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The purpose of this research is to evaluate the performances of some features extraction 

methods and classification algorithms for the electroencephalographic (EEG) signals 

recorded in a motor task imagery paradigm. The sessions were performed by the same 

subject in eight consecutive years. Modeling the EEG signal as an autoregressive process 

(by means of Itakura distance and symmetric Itakura distance), amplitude modulation (using 

the amplitude modulation energy index) and phase synchronization (measuring phase 

locking value, phase lag index and weighted phase lag index) are the methods used for 

getting the appropriate information. The extracted features are classified using linear 

discriminant analysis, quadratic discriminant analysis, Mahalanobis distance, support vector 

machine and k nearest neighbor classifiers. The highest classifications rates are achieved 

when Itakura distance with Mahalanobis distance based classifier are applied. The outcomes 

of this research may improve the design of assistive devices for restoration of movement 

and communication strength for physically disabled patients in order to rehabilitate their lost 

motor abilities and to improve the quality of their daily life. 
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1. INTRODUCTION

Brain computer interface (BCI) is the technology that 

acquires, analyses and translates brain signals into commands 

in order to control an external device [1]. 

Electroencephalography (EEG) records the brain signals 

noninvasively with electrodes placed on the scalp [2].  

The aim of BCI based EEG was to offer a better 

communication way for persons with motor disabilities 

through evaluation and classification of features contained in 

the EEG signals. 

Sensorimotor rhythms are those EEG rhythms related to 

motor actions such as preparing, movement or even imagining 

a limb movement. These actions determine changes in the 

brain activity. The sensorimotor rhythms are located over the 

motor cortex in the frequency bands 8–13 Hz (rhythm Mu) and 

13–30 Hz (rhythm Beta). 

Motor imagery (MI) is the translation of the subject’s motor 

intention through motor imagery states [3]. 

Various forms of electrical brain activities [4] have been 

used for EEG based BCI systems. Mu rhythm [5-7], P300 [8, 

9], steady state visual evoked potential [10-12] are some of 

them. 

The most successful feature extraction methods widely used 

are: common spatial pattern [13], Fourier transform [14], 

independent component analysis [15], phase synchronization 

[16], wavelet transform [17] and autoregressive (AR) spectral 

estimation [18].  

Many studies were performed in order to establish which 

the most convenient method is for extraction the important 

features from certain EEG signals recorded in sessions from 

the same day. The purpose of this research is to look for the 

changes that appeared during a period of eight years from a 

single female subject which has performed a motor imagery 

paradigm. 

The remainder of this paper is organized as follows: Section 

2 describes the EEG recordings, Section 3 details the applied 

features extraction methods, Section 4 presents the results and 

Section 5 the conclusions. 

2. EEG RECORDINGS

The experiments were performed in the Signal Processing 

Laboratory from the Faculty of Medical Bioengineering. The 

acquisition system was composed from a gMobilab+ module, 

a g.GAMMAcap, a g.GAMMAbox [19] and the BCI 2000 

platform [20].  

The electrodes were placed in C3, C4, P3, P4, CP3, CP4, Cz 

and Pz positions according to International 10-20 System and 

the reference electrode on the right ear. The sampling 

frequency was 256 Hz. 

Sitting comfortably in front of a PC monitor, the subject 

tried to imagine the hand movement indicated by the displayed 

arrow. If it was displayed a left/right oriented arrow, the 

subject had to imagine the left/right hand movement. The 

arrows were randomly displayed 30 times. When the screen 

was white, the subject had to relax. Before each session, the 

subject was trained by performing a trail with left and right 

hand movements instead of imaging the movement. 

In order to assess the efficiency of some of the feature 

extraction and of the classification methods, EEG signals 

recorded from the same person during the period of eight years 

(2012 – 2019) were handled. The EEG recordings were 

acquired in different hours, days, months and years in 

illumination conditions chosen by the subject (Table 1).  
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Table 1. The EEG recordings grouped by month and year 

 
Session Month Year 

1 November 2012 

2 November 
2013 

3 December 

4 November 2014 

5 March 2015 

6 March 

2016 7 April 

8 May 

9 May 2017 

10 April 2018 

11 April 2019 

 

 

3. FEATURE EXTRACTION AND CLASSIFICATION 

METHODS  

 

Three methods are taken into account: modeling the EEG 

signal as an autoregressive process, amplitude modulation and 

phase synchronization. The handled measures are: the Itakura 

distance for the autoregressive process, the amplitude 

modulation energy index for the amplitude modulation and 

phase locking value (PLV), phase lag index (PLI) and 

weighted phase lag index (wPLI) to estimate the 

synchronization between two EEG signals. 

