
Weed Detection in Images of Carrot Fields Based on Improved YOLO v4 

Boyu Ying, Yuancheng Xu, Shuai Zhang, Yinggang Shi*, Li Liu 

College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China 

Corresponding Author Email: syg9696@nwafu.edu.cn

https://doi.org/10.18280/ts.380211 ABSTRACT 

Received: 18 November 2020 

Accepted: 10 February 2021 

The accurate weed detection is the premise for precision prevention and control of weeds in 

fields. Machine vision offers an effective means to detect weeds accurately. For precision 

detection of various weeds in carrot fields, this paper improves You Only Look Once v4 

(YOLO v4) into a lightweight weed detection model called YOLO v4-weeds for the weeds 

among carrot seedlings. Specifically, the backbone network of the original YOLOv4 was 

replaced with MobileNetV3-Small. Combined with depth-wise separable convolution and 

inverted residual structure, a lightweight attention mechanism was introduced to reduce the 

memory required to process images, making the detection model more efficient. The 

research results provide a reference for the weed detection, robot weeding, and selective 

spraying. 
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1. INTRODUCTION

Carrots are one of the top ten vegetables around the world. 

The sowing period of carrots lasts from late summer to early 

autumn in China. The high temperature and abundant rainfall 

in this period are favorable for weed growth. The weeds 

impede the normal growth of carrots, making carrots 

susceptible to diseases and pests. One of the effective ways to 

increase the yield and improve the quality of carrots is to 

remove the weeds timely. 

China is the largest carrot grower in the world. There is a 

total of 5 million mu of carrot fields in the country, about 40% 

of the global planting area of carrots. Each year, China 

produces more than 14 million tons of carrots, accounting for 

33% of the total output of world carrots [1]. There is a huge 

need for automated weeding equipment. The precision 

detection of weeds in the field is the premise of adaptive 

herbicide application and mechanical weeding. However, the 

similar color and shape between carrot seedlings and field 

weeds poses a challenge to the detection of weeds in carrot 

fields.  

For the precision detection and recognition of weeds in 

fields, many Chinese and foreign scholars have resorted to 

technical means like machine vision, and spectral detection, 

and devoted much energy into the relevant research [2-4].  

With the recent development of deep learning (DL), 

convolutional neural network (CNN) has been effectively 

applied in machine vision [5-6]. Major breakthroughs have 

been achieved in CNN applications to image recognition [7-8], 

semantic segmentation [9-10] and object detection [11-12]. 

Thanks to its strong representation ability of image features, 

the CNN has been increasingly applied to agriculture. 

In the field of crop and weed detection, Sun et al. [13] 

proposed a crop detection method based on the Faster R-CNN, 

and improved the crop detection accuracy by replacing the 

original VGG16 with ResNet101. Sun et al. [14] improved the 

AlexNet into a multiscale feature fusion convolution model, 

which uses a wider network structure and integrates dilated 

convolution with global pooling, so as to realize the accurate 

recognition of different crop seedlings and weeds. Taking corn 

seedlings and weeds as the targets, Wang et al. [15] 

constructed a CNN model that accurately detects targets by 

combining multiscale features with superpixel segmentation. 

All the above studies extract features of the targets with a 

multilayer deep CNN. The precision detection of the targets 

was achieved by increasing the depth and width of the network. 

This strategy complicates the model and drags the detection 

speed, raising a stricter requirement on the configuration of the 

embedded devices. In real-world environment, the weeding 

equipment are not very sophisticated. It is a crucial issue to 

realize real-time, accurate, resource-saving detection in the 

limited hardware resources. 

The fields of carrot seedlings have a complex environment: 

the seedlings are mixed with weeds; the two types of targets 

are similar in size, shape, and color; the weeds are generally 

small. These features add to the difficulty of precision 

detection of weeds based on images.  

You Only Look Once is a classic object detection algorithm. 

