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Respiratory system diseases in neonates are thought-about major causes of neonatal 

morbidity and mortality, particularly in developing countries Early diagnosis and 

management of these diseases is very important. Thermal imaging stands out as a harmless 

non-ionizing method, and monitoring of temperature changes or thermal symmetry is used 

as a diagnostic tool in medicine. This study aims to detect respiratory abnormalities of 

neonates by artificial intelligence using limited thermal image. Convolutional neural 

network (CNN) models, although a powerful classification tool, require a balanced and large 

amount of data. The conditions that require the attention of infants in neonatal intensive care 

units make medical imaging difficult. It may not always be possible to have much data in 

the neonatal thermal image database, as in some real-world problems. To overcome this, an 

effective deep learning model and various data enhancement techniques were used and their 

effects on the classification results were observed. Neonates with respiratory abnormalities 

were evaluated in one class, with cardiovascular diseases and abdominal abnormalities were 

evaluated in the other class. As a result, when the number of images is increased by 4 times 

with data augmentation, it was determined that the classification accuracy increased from 

84.5% to 90.9%. 
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1. INTRODUCTION

The first 28 days of life (the neonatal period) is the most 

vulnerable time for a baby’s survival. Neonates face the 

highest risk of dying in their first month of life at an average 

global rate of 18 deaths per 1,000 live births in 2018 [1]. 

According to the data published by the American Academy of 

Pediatrics, 10 out of 100 newborns need respiratory support 

after birth, and 1% requires in-depth resuscitation [2]. Risk 

factors such as meconium aspiration, prematurity, gestational 

diabetes, cesarean delivery, maternal chorioamnionitis and 

structural lung disorders cause respiratory abnormalities in 

neonates [3]. With the first breath the infant takes at birth, the 

lungs are opened and the fluid inside is replaced by air. This 

event usually takes place within the first 2-6 hours after birth. 

In some cases, the discharge of this fluid is delayed and the 

oxygen from some lungs does not change so that the baby 

cannot get all the oxygen it needs and suffers from respiratory 

distress [4]. In cases such as neonatal transient tachypnea or 

free air accumulation between visceral and parietal pleura 

(pneumothorax), it may cause the infant to remain oxygen 

deprived. If respiratory system anomalies are not detected at 

an early stage, they can cause cell and brain damage and even 

have fatal consequences [5]. Since rapid intervention is needed 

in such cases, the results produced by the computer-aided pre-

diagnosis system right after birth can be life-saving. 

Therefore, monitoring and evaluating the health status of 

neonates is very important for early intervention. The value of 

body temperature gives important information about life 

functions [6]. Diseases and inflammations cause local 

temperature changes on the body surface [7]. These changes, 

which cannot be distinguished at visible wavelengths in the 

early stages of diseases, can be distinguished at infrared 

wavelengths. In other words, a thermal imbalance that cannot 

be detected by the human eye can be detected by infrared 

detectors. Thermal cameras, convert infrared radiation emitted 

from the object into electrical signals, depending on the heat 

intensity [8]. Infrared thermography, a non-contact and non-

invasive method, has been used in various medical studies on 

thermoregulation [9], breast cancer detection [10], neonatal 

follow-up [11], urology [12], and vascular diseases [13]. 

Infants should not be left out of the incubator for long 

periods. However, long-term imaging in the radiology 

department can cause impaired thermal balance and cause 

hypothermia by disrupting their physiological conditions [14]. 

Moreover, methods involving radiation and contact can be 

dangerous for the infant. To prevent these problems, a system 

that will help experts in the early diagnosis of diseases should 

be implemented. First, in 1980, Clark and Stothers analyzed 

heat distributions in the body using neonatal thermograms. 

The average skin temperature obtained from thermography 

and thermocouple is shown by comparison [11]. Saxena and 

Villital (1999) evaluated the feasibility of clinical application 

of IRT in the pediatric population and aimed to identify 

pathological conditions that could be followed up and 

diagnosed [15]. Christidis et al. (2003) made a thermal 

analysis of the first hour of neonates and found that the 

peripheral regions rapidly cooled shortly after birth [16]. In 
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2012, Abbas et al. examined the temperature change of the 

neonates and obtained results to prove that the environment in 

which they are located prevents the correct temperature 

measurement [17]. Abbas and Leonhardt explained the 

newborn infrared thermography pattern clustering in 2014 and 

stated that abnormalities such as tumors, inflammations, and 

infections cause local temperature increases or asymmetric 

thermograms. In 2019, health status detection of neonates 

using infrared thermography and deep convolutional neural 

networks was carried out by Ornek et al. in another study [18]. 