In what follows, the main aspects of the proposed methods 

will be highlighted. The detail descriptions for an interested 

reader are found in Ref. [21-26]. 

Three EEG datasets were created: one for right hand 

movement imagination, 𝑦𝑅𝐼𝐺𝐻𝑇(𝑛),  one for left hand 

movement imagination, 𝑦𝐿𝐸𝐹𝑇(𝑛),  and one for relaxation, 

𝑦𝑅𝐸𝑆𝑇(𝑛).  
For further processing, the frequency band 8 – 12 Hz (Alpha 

rhythm) was considered. 

 

3.1 Autoregressive process 

 

As it is already known, an EEG signal, denoted by 𝑦(𝑛), can 

be considered as the output of an AR process described by the 

expression: 

 

𝑦(𝑛) = − ∑ 𝑎𝑘𝑦(𝑛 − 𝑘) + 𝑛(𝑛)𝑝
𝑘=1   (1) 

 

where, 𝑎𝑘  are the parameters of the model, 𝑝  is the model 

order and 𝑛(𝑛) the unpredictable part of the EEG signal 𝑦(𝑛). 

The best AR model may be obtained by minimizing the 

mean square error (MSE). It is shown that [21] the minimum 

MSE is: 

 

𝑀𝑆𝐸𝑦 = 𝑎𝑇𝑅𝑦(𝑝)𝑎  (2) 

 

where, 𝑎 = [1 𝑎1 𝑎2 … 𝑎𝑝]
𝑇

, 𝑅𝑦(𝑝)  is the autocorrelation 

matrix of 𝑦(𝑛), and T the transpose of a matrix. 

Passing the 𝑦𝑅𝐸𝑆𝑇(𝑛)  signal through AR(p) model 

caracterized by the 𝑎𝑅𝐸𝑆𝑇   parameters, the minimum MSE is: 

 

𝑀𝑆𝐸𝑦𝑅𝐸𝑆𝑇,𝑎𝑅𝐸𝑆𝑇 = (𝑎𝑅𝐸𝑆𝑇)𝑇𝑅𝑦𝑅𝐸𝑆𝑇
(𝑝)𝑎𝑅𝐸𝑆𝑇   (3) 

 

and passing the same signal through any other AR(p) model, 

caracterized by 𝑎𝑅𝐼𝐺𝐻𝑇  or by 𝑎𝐿𝐸𝐹𝑇  gives the MSEs as: 

 

𝑀𝑆𝐸𝑦𝑅𝐸𝑆𝑇,𝑎𝑅𝐼𝐺𝐻𝑇 = (𝑎𝑅𝐼𝐺𝐻𝑇)𝑇𝑅𝑦𝑅𝐸𝑆𝑇
(𝑝)𝑎𝑅𝐼𝐺𝐻𝑇   (4) 

𝑀𝑆𝐸𝑦𝑅𝐸𝑆𝑇,𝑎𝐿𝐸𝐹𝑇 = (𝑎𝐿𝐸𝐹𝑇)𝑇𝑅𝑦𝑅𝐸𝑆𝑇
(𝑝)𝑎𝐿𝐸𝐹𝑇   (5) 

 

Any of the MSEs from (4) or (5) is higher or equal then 

𝑀𝑆𝐸𝑦𝑅𝐸𝑆𝑇,𝑎𝑅𝐸𝑆𝑇  from (3). The equality occurs when the AR 

models for relaxation period is the same for imagination of the 

right/left hand movement. The larger the deviation from the 

AR model from the relaxation period is, the more significant 

changes in the EEG signal from the EEG during relaxation are.  

The Itakura distance (ID) measures the similarity between 

right/left hand movement imagination and the relaxation state. 