It is known for its fast detection speed and high detection 

accuracy [16]. As a new version of YOLO, YOLOv4 

integrates various optimization strategies, and improves the 

ability for small object detection [17], providing a suitable tool 

for precision weed detection. However, CSPDarknet53, the 

backbone network of YOLOv4, has a high complexity, and a 

heavy computing load in image processing, requiring a huge 

storage space. Therefore, YOLOv4 is not quite suitable for 

real-time detection in embedded devices.  

To solve the above problem, this paper improves YOLOv4 

into YOLOv4-weeds for weed detection. The backbone 

network of YOLOv4 was replaced with a lightweight neural 

network called MobileNetV3-Small. The improvement can 

effectively reduce the memory required for image processing, 

and improve the small weed detection efficiency and accuracy 

in complex environment, making the model more suitable for 

deployment in embedded devices. 
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2. WEED DETECTION MODEL YOLOV4-WEEDS 

 

MobileNetv3-Small is a lightweight neural network [18]. 

This paper replaces CSPDarkNet-53 with MobileNetV3-

Small as the backbone network of YOLOv4. The replacement 

can effectively reduce the memory required for image 

processing, and speed up the detection of small targets like 

weeds. MobileNetV3-Small integrates the depth-wise 

separable convolution of MobileNetV1 [19] and the inverted 

residual structure with linear bottleneck of MobileNetV2 [20], 

and introduces a lightweight attention mechanism, thereby 

reducing the computing load of feature map and accelerating 

the propagation speed of feature map in the network. The 

model of the attention mechanism is shown in Figure 1. In the 

middle of the model lies a squeeze-and-excitation network 

(SENet) [21], which consists of three parts: the squeeze 

function, the excitation function, and the scale function. 

Among them, the squeeze function adds up all the feature 

value in the channels and takes the average through global 

average pooling, such that the lower layers of the network can 

utilize global information; the excitation function obtains the 

coefficient of each channel, which falls between 0 and 1, by 

the sigmoid function, and adjusts the coefficient size through 

training; the scale function multiplies the value on each 

channel with the corresponding weight, aiming to enhance the 

attention to key channels and reduce the parameter quantity 

and calculation load. 

 

 
 

Figure 1. Model of the attention mechanism 
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Figure 2. Structure of improved lightweight weed detection model 

 

The structure of the improved lightweight weed detection 

model YOLOv4-weeds is presented in Figure 2, where the 

bracketed numbers represent the image resolution, number of 

channels, convolution kernels, stride, and the 

presence/absence of the attention mechanism. The backbone 

module receives a carrot field image of the size 416×416. Then, 

three effective feature layers are selected from the backbone 

module, and imported to the neck module. Next, feature 

extraction is enhanced by the Neck module. After that, the 

Prediction module obtains three feature maps, including the 

52×52 feature map for small object detection, the 26×26 

feature map for medium object detection, and the 13×13 

feature map for object target detection. Finally, prediction is 

carried out on the input image, and an image is outputted with 

labels of different kinds of weeds and carrot seedlings. 

In this paper, performance of each detection model is 

evaluated by four indices: average precision (AP), mean AP 

(mAP), detection time, and model weight. Let P be precision, 

R be recall, and AP be the mean precision for the detection of 

positive samples in each class. Then, the AP value can be 

calculated by 𝐴𝑃 = ∫ 𝑃(𝑅)dR
1

0
. mAP is the mean AP for all 

classes. 
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3. DATA ACQUISITION AND PREPROCESSING 

 

3.1 Image acquisition 

 

From July to August 2020, the test images were collected 

from the carrot fields in Fengqiu County, Xinxiang Prefecture, 

Central China’s Henan Province (N: 34°53′; E: 114°14′; 

elevation: 74m). The carrots are of the variety Yuhong 2#. The 

carrot seedlings are cultivated by ridge planting, with a ridge 

spacing of 50-60cm and a plant interval of 10-15cm. Most 

carrot seedlings are surrounded by weeds.  

