21 30.17 

OAE(400,400) 

UAE(200-200) 

28.97 24.85 47.67 20.89 30.59 

 

The results reported in Tables 3 and 4 show an improvement 

of the WER score after the SE compared to that computed 

without applying the enhancement. This is due to the 

advantage of using fully connected-based models to model 

multiple complex real-world noisy environments. In particular, 

the use of an overcomplete autoencoder for unsupervised 

pretraining provides a solution to generate clean data and 

allowing the training of the classical DDAE. 

To select the best deep learning model, another focus is the 

balance between the number of total parameters and the WER 

value. Indeed, one of the deep learning paradigm challenges is 

to optimize computational resources and the time needed for 

training. Table 5 reports the number of parameters for each 

configuration. 

According to Table 5, model#2 is a good compromise 

between the number of parameters and the WER. 

 

Table 5. Total number of parameters for each deep learning 

structure 

 
# Model Number of parameters WER % 

1 OAE(400)  

UAE(200) 

309514 30.37 

2 OAE(400) 

UAE(200, 200) 

349714 30.17 

3 OAE(400,400) 

UAE(200) 

469914 30.29 

4 OAE(400,400) 

UAE(200, 200) 

510114 30.59 

5 OAE(1024) 

UAE(200) 

630874 30.58 

6 OAE(1024) 

UAE(200, 200) 

671074 30.56 

7 OAE(1024,1024)  

UAE(200) 

1680474 30.49 

8 OAE(1024,1024)  

UAE(200, 200) 

2248291 30.44 
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(3) Comparative analysis 

In addition to the WER used to assess the performance of 

the speech recognizer (the end-used application), the PESQ 

and the STOI are used to evaluate the quality and the 

intelligibility of the enhanced speech. For PESQ and STOI, a 

higher value is better, the PESQ values range in [-0.5, 4.5] 

while the STOI value range is [0,1]. 

For the following experiments, model#2 stands for the 

proposed model, and two additional DL models are considered. 

A denoising deep autoencoder trained in a supervised way. 

The denoising deep autoencoder (called UAE2) has the same 

architecture as the UAE of model#2 described in Table 5 and 

is trained with NS2 as input and with NS1 as output. The 

second model is based on a fully convolutional network that 

replaced the UAE in model #2, the OAE of the first step is 

called OAE1. However, the FCN is trained using NS2 as input 

and ES1 as output. The FCN architecture used for comparison 

is the one described in the study [47] with two and four 

convolutional layers instead of eight. The DDAE and the FCN 

models were trained with stationary and non-stationary noises 

at different SNR levels. The speech to recognize comprises 

both NS1 and NS2.  

Table 6 reports the aforementioned measures on Mobile 

MSA corpus, it also reports the performances of the speech 

recognizer, in term of the WER, at different SNR levels. To 

compute the PESQ and the STOI, we considered the speech 

signal, in a quiet place as the reference one. 

The two-step Model#2 outperformed the other competing 

models for all measures in different noisy types. For instance, 

the proposed approach achieved the best speech quality (PESQ) 

at different SNR levels, except at 15dB for car and crowd 

noises. Meanwhile, UAE2 provided better performances than 

the FCN-based models. The proposed approach achieved an 

average improvement of about 0.835 for the three SNR levels 

(0, 15, and -5)dB. Finally, Model#2 succeeded to decrease the 

WER by an average of 15.43% in complex noisy environments 

at different SNR levels. 

 

4.3 Additional experiments 

 

The following experiments aim to consolidate the 

proposition and to evaluate it on a second corpus. First, figures 

4, 5, and 6 report the WER, the PESQ, and STOI respectively, 

for the considered SE methods, under different noise 

conditions (the air conditioner, engine idling, and 

jackhammer), and at different SNR levels. 

Figure 4 shows that the WER obtained with the proposed 

model reached an overall value of 55.03%, and outperformed 

the other models. The lowest WER is seen with the engine 

idling noise at 33.05. In particular, often, model#2 

outperformed the UAE2 model which was trained in a 

supervised way as the clean data is available for this corpus. 

Moreover, all unsupervised learning-based approaches 

outperformed the noisy version represented by the label 

(Without SE), except at engine idling under 10 dB SNR level. 

Figures 5, and 6 confirm the performances of the proposed 

model in terms of PESQ and STOI as well. In particular, for 

the low SNR values, the proposed model competes with the 

supervised UAE2. 