So, for imagination of the right hand, ID is defined by: 

 

𝐼𝐷𝑅𝐸𝑆𝑇−𝑅𝐼𝐺𝐻𝑇 = log (
𝑀𝑆𝐸

𝑦𝑅𝐸𝑆𝑇,𝑎𝑅𝐼𝐺𝐻𝑇

𝑀𝑆𝐸
𝑦𝑅𝐸𝑆𝑇,𝑎𝑅𝐸𝑆𝑇

)  (6) 

 

and for the left by: 

 

𝐼𝐷𝑅𝐸𝑆𝑇−𝐿𝐸𝐹𝑇 = log (
𝑀𝑆𝐸

𝑦𝑅𝐸𝑆𝑇,𝑎𝐿𝐸𝐹𝑇

𝑀𝑆𝐸
𝑦𝑅𝐸𝑆𝑇,𝑎𝑅𝐸𝑆𝑇

)  (7) 

 

The two classes formed for further processing are  

𝐼𝐷𝑅𝐸𝑆𝑇−𝑅𝐼𝐺𝐻𝑇 and 𝐼𝐷𝑅𝐸𝑆𝑇−𝐿𝐸𝐹𝑇 . 
The symmetric Itakura distance, 𝐼𝐷𝑅𝐼𝐺𝐻𝑇 , for imagination 

of right hand movement (using (6) and a relation similar to it) 

is [22]: 

 

𝐼𝐷𝑅𝐼𝐺𝐻𝑇 =
1

2
(𝐼𝐷𝑅𝐸𝑆𝑇−𝑅𝐼𝐺𝐻𝑇 + 𝐼𝐷𝑅𝐼𝐺𝐻𝑇−𝑅𝐸𝑆𝑇)  (8) 

 

and for movement of left hand movement, 𝐼𝐷𝐿𝐸𝐹𝑇 , using (7) 

and a relation similar to it, is: 

 

𝐼𝐷𝐿𝐸𝐹𝑇 =
1

2
(𝐼𝐷𝑅𝐸𝑆𝑇−𝐿𝐸𝐹𝑇 + 𝐼𝐷𝐿𝐸𝐹𝑇−𝑅𝐸𝑆𝑇)  (9) 

 

Both for ID and symmetric ID the model order p=6 and 

model order p=10 was evaluated. 

The data contained on channels C3 and C4 and frequency 

band 8 – 12 Hz were chosen. 

 

3.2 Amplitude modulation 

 

The amplitude modulation analysis allows for 

understanding which modulation frequencies ride a cerebral 

rhythm over short periods of time. From the five rhythms 

(Delta, Theta, Alpha, Beta and Gamma), only the EEG signal 

from Alpha rhythm is handled here as the best results were 

found for this band. 

The temporal amplitude envelope is computed by means of 

Hilbert transform [23]. 

The Hilbert transform  ℋ{. }  of 𝑦𝑅𝐼𝐺𝐻𝑇(𝑛)  EEG signal is 

described by: 

 

ℋ{𝑦𝑅𝐼𝐺𝐻𝑇(𝑛)} =
1

𝜋
𝑃𝑉 ∫

𝑦𝑅𝐼𝐺𝐻𝑇(𝑛)

𝑡−𝜋

+∞

−∞

𝑑𝑡  (10) 

 

where, 𝑃𝑉 is the Cauchy principal value. 

The analytic signal 𝑦𝑅𝐼𝐺𝐻𝑇(𝑛)𝑎 is defined as: 

 

𝑦𝑅𝐼𝐺𝐻𝑇(𝑛)𝑎  = 𝑦𝑅𝐼𝐺𝐻𝑇(𝑛) + 𝑗ℋ{𝑦𝑅𝐼𝐺𝐻𝑇(𝑛)}  (11) 

 

The amplitude modulation (or the temporal amplitude 

envelope) for 𝑦𝑅𝐼𝐺𝐻𝑇(𝑛)𝑎, represented by 𝑅𝐴𝑀(𝑛), is defined 

as: 
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𝑅𝐴𝑀(𝑛) = √𝑦𝑅𝐼𝐺𝐻𝑇(𝑛)2 + ℋ{𝑦𝑅𝐼𝐺𝐻𝑇(𝑛)}2  (12) 

 

𝑅𝐴𝑀(𝑛) is multiplied by a 5 s Hamming window with 0.5 s 

delay and is obtained the temporal envelope for frame  𝑚 , 

expressed by 𝑅𝐴𝑀(𝑚, 𝑛).  