Savasci et al. have worked on the classification of unhealthy 

and healthy neonates using artificial neural networks in 

neonatal intensive care units using medical thermography in 

2019 [19]. The first research results of this study were 

presented in an abstract format in 2020 using the narrow-scope 

deep learning model and only with the accuracy metric [20]. 

With the developments in machine learning and the spread 

of convolutional neural networks (CNN) in recent years, 

operations such as object recognition, classification, 

segmentation on images are performed with high specificity 

and sensitivity. However, the problem here is that the created 

network needs a lot of images of the same class in order to 

learn effectively. In this study, images taken from 34 neonatal 

were used. Thermal database was recorded within the neonatal 

intensive care unit (NICU) of Selcuk University Medicine 

Faculty. For the training of the CNN model, data augmentation 

was performed by applying brightness increase, sharpening, 

and contrast changing methods to thermal images. In addition 

to the original limited dataset which was created with 20 

images from each neonate, an augmented dataset was obtained 

and the effects of data augmentation on the classification 

results were observed. The original data set contains 680 

thermal images from 34 neonates, while the augmented data 

set contains 2060 thermal images. As a result of the 

experiment, how the data augmentation affects the 

classification accuracy was examined and a comparative study 

was presented. 

 

 

2. MATERIALS AND METHODS  

 

In this section, firstly, the thermal imaging process and the 

disease classes in dataset are described. Then, the data 

augmentation methods used are explained and how the 

classification is done with the convolutional neural network 

model is expressed. 

 

2.1 Used data and measurement setup 

 

Thermal images were taken by the Variocam HD 

(InfraTec©) infrared camera, and recorded using a user 

interface named IRBIS, at the Selcuk University Medicine 

Faculty, Neonatal Intensive Care Unit. The camera resolution 

is 1.024 × 768 with a thermal sensitivity of about 0.01℃. A 

total of 34 neonates, 16 with pulmonary diseases, 10 with 

cardiovascular diseases, 8 with renal diseases with abdominal 

region anomaly were used. Images were obtained from 

neonates lying in supine position at a distance of 60 - 100 cm. 

Thermograms have been converted to raw RGB images by 

using portable computer and thermal camera application. The 

measurement setup is shown in Figure 1.  

 

 
 

Figure 1. Thermogram recording process a) thermal camera, 

b) neonate, c) incubator, d) computer 

 

In order to protect the temperature values of the infants, the 

image acquisition was set as one minute, and 100 thermal 

images were obtained from each newborn for approximately 

60 seconds. Thus, 3400 thermal images were recorded from 34 

newborn infants. In practice, 20 images from each neonate 

were randomly selected and used. Some of the thermal images 

used in the application are shown in Figure 2. 

 

 
 

Figure 2. Image samples captured by thermal camera 

 

2.2 Neonatal diseases and image dataset 

 

In the study, neonates whose disease information was 

labelled by pediatricians were divided into 3 groups which 

respiratory system anomalies, cardiovascular and abdominal 

diseases. Then pulmonary diseases were examined in the first 

class and other diseases in the second class. Grouping process 

was done as shown in Table 1. 

In practice, 320 images of 16 neonates with pulmonary 

abnormalities and 360 images of 18 neonates with heart 

diseases, abdominal and renal diseases were used. Of the 34 

neonates, 11 were selected and reserved for testing, and 23 

were used for training the model. 
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Table 1. Determination of dataset 