This paper mainly aims to detect four common field weeds 

in the carrot fields, namely, crabgrass, plantain, pale persicaria, 

and cephalanoplos. The features of the four weeds are 

presented in Figure 3. Crabgrass has slender and long blades. 

In fact, the blades of crabgrass are narrower than those of any 

of the other three weeds. Plantain has the widest blades among 

the four weeds; the egg-shaped blades are very smooth. Pale 

persicaria has pointed blades with dark purple patches, which 

are narrower and longer than those of plantain. The blades of 

cephalanoplos have serrated edges. 

The test images were collected with a Canon EOS 5D Mark 

III single-lens reflex (SLR) camera. The lens is of the model 

Canon EF 24 ~ 70 mm f/ 2.8L Ⅱ USM, aperture of F18, and 

sensitivity of ISO-12800. Each image contains one or several 

of the four weeds. To facilitate model training, the image 

resolution was set uniformly to 416 pixels × 416 pixels, and 

all images were saved in the JPG format. 
 

    
(1) Crabgrass          (2) Plantain 

    
(3) Pale persicaria     (4) Cephalanoplos 

 

Figure 3. Common weeds in carrot fields 
 

The field images of Yuhong 2# carrot seedlings were 

collected under three weather conditions: sunny, cloudy, and 

after rain. To guarantee the image quality, the lens was kept at 

40±2cm from the carrot, at an angle of approximately 90° from 

the ground. In this way, the collected images contain both 

carrot seedlings and various weeds. 

Considering the influence of light intensity on imaging 

quality, the sunny image collection was carried out in three 

periods: 100 field images on carrot seedlings during 

8:00~10:00, 50 during 14:00~15:00, and 100 during 

17:00~18:00; the cloudy image collection was carried out in 

one period only: 250 images field images on carrot seedlings 

during 14:00~15:00; the after-rain image collection was 

carried out in one period: 250 field images on carrot seedlings 

during the 30min after the rain. In total, 750 original field 

images on carrot seedlings were collected. 

3.2 Image database 

 

Figure 4 show the features of the 750 images collected from 

the carrot fields with weeds. The features of the images 

obtained under different weather conditions are presented 

separately. The images can be divided into two types: 

(1) The images with only carrot seedlings, without any 

weeds;  

(2) The images containing both carrot seedlings and one or 

several weeds. 

The sunny images are well lighted, bright, and sharp in color, 

with a grayish yellow background. The cloudy images are not 

bright, and dull in color, with a gray background. Due to the 

wetness of soil, the images taken after rain have a black 

background, and a high contrast between foreground and 

background; the carrot seedlings can be easily told apart from 

the weeds in the images. 

 

      
(1) Sunny                     (2) Cloudy 

 
(3) After rain 

 

Figure 4. Images collected under different weather 

conditions 

 

To improve the training efficiency and generalizability of 

our weed detection model, the 750 images were subject to data 

augmentation [22] on image processing software. The specific 

operations include increasing the brightness by 20% or 40%; 

reducing the brightness by 20% or 40%; increasing the height 

by +20% or +40%; increasing the contrast by 20% and 40%; 

reducing the contrast by 20% or 40%; sharpening to the level 

of 1, 3, 4, or a1. The data augmentation generated 10,500 new 

images. Table 1 reports the results of data augmentation, 

where Br, Co, Sp, and Hb represent brightness, contrast, 

sharpening, and high brightness, respectively. 