Then the modulus of the Fourier transform of the amplitude 

modulation for frame m is computed: 

 

𝑅𝐴𝑀(𝑚, 𝑓) = |ℱ{𝑅𝐴𝑀(𝑚, 𝑛)}|  (13) 

 

where, f is the modulation frequency and ℱ{𝑅𝐴𝑀(𝑚, 𝑛) is the 

discrete Fourier transform of 𝑅𝐴𝑀(𝑚, 𝑛). 

The energy of the 𝑗 modulation band, denoted by 

𝑅𝐸𝑗(𝑚, 𝑓), is computed as: 

 

𝑅𝐸𝑗(𝑚, 𝑓) = 𝑅𝐴𝑀𝑗
(𝑚, 𝑓)2  (14) 

 

and the average of energies over all the frames, expressed by 

𝑅𝐸𝑗(𝑚, 𝑓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

The amplitude modulation energy index of the 

𝑗 modulation band [27], 𝑅𝐸𝐼𝑗(𝑓), is defined by the following 

expression: 

 

𝑅𝐸𝐼𝑗(𝑓) =
𝑅𝐸𝑗(𝑚,𝑓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

∑ 𝑅𝐸𝑗(𝑚,𝑓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑘

𝑗=1

  
(15) 

 

where, k is the number of the modulation bands for the rhythm 

taken into account. For Alpha rhythm, k=3, because there are 

possible delta, theta, and alpha modulation bands.  

 

3.3 Phase synchronization 

 

The phase locking value represents the stability of the phase 

difference between instantaneous phases 𝜑𝑥(𝑡)  and 𝜑𝑦(𝑡) , 

and it is expressed as: 

 

𝑃𝐿𝑉 = |〈𝑒𝑗∆𝜑(𝑡)〉|  

∆𝜑(𝑡) =  𝜑𝑦(𝑡) −  𝜑𝑥(𝑡) 
(16) 

 

The phase lag index [25] is stated as: 

 

𝑃𝐿𝐼 = |〈𝑠𝑖𝑔𝑛[∆𝜑(𝑡𝑘)]〉| (17) 

 

𝑠𝑖𝑔𝑛  is the signum function and 〈. 〉  denotes the average 

over the time. 

The weighted phase lag index is determined by [26]: 

 

𝑤𝑃𝐿𝐼 = |〈𝐼(𝑋)〉|/〈|𝐼(𝑋)|〉  =
|〈|𝐼(𝑋)|𝑠𝑖𝑔𝑛 𝐼(𝑋)〉|

〈|𝐼(𝑋)|〉
 (18) 

 

where, 𝐼(𝑋)  is the imaginary part of the cross spectrum 

between signals 𝑥(𝑡) and 𝑦(𝑡). 

In order to compute the phase synchronization parameters, 

four combinations Cz-C3, Cz-C4, Pz-C3 and Pz-C4 were 

taken into account.  

The above described methods were conducted also for left 

hand movement imagination.  

 

3.4 Classifiers 

 

Discrimination between right hand movement imagination 

and left hand movement imagination was assessed using linear 

discriminant analysis (LDA), quadratic discriminant analysis 

(QDA), Mahalanobis distance (MD), k nearest neighbor (kNN) 

with k=5 and support vector machine (SVM) classifiers [28-

33]. A 5x5 fold cross validation procedure estimated the 

classification rate, specificity and sensitivity for the sessions 

performed by the subject. 

The terms commonly used for the description of sensitivity, 

specificity and classification rate are: true positive (TP), true 

negative (TN), false negative (FN) and false positive (FP). 

The classification rate, specificity and sensitivity [34] are 

defined by:  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (19) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
  (20) 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (21) 

 

 

4. RESULTS 

 

In Table 2 and Table 3 are displayed the classification rates, 

sensitivity, specificity (%) for Itakura Distance (model order 6 

and model order 10) obtained with all the classifiers. The 

highest classification rates of 93.33%, for both orders, were 

attained with Mahalanobis distance classifier.  

In Table 4 and Table 5 are shown the performance of 

classifiers for symmetric Itakura Distance (model order 6 and 

model order 10, respectively) with the same classifiers as in 

the previous cases. In these situations, the highest 

classification rates of 90% and 91.67% for model order 6, and 

model order 10 respectively, were achieved with quadratic 

discriminant analysis. 

The classification rates (%), the sensitivities (%) and the 

specificities (%) for Alpha_Alpha and Theta_Alpha (the first 

word meaning the modulation band and the second the rhythm) 

with all the classifiers are displayed in Table 6. 