 
Patient Label Group Class 

1 Respiratory Distress Respiratory Anomalies 

1 

2 Respiratory Distress Respiratory Anomalies 

3 Respiratory Distress Respiratory Anomalies 

4 Respiratory Distress Respiratory Anomalies 

5 Respiratory Distress Respiratory Anomalies 

6 Respiratory Distress Respiratory Anomalies 

7 Respiratory Distress Respiratory Anomalies 

8 Respiratory Distress Respiratory Anomalies 

9 Respiratory Distress Respiratory Anomalies 

10 Respiratory Distress Respiratory Anomalies 

11 Esophageal Atresia Respiratory Anomalies 

12 Transient Tachypnea Respiratory Anomalies 

13 Transient Tachypnea Respiratory Anomalies 

14 Pneumothorax Respiratory Anomalies 

15 Respiratory Distress Respiratory Anomalies 

16 Esophageal Atresia Respiratory Anomalies 

17 Patent Ductus Arteriosus Cardiovascular Diseases 

2 

18 Hypoplastic Left Heart Cardiovascular Diseases 

19 Aort Coarctation Cardiovascular Diseases 

20 Patent Ductus Arteriosus Cardiovascular Diseases 

21 Pulmonary Banding Cardiovascular Diseases 

22 Congenital Heart Anomaly Cardiovascular Diseases 

23 Aort Coarctation Cardiovascular Diseases 

24 Congenital Heart Anomaly Cardiovascular Diseases 

25 Atrial Septal Defect Cardiovascular Diseases 

26 Pulmonary Hypertension Cardiovascular Diseases 

27 Necrotizing Enterocolitis Abdominal Anomalies 

28 Necrotizing Enterocolitis Abdominal Anomalies 

29 Intestinal Obstruction Abdominal Anomalies 

30 Diaphragm Hernia Abdominal Anomalies 

31 Necrotizing Enterocolitis Abdominal Anomalies 

32 Intestinal Atresia Abdominal Anomalies 

33 Necrotizing Enterocolitis Abdominal Anomalies 

34 Kidney Failure Abdominal Anomalies 

 

2.3 Data augmentation 

 

 
 

Figure 3. Data augmentation process 

 

 
 

Figure 4. Augmented images (a) brightness enhancement, (b) 

contrast changing, (c) sharpening 

Immunity in newborns begins to mature from the 8th week 

after birth. Infants under observation in NICU are vulnerable 

to environmental influences and diseases in their first weeks 

of life [21]. Newborns who are dependent on vital support and 

medical monitoring devices cannot be removed from the 

incubator where the temperature balance is maintained. 

Although thermal imaging is performed without leaving the 

incubator, the protective top cover of the incubator is opened 

during imaging and the thermal insulation is broken for a short 

time. Given this sensitive situation of neonatal intensive care 

units, creating a thermal image database of thousands of 

images CNN needs to achieve successful classification can 

pose medical drawbacks. Another reason that reveals the need 

to increase data is that it is difficult to find the sufficient 

sample cases from each of the many different diseases that can 

be encountered in newborns. Therefore, it becomes necessary 

to make an efficient classification study using a limited data 

set. Accordingly, in this study, data augmentation methods 

which brightness enhancement, contrast changing, and 

sharpening were used to obtain the amount of data required by 

deep learning. The data augmentation process and occurred 

training set size given in Figure 3. 

220 of the 680 images in the original data set were reserved 

for testing the model and the remaining 460 images were 

increased to 1380 images with 3 different data augmentation 

technique. The following data-augmentation techniques were 

used in this study: 

Brightness enhancement; 

 

𝐵 (𝑖, 𝑗)  =  𝑓 (𝑖, 𝑗)  +  (𝑎) (1) 

 

Contrast changing; 

 

𝐶 (𝑖, 𝑗)  =  𝑓 (𝑖, 𝑗)  ∗  (𝑏) (2) 

 

Sharpening; 

 

𝑆(𝑖, 𝑗) = 𝑓 (𝑖, 𝑗) +  𝜏 ∗  𝐻(𝑖, 𝑗) (3) 

 

Here, 𝑓 (𝑖, 𝑗) represents the actual pixel values, a represents 

the amount of light, and b represents the contrast coefficient. 

In this study, a and b values were chosen as 0.3 and 0.5, 

respectively, experimentally. Sharpness is expressed as the 

contrast between different colors. Conversely, sharpening 

images means increasing the contrast of the edges where 

different colors intersect. The term 𝜏  represents a tuning 

parameter that typically ranges from 0 to 2; high values of 𝜏 

may create undesirable effects in the output image. 

Additionally, 𝐻(𝑖, 𝑗)  used to implement a high-pass filter. 

Augmented images are shown in Figure 4. 

With data augmentation, the total size of the dataset used in 

the application has reached 2060. 

After removing 220 images from 11 infants allocated for 

testing, the remaining images were used to train the model. 

 

2.4 CNN model 

 

CNN is a deep learning model that produces high-

performance results in mostly image-based implementations 

such as image classification, object recognition, noise 

cancellation, image segmentation etc. CNNs contain 2 basis 

layers which convolution and a fully connected network. 

There are two processes in the convolution layer: convolution 

and pooling. Feature extraction from the image with 
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convolution process, feature selection is done by pooling 

process. The fully connected layer consists of two parts, 

flattening and network layers. The feature matrix obtained in 

the flattening layer is transformed into a feature vector. 