The new images were combined with the original images 

into an image database of 11,250 images. From that database, 

2,250 images collected under each of the three weather 

conditions, i.e., a total of 6,750 images (60%), were randomly 

extracted, and combined into the training set. Among the 

remaining images, 750 images collected under each of the 

three weather conditions, i.e., a total of 2,250 images, were 

randomly extracted, and combined into the validation set. The 

rest 2,250 images were combined into the test set. The training 

set, validation set, and test set were adopted to train the weed 

detection model, to optimize the model parameters, and to 

evaluate model performance. Table 2 shows how the images 

in the database are allocated to each set. 
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Table 1. Results of data augmentation 
 

Parameters Original 
Parameter change/each 

Subtotal/each 
+20% -20% +40% -40% sp01 sp03 sp04 spa1 

Br 100% 750 750 750 750 \ \ \ \ 3,000 

Co 100% 750 750 750 750 \ \ \ \ 3,000 

Sp \ \ \ \ \ 750 750 750 750 3,000 

Hb 100% 750 \ 750 \ \ \ \ \ 1,500 

Total 10,500 

 

Table 2. Image allocation 
 

Collection 

condition 

Number of original 

images/each 

Number of images produced by 

data augmentation/each 
Subtotal/each 

Training 

set/each 

Validation 

set/each 

Test 

set/each 

Sunny 250 3,500 3,750 2,250 750 750 

Cloudy 250 3,500 3,750 2,250 750 750 

After-rain 250 3,500 3,750 2,250 750 750 

Total 750 10,500 11,250 6,750 2,250 2,250 

 

 

4. TESTS AND RESULTS ANALYSIS 

 

4.1 Dataset labeling and model training  

 

To improve the weed detection model into a high-

performance lightweight model, the premise lies in the 

precision labeling of test images, and effective training of the 

model. Taking the carrot seedlings and various weeds in the 

carrot fields as the targets, the authors labeled the targets on 

each image with minimum bounding boxes (MBBs). Every 

MBB should only contain one carrot seedling or one weed, and 

have as few background pixels as possible. Figure 5 gives an 

example of image labeling. 

The test images were imported to LabelImg in turn. Then, 

the carrot seedlings and various weeds in the image were 

labeled as follows: carrot for every carrot seedling, plantain 

for every plantain, polygonum for every pale persicaria, and 

cirsium for every cephalanoplos. During the labeling, the 

software automatically generates an Extensible Markup 

Language (XML) file, which includes image path, weed type, 

and coordinates of the area of carrot or weed(s). 

The targets with unobvious features or incomplete contours 

were also labeled with MBBs, aiming to ensure the training 

reliability, and prevent accidental factors from affecting the 

detection performance.  

Each type of targets is 
labeled by their MBBs

Small objects

Occlusion

Coexistence

 
 

Figure 5. An example of image labeling 

  

Table 3 shows the parameters of the training platform for 

the improved lightweight weed detection model YOLOv4-

weeds. During the model training and testing, the software 

environment is Ubuntu16.04 and python3.6.12. 

 

Table 3. Parameters of the training platform 

 
Processor Basic frequency Memory Graphics card Video memory Hard disk 

Intel i7 10700KF  3.8 GHz 64 GB ZOTAC RTX3090(GPU) 24 GB GDDR6X 4 TB 7200RPM SATA 

 

During model training, the convergence speed of the loss 

function depends on the learning rate. Only if the learning rate 

is set properly, could the loss function converge to the global 

minimum as much as possible. This paper sets the learning rate 

to 0.001, 0.0001, and 0.00001, in turn. Figure 6 records the 

train loss and validation loss curves during the iterative model 

training under each of the three learning rates. It can be seen 

that, at the learning rate of 0.001, the train loss and validation 

loss of the model declined the fastest and stabilized the earliest, 

but the final train loss and validation loss were relatively high. 

At the learning rate of 0.0001, the train loss and validation loss 

declined quickly, and converged to the lowest values; in this 

case, the model achieved the best training effect. At the 

training rate of 0.00001, the train loss and validation loss 

declined the slowest and stabilized the latest; the final train 

loss and validation loss were relatively high. The loss function 

values of the model converged well under all three learning 

rates. 