The highest classification rates for Alpha_Alpha and 

Theta_Alpha were obtained with k nearest neighbor classifier. 

The classification rates attained for Theta_Alpha were smaller 

than the classification rates obtained for Alpha_Alpha. The 

most consistent results were obtained for session 9. In Table 7 

are represented the classification rates, sensitivity and 

specificity for phase locking value. The highest performances 

were obtained with k nearest neighbor classifier (85.06%, 

84.82% and 83.06% for classification rate, sensitivity and 

specificity, respectively, in session 8).  

The classification rates, sensitivity and specificity realized 

for PLI are depicted in Table 8 and it is easy to see that the 

best performances are for k nearest neighbor classifier, for 

session 8 (classification rate of 85.16%, sensitivity of 87.16% 

and specificity of 78.85%).  

In Table 9 are detailed the results for weighted phase lag 

index. The results are inferior to those for phase locking value 

and phase lag index. 

So, for phase synchronization, the best performances are 

similar for phase locking value and phase lag index using k 

nearest neighbor classifier for the same session, with the 

remark that the specificity was lower for phase lag index. 

Because no significant performances were found due to 

subject’s practice, the calculus of the average values for 
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classification rates, sensitivities and specificities of all the 

sessions makes sense. In Figure 1, Figure 2 and Figure 3 are 

displayed the mean of the classification rates, of the 

sensitivities and of the specificities, for all proposed feature 

extraction methods and classifiers. 

The best result for the mean of classification rates, 80.05% 

was achieved using amplitude modulation energy index for 

amplitude modulation method (alpha rhythm in alpha 

modulation band) and k nearest neighbor classifier. A close 

result was found for autoregressive process by means of 

Itakura distance of order 6 and Mahalanobis distance classifier, 

when 79.39% was attained. The k nearest neighbor classifier 

and amplitude modulation with amplitude modulation energy 

index (in case of theta modulation band) and phase 

synchronization method by means of phase locking value and 

phase lag index as feature vectors, were also achieved very 

good results (78.26%, 79.3% and 78.12%, respectively).  

 

 

Table 2. Classification rates, sensitivities, specificities (%) for Itakura distance (model order 6)  

 

  
Session 

1 2 3 4 5 6 7 8 9 10 11 

Classification 

rates  

(%) 

LDA 56.67 81.67 63.33 71.67 56.67 80 56.67 65 85 68.33 80 

QDA 73.33 91.67 61.67 88.33 70 88.33 83.33 71.67 88.33 70 78.33 

MD 71.67 93.33 71.67 90 68.33 86.67 86.67 71.67 88.33 68.33 76.67 

SVM 58.33 90 70 78.33 66.67 90 76.67 78.33 88.33 70 76.67 

kNN 64.17 89.72 54.17 88.06 58.61 86.67 81.67 73.89 84.17 67.5 76.67 

Sensitivity 

(%) 

LDA 39.72 92.06 73.61 83.33 62.33 67.44 84.83 57.83 81.56 46 91.11 

QDA 80 97 84.83 95.72 69.61 92.44 83.33 78.44 91.78 49.61 91.11 

MD 63.44 92.72 70.33 95.72 56.72 96.72 83.33 85.17 91.78 35.56 89.61 

SVM 71.19 90.01 65.69 83.91 55.89 85.1 81.66 73.49 80.38 71.94 71.04 

kNN 75.03 93.24 56.77 91.02 56.57 88.46 85.9 73.74 88.17 57.78 78.31 

Specificity 

(%) 

LDA 79.61 75.61 47 57.56 38.67 87.33 46.17 57.06 87.17 81.61 82 

QDA 68.5 90.5 50.67 88.78 65.89 81.22 86.94 63 87.17 81.44 81.33 

MD 75.78 97.39 79.17 93.06 76.72 71 89.11 52.94 87.17 92.61 81.33 

SVM 59.38 85.98 64.01 87.54 54.7 84.38 82.57 77.04 88.91 68.71 71.61 

kNN 59.96 89.1 51.22 88.62 61.03 84.74 84.58 76.23 83.47 78.59 82.39 

 

Table 3. Classification rates, sensitivities, specificities (%) for Itakura distance (model order 10)  

 

 
Session 

1 2 3 4 5 6 7 8 9 10 11 

Classification 

rates (%) 