 

Table 6. Performance measures for different models with multiple noises, and at different SNR levels 

 
   Car Noise Crowd Noise Moving Door  

   SNR (dB) SNR (dB) SNR (dB)  

AVG Metrics Model -5 0 15 -5 0 15 -5 0 15 

 

 

PESQ 

Without SE 1.86 2.10 2.87 1.21 1.32 2.10 0.88 1.21 2.22 1.75 

UAE2 2.33 2.57 3.06 2.52 2.61 2.85 2.15 2.26 2.72 2.56 

𝑀𝑜𝑑𝑒𝑙#2 2.35 2.59 3.08 2.53 2.63 2.81 2.19 2.31 2.80 2.59 

OAE1−FCN2 2.31 2.54 3.17 1.68 2.04 2.68 1.30 1.88 2.67 2.25 

OAE1−FCN4 2.25 2.46 3.14 1.74 1.92 2.78 1.41 1.62 2.63 2.22 

 

 

STOI 

Without SE 0.71 0.78 0.87 0.56 0.60 0.73 0.38 0.50 0.78 0.66 

UAE2 0.70 0.75 0.80 0.66 0.67 0.73 0.63 0.67 0.76 0.71 

𝑀𝑜𝑑𝑒𝑙#2 0.70 0.75 0.81 0.67 0.69 0.75 0.64 0.68 0.77 0.72 

OAE1−FCN2 0.72 0.75 0.82 0.57 0.60 0.74 0.40 0.54 0.79 0.66 

OAE1−FCN4 0.68 0.75 0.81 0.61 0.67 0.76 0.45 0.58 0.79 0.68 

 

 

WER 

Without SE 78.50 51.89 18.25 100 100 84.94 99.62 96.26 38.83 74.25 

UAE2 57.89 44.00 24.29 85.73 80.33 59.88 80.63 67.19 32.15 59.12 

𝑀𝑜𝑑𝑒𝑙#2 58.21 44.80 24.18 85.29 78.81 58.02 81.52 65.85 32.77 58.82 

OAE1−FCN2 80.24 66.97 28.32 100 100 85.87 99.69 95.59 39.85 77.39 

OAE1−FCN4 88.68 64.10 32.38 100 100 79.78 98.80 93.28 44.61 77.95 
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Figure 4. WER for different SE methods with multiple 

noises types and at different SNR levels 

 

 

 
Figure 5. PESQ for different SE methods with multiple 

noises types and at different SNR levels 

 

 

 
Figure 6. STOI for different SE methods with multiple 

noises types and at different SNR levels 

 

4.4 Spectrogram and waveform analysis 

 

To visualize the effect of the different models, the 

reconstructed spectrograms and waveforms for a randomized 

selected sample from the test dataset of the mobile MSA are 

presented. Figure 7 shows the spectrograms and waveforms of 

the original speech, its noisy version, and the corresponding 

enhanced utterance. 

Figure 7 shows that model#2 reduces the noise and 

conserves the speech components. UAE2 performed better 

than the OAE1-FCN2 and OAE1-FCN4 which are very close. 

The FCN-based models failed to effectively remove the noise 

as shown in oval red regions. 

 
 

    
(a) Clean spectrogram-waveform                                        (b) Noisy spectrogram-waveform 
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UAE2                                   Model#2                                   OAE1-FCN2                                   OAE1-FCN4 

(c) Reconstructed spectrograms 

 
UAE2                                   Model#2                                   OAE1-FCN2                                   OAE1-FCN4 

(d) Reconstructed waveforms 

 

Figure 7. Examples of spectrograms and waveforms of a clean and noisy sample with their denoised versions using SE models 

 

It is worth noting that the two steps approach (model#2) and 

the UAE2 alone, which are based on autoencoder models, 

outperformed the architectures including the FCN. In 

particular, the use of an overcomplete autoencoder for 

unsupervised pretraining provided a solution to generate clean 

data and allowed the supervised training of the classical 

DDAE. 

 

 

5. CONCLUSIONS 

 

This paper deals with Arabic speech recognition in a 

ubiquitous environment that aims to improve the WER score 

of the end-user ASR application. For that purpose, a speech 

enhancement approach is suggested. Speech enhancement is 

of paramount interest; however, it is not an easy task due to 

the lack of real-life labeled data (clean/noisy pairs). We 

proposed a two-step approach where an overcomplete deep 

autoencoder is trained in an unsupervised way to produce the 

enhanced speech, then a denoising deep autoencoder is used to 

produce the final enhanced speech signal to be recognized. 

The obtained results show an improvement of the WER of 

about 4.48% for the mobile MSA corpus, which makes the 

proposed approach an effective alternative to the 

implementation of robust ubiquitous speech recognition 

systems. Meanwhile, the two-steps unsupervised model 

achieves a significant improvement for speech quality (PESQ) 

and intelligibility (STOI) of about 0.835 and 0.06, respectively, 

on stationary and non-stationary noise, considering the real-

world mobile dataset. For the Arabic isolated words speech 

corpus, an improvement of the WER of about 10% is seen. 

On the other side, this work contributes to the practical 

speech enhancement problem by minimizing the requirements, 

i.e., without access to any clean training data. Indeed, the 

unsupervised and self-supervised SE approaches are 

considered as challenging topics that need more focus in future 

works. Meanwhile, as the indicator that measures the front-end 

algorithm and the accuracy of the back-end recognition are not 

positively correlated, the improvement of the front-end may 

not have a positive effect on the back-end recognition. Thus, 

it is expected that the back-end recognition results will 

feedback the front-end, which would make the system more 

robust. 

Finally, the use of an overcomplete DAE model brings new 

perspectives in unsupervised learning, thus as future work, we 

plan to deeply explore their capabilities. 
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