The mAPs of the model under the three learning rates were 

compared to verify how the learning rate affects the mAP on 

the validation set. By analyzing the relevant data in Table 4, it 

can be learned that the model correctly recognized 88.75% of 

the images in the validation set at the learning rate of 0.0001, 

which is 5.11% and 2.55% higher than the mAPs at the 

learning rates of 0.001 and 0.0001, respectively. The detection 

performance was optimal at the learning rate of 0.0001. This 

agrees with the analysis result on Figure 6. Therefore, the 

learning rate was set to 0.0001 to ensure the optimal detection 

effect of YOLOv4-weeds on carrot seedlings and weeds. 
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Figure 6. Loss curves of the model under three learning rates 

 

Table 4. Model performance under three learning rates 

 
Learning rate mAP/% 

0.001 83.64 

0.0001 88.75 

0.00001 86.20 

 

4.2 Detection effect 

 

To verify its detection effectiveness, the improved 

lightweight weed detection model was tested on the test set. 

There are two kinds of features in the images of the test set: (1) 

In some images, the foreground targets are only carrot 

seedlings, without any weed; (2) In some other images, the 

foreground targets include both carrot seedlings and various 

weeds, which are diverse in size and mixed with carrot 

seedlings. The above two kinds of images are denoted as Type 

1 and Type 2, respectively. Then, the trained model YOLOv4-

weeds were adopted to process the two kinds of images. Figure 

7 provides an example of the detection results. It can be seen 

that the proposed model YOLOv4-weeds basically accurately 

detected the carrot seedlings and various weeds in the complex 

scene of the fields.  

To demonstrate its superiority, our model YOLOv4-weeds 

were compared with several detection models through 

experiments. For the effectiveness and rigorousness of the 

experiments, five models, namely, YOLOv4-weeds, YOLOv4, 

YOLOv4-tiny, YOLOv3, and YOLO v3-tiny, were iteratively 

trained on the same training set. Then, the five trained models 

were evaluated against the same test set. Figure 8 presents an 

example of the detection results of the five models on the same 

test image. 

 
Type 1 

 
Type 2 

 

Figure 7. An example of detection results of YOLOv4-weeds  

 

Apparently, all models achieved good detection effects on 

Type 1 images. The reason is that Type 1 images contain 

sufficient targets of the same class: carrot seedlings. After 

training, the models all boast strong robustness on such a 

balanced dataset, which has no inter-class difference of image 

features. YOLOv4-weeds had the highest confidence in the 

detection of carrot seedlings. 

For Type 2 images, the proposed model YOLOv4-weeds 

outperformed the other four models. Our model could 

effectively detect the targets in the images, and maintain a high 

confidence. Specifically, YOLOv3 and YOLOv4 mistook the 

large targets of plantain as cephalanoplos; YOLOv3-tiny and 

YOLOv4-tiny correctly recognized these targets, but at a low 

confidence (<0.60). Meanwhile, these targets were correctly 

detected by YOLOv4-weeds at a high confidence. The poor 

performance of the other four models is possibly the result of 

the similarity between large plantain and cephalanoplos. In the 

training set, there are relatively few large targets of plantain. 

Facing such a unbalanced dataset, our model is more robust 

than any of the other four models. As for the coexistence 

between carrot seedlings and weeds, YOLOv3-tiny and 

YOLOv4-tiny were prone to miss the carrot seedlings, because 

their structures are too simple to effectively extract features 

from complex images. 

345



   

   
Original YOLOv3 YOLOv3-tiny 

    

   
YOLOv4 YOLOv4-tiny YOLOv4-weeds 

 

Figure 8. An example of detection results of the five models 

 

In addition, this paper compares the mAP, detection time, 

mmAP(mean mean average Precision), average detection time, 

and weight. As shown in Table 5, the mmAPs of YOLOv3, 

YOLOv3-tiny, YOLOv4, YOLOv4-tiny, and YOLOv4-weeds 

were 88.91%, 82.11%, 88.95%, 82.71%, and 88.46%, 

respectively. It is obvious that the proposed model YOLOv4-

weeds performed excellently on every metric. 