LDA 48.33 81.67 60 75 61.67 91.67 61.67 81.67 91.67 76.67 88.33 

QDA 45 85 66.67 76.67 70 90 66.67 83.33 91.67 76.67 90 

MD 51.67 81.67 63.33 83.33 68.33 90 71.67 81.67 93.33 76.67 83.33 

SVM 31.67 83.33 75 81.67 68.33 88.33 66.67 85 91.67 81.67 88.33 

kNN 52.5 81.67 67.78 75.83 70.28 92.5 69.17 83.06 92.78 77.78 83.06 

Sensitivity 

(%) 

LDA 37.78 94.78 64.94 77.89 63.67 81.67 85.17 61.39 93.28 71.06 100 

QDA 19.44 95.06 73.33 77.89 74.72 81.67 93.72 69.94 93.28 68.44 100 

MD 54.44 65.11 62.33 73.61 63 87.44 72.61 88.44 93.28 74.06 90.56 

SVM 50.48 82.46 60.49 75.66 63.71 93.73 63.1 78.4 91.37 79.49 72.51 

kNN 53.59 77.76 61.03 77.04 66.51 95.18 73.16 77.93 91.48 76.63 91.03 

Specificity 

(%) 

LDA 60.44 84 61.56 53.5 55.72 100 35.61 98.5 89.78 81 62 

QDA 60.22 86.17 71.94 57.78 69.94 97.39 42.39 94.22 89.78 86.11 69.61 

MD 59.28 95.89 76.06 80.56 75.72 94.39 68.28 81.44 97.39 79.67 77.22 

SVM 37.1 80.36 64.21 76.93 69.54 87.01 61.52 84.37 90.8 73.56 69.62 

kNN 52.04 87.91 75.9 65.07 72.21 91.89 70.62 89.04 93.11 80.71 70.6 

 

Table 4. Classification rates, sensitivities, specificities (%) for symmetric Itakura distance (model order 6) 

 

 
Session 

1 2 3 4 5 6 7 8 9 10 11 

Classification  

rates  

(%) 

LDA 45 85 61.67 71.67 66.67 83.33 51.67 46.67 85 75 80 

QDA 63.33 90 63.33 88.33 68.33 81.67 86.67 60 86.67 70 80 

MD 61.67 88.33 68.33 88.33 68.33 81.67 83.33 61.67 85 63.33 76.67 

SVM 48.33 88.33 70 83.33 66.67 85 76.67 61.67 86.67 75 78.33 

kNN 59.44 85.56 55.56 82.78 61.11 82.5 75.83 60 84.17 71.94 76.67 

Sensitivity 

(%) 

LDA 34.67 89.39 69.44 82.67 74.11 81.56 64.06 54.89 81.28 69.72 93.06 

QDA 78.83 89.39 72.06 97.39 85.33 84.17 98.5 44.78 81.28 64.94 93.06 

MD 41.67 77.5 67.11 97.39 70.17 84.83 85.61 74.33 81.28 80.28 88.94 

SVM 61.88 87.44 62.43 84.01 63.51 90.39 77.53 63.63 82.88 69.84 68.3 

kNN 64.2 87.07 56.11 89.57 60.2 84.21 76.84 57.51 81.87 82.88 80.23 

Specificity 

(%) 

LDA 55.28 91.56 45.5 64.06 63.67 76.5 49.67 32.67 90.78 84.72 65.33 

QDA 47.61 96.33 48.83 76.83 61.72 65.44 86.17 54.22 91.44 88.33 65.33 

MD 67.72 97 64.94 76.83 72.44 63.94 92.44 45.33 89.94 41.44 65.33 

SVM 54.94 86.7 63.59 88.5 64.94 80.54 75.83 61.08 89.34 64.64 59.86 

kNN 52.02 88.89 56.21 79.57 67.7 74.6 87.64 57.51 88.46 59.86 72.43 
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Table 5. Classification rates, sensitivities, specificities (%) for symmetric Itakura distance (model order 10) 
 

 
Session 

1 2 3 4 5 6 7 8 9 10 11 

Classification  

rates (%) 

LDA 40 83.33 61.67 76.67 60 90 63.33 80 91.67 86.67 88.33 

QDA 50 85 68.33 81.67 68.33 85 66.67 83.33 91.67 88.33 91.67 

MD 51.67 83.33 66.67 83.33 61.67 85 66.67 71.67 90 73.33 83.33 

SVM 40 85 75 81.67 75 88.33 66.67 80 88.33 88.33 90 

kNN 52.78 85.28 71.94 80.56 69.72 90.28 63.33 76.11 86.94 83.33 82.78 

Sensitivity 

(%) 