 

 
 

Figure 5. CNN model 

 

Table 2. Description of CNN architecture 

 
Layer Type Configuration 

Activation Size Number 

1 Convolution ReLU 3x3 32 

2 Max-Pooling - 2x2 - 

3 Convolution ReLU 3x3 64 

4 Max-Pooling - 2x2 - 

5 Convolution ReLU 3x3 64 

6 Max-Pooling - 2x2 - 

7 Drop-Out - 0,25 - 

8 Dense ReLU 128 1 

9 Dense ReLU 64 1 

10 Dense 

(Output) 

Softmax 1 1 

 

 
 

Figure 6. Representation of the proposed system in the form 

of a flow chart 
 

The fully connected network layer consists of two parts, 

flattening and network layers. The feature matrix obtained in 

the flattening layer is transformed into a feature vector. The 

classification of this feature vector obtained from the network 

layers is performed by softmax classifier. Softmax operate 

generates probability-based loss value by exploitation score 

values created by artificial neural network. As seen in Figure 

5, proposed CNN architecture included three convolutional, 

three pooling, and three dense layers. We resized the 

dimensions of the input images from 512 x 512 to 64 x 64. The 

first convolutional layer consisted of 32 different 3 x 3 

dimensional layers (activation function = relu), whereas the 

second and third convolutional layer contained 64 different 3 

x 3 dimensional layers (activation function = relu). The 

dimensions of the three used pooling layers were 2 x 2 

(pooling = max pooling). The first two dense layers consisted 

of 128, and 64 neurons, respectively (activation function = 

relu), and the third dense layer, called the output layer, 

included one neuron (activation function = sigmoid). The 

output values varied from 0 to 1.  

The description of used CNN model is given in Table 2. The 

block representation of the system, which includes the steps of 

obtaining thermograms, data augmentation, training of the 

CNN algorithm, and evaluation of the results is in Figure 6. 

 

 

3. EVALUATION 

 

Obtained results evaluated by confusion matrix, accuracy, 

sensitivity and specificity metrics. 

Rows and columns of confusion matrix are as follows in 

Table 3; 

 

Table 3. Confusion matrix 

 

 
Real 

Positive Negative 

Prediction 
Positive 

TP  

(true positive) 
FP  

(false positive) 

Negative 
FN  

(false negative) 
TN 

(true negative) 

 

Accuracy (4), sensitivity (5) and specificity (6) metrics were 

calculated to evaluate the results of classification of thermal 

images. 

 

Accuracy= 
TP+TN

TP+TN+FP+FN 
 (4) 

 

Sensitivity= 
TP

TP+FN 
 (5) 

 

Specificity= 
TN

TN+FP
 (6) 

 

 

4. RESULTS AND CONCLUSIONS 

 

In this study, CNN model and data enhancement methods 

were used to determine respiratory system anomalies in 

neonates. In the classification, neonates with various 

pulmonary abnormalities are in the 1st class, and neonates 

with other diseases (cardiovascular diseases, abdominal 

diseases) constitute the 2nd class. In the first part of the study, 

the classification was made with 20 images from each neonate 

and 680 images of 34 infants with 16 pulmonary diseases and 

18 other diseases. In the second part, all the images of the 

infants and the images obtained with different augmentation 

techniques were used and the classification was made with 

2060 images. The confusion matrices of the classification is 

given in Table 4 and Table 5. Table 6 shows the results of 

Accuracy, sensitivity, and specificity. 

The evaluation of original limited dataset results obtained 

as 84% specificity, 85% sensitivity, 85% accuracy. When the 
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number of the thermal images was increased from 680 to 2060, 

all evaluation metrics values of augmented dataset results were 

increased. For example, the test accuracy metric rised from 

85% to 91% and sensitivity calculated as 100%. 

The results showed that it is possible to get better results 

with data increase and the model used is suitable for the 

detection of neonatal diseases from thermal images. In order 

to propose a pre-diagnosis method that can detect respiratory 

system anomalies in newborns, a dataset containing different 

disease classes has been defined. For this reason, it was placed 

as the second / opposite class in the cardiovascular and 

abdominal diseases dataset, which is predicted to show 

thermal asymmetry between the neck and groin. This study 

may be a motivation for the classification tasks of 

cardiovascular diseases or abdominal anomalies in future 

studies. Promising results were obtained in reducing neonatal 

mortality by thermal imaging. Using more thermal data or 

increasing the number of data with different image 

enhancement techniques may have better results. 

 

Table 4. Confusion matrix obtained by original dataset 

 

 
Real 

Respiratory Other 

Prediction 
Respiratory 80 14 

Other 20 106 

 

Table 5. Confusion matrix obtained by augmented dataset 

 

 
Real 

Respiratory Other 

Prediction 
Respiratory 80 0 

Other 20 120 

 

Table 6. Accuracy, sensitivity and specificity results 

 

 Original Dataset 
Augmented 

Dataset 

Accuracy 0.85 0.91 

Sensitivity 0.80 0.80 

Specificity 0.88 1 
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