On Type 1 test images, all models achieved a high AP on 

the foreground targets of carrot seedlings under any weather 

condition. This is because Type 1 images contain sufficient 
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targets of the same class; every model is very robust on such 

images. While the APs were about the same, YOLOv4-weeds 

consumed a shorter time than YOLOv3 and YOLOv4, 

suggesting that our model is better at detecting such images 

than YOLOv3 and YOLOv4. 

On Type 2 test images, YOLOv3, YOLOv4, and YOLOv4-

weeds achieved high APs, while YOLOv4-tiny and YOLOv3-

tiny ended up with low APs. Perhaps the latter two models, 

with their simple structures, are weak in feature extraction, and 

poor in the detection of small weeds. By contrast, YOLOv4-

weeds took a much shorter detection time than YOLOv3 and 

YOLOv4, while achieving a relatively high mAP on Type 2 

images. 

Overall, despite having a greater weight than YOLOv3-tiny 

and YOLOv4-tiny, YOLOv4-weeds still achieved a high 

detection precision, which is 6.35% and 5.75% higher than 

that of YOLOv3-tiny and YOLOv4-tiny, respectively. The 

model was almost as precise as YOLOv3 and YOLOv4. 

From the angle of average detection time, YOLOv4-weeds 

consumed an average detection time of 12.65ms, which is 

shorter than the time consumed by YOLOv3 and YOLOv4. 

The fast detection speed indicates that YOLOv4-weeds could 

realize real-time detection of carrot seedlings and various 

seeds in the complex scene of carrot fields, without sacrificing 

model accuracy. 

From the angle of model weight, YOLOv4-weeds had a 

weight of 159.0MB. Although it was larger than that of 

YOLOv3-tiny and YOLOv4-tiny, the weight was far smaller 

than that of YOLOv3 and YOLOv4.  

In summary, the proposed model can effectively detect the 

carrot seedlings and various seeds in the complex scene of 

carrot fields, and achieve a relatively small weight and short 

mean detection time. Apart from its high robustness, our 

model can be easily applied to embedded equipment. It is more 

suitable for weed detection than the other four models. 

 

 

Table 5. Detection performance of five models 

 

Network models 
mAP/% Detection time/ms mmAP 

/% 
Average detection time/ms Weight /MB 

Type 1 Type 2 Type 1 Type 2 

YOLOv3 89.65 88.16 13.33 14.66 88.91 13.99 246.4 

YOLOv3-tiny 86.74 77.47 5.33 4.73 82.11 5.03 34.7 

YOLOv4 89.06 88.84 18.66 18.66 88.95 18.66 256.1 

YOLOv4-tiny 86.37 79.05 4.81 4.54 82.71 4.68 23.6 

YOLOv4-weeds (ours) 89.11 87.80 12.38 12.92 88.46 12.65 159.0 

 

 

5. CONCLUSIONS 

 

Targeting the various weeds in the growth environment of 

carrot seedlings, this paper improves YOLOv4 into a 

lightweight weed detection model YOLOv4-weeds. Through 

model training and parameter optimization, the model 

performance was found to be optimal at the learning rate of 

0.0001. Comparative experiments show that our model 

achieved better overall performance than YOLOv4, YOLOv4-

tiny, YOLOv3, and YOLOv3-tiny, as evidenced by its mmAP 

of 88.46%, average detection time of 12.65 ms, and weight of 

159.0 MB. This means the proposed model can effectively 

detect the carrot seedlings and various weeds in the complex 

scene of carrot field, and be easily applied to embedded 

equipment. However, the detection effect of our model on a 

few images is constrained by the fact that: there are relatively 

few targets of some weed types in the images of our dataset, 

that is, the training samples are unbalanced, with a inter-class 

difference of image features; as a result, the features of some 

targets are not sufficiently extracted during model training. 

This problem will be solved in future research.  
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