LDA 24.39 92.39 59.11 86.5 72.44 81 79.17 62.06 96.06 69.22 100 

QDA 57.11 89.11 63.06 82.17 83.72 81 68.61 62.06 96.06 76.83 100 

MD 48.56 68.83 53.94 82.17 75.78 85.94 52.56 67.67 95.39 86.61 82.5 

SVM 47.98 75.38 65.87 80.86 60.83 87.36 60.93 70.21 86.54 76.82 65.6 

kNN 49.42 78.5 70.59 82.64 67.93 90.21 61.97 66.61 86.3 79.46 84.84 

Specificity 

(%) 

LDA 64.11 57.61 73.61 71.67 61.56 100 41.44 93.56 84.78 92.39 77.28 

QDA 51.5 78.78 69 76.89 55.28 94.11 46.94 98.5 84.78 92.39 84.17 

MD 61 89.78 76.61 77.56 55.28 91.11 70.5 77.39 84.78 64.39 84.17 

SVM 43.53 80.04 66.39 81.98 79.37 89.01 63.59 75.9 89.16 84.72 64.47 

kNN 55.59 81.53 67.52 77.58 68.26 85.53 60.33 84.08 87.72 77.43 82.59 

 

Table 6. Classification rates, sensitivities, specificities (%) for modulation_rhythm Alpha_Alpha and Theta_Alpha 
 

 
Session 

1 2 3 4 5 6 7 8 9 10 11 

Alpha_Alpha 

Classification rates (%) 

LDA 54 51.5 58.5 55 58.5 55.5 72.5 52.5 65.5 59 53 

QDA 66 74.5 65 69 66.5 71.5 86 60 86.5 69.5 51.5 

MD 59 64 70 73.5 69 74 85 51 75 69 54.5 
SVM 66.5 73.5 78.5 76 72.5 79 83 61.5 86 71.5 66.5 

kNN 66.33 79.5 83 83 82.17 81.83 82.92 72.83 92.75 82.83 73.33 

Sensitivity 

(%) 

LDA 66.12 78.32 65.92 23.43 83.92 60.8 33.78 32.57 34.83 51.17 54.08 
QDA 49.1 80.8 41.35 32.87 32.62 87.12 36.47 30.12 67.4 67.28 28.1 

MD 46.43 50.08 68.22 65.7 68.45 61.78 47.75 25 74.22 49 64.4 

SVM 60.85 66.72 79.92 79.36 81.28 83.83 81.97 73.71 93.62 80.37 59.16 
kNN 63.18 76.52 79.77 74.5 81.34 80.05 79.79 64.37 80.63 77.13 69.72 

Specificity 

(%) 

LDA 16.9 31.62 40.1 76.77 37.85 43.9 78.82 73.88 75.88 69.35 30.25 

QDA 43.37 44.22 80.08 92.52 86.52 68.7 93.15 69.68 82.08 65.77 89.43 
MD 57.87 74.75 64.18 39.57 61 90.18 56.78 77.48 79.03 88.35 56.32 

SVM 68.31 84.22 78.79 79.27 80.96 72.91 82.48 53.69 85.73 72.69 76.77 

kNN 70.74 81.27 82.32 84.41 79.8 74.98 84.07 60.25 86.71 79.45 79.01 

Theta_Alpha 

Classification rates (%) 

LDA 49 56.5 54 50.5 56.5 50.5 56.5 55.5 57 59 42.5 

QDA 52 61.5 61.5 62 59.5 76 65.5 52 76 64.5 58 

MD 52 62.5 63.5 51.5 65.5 77 55.5 51 77.5 66.5 59.5 
SVM 54.5 56 69.5 68.5 67.5 73 69.5 56.5 76.5 66 56.5 

kNN 67.83 81 83.25 77 80.58 83.58 79.58 74.25 86.17 80.67 73.17 

Sensitivity 

(%) 

LDA 62.2 64.22 69.3 61.67 75.38 46.53 73.92 40.75 59.6 54.57 69.63 
QDA 70.63 84.72 75.43 61.35 88.15 72.42 89.17 37.6 81.05 65.25 78.9 

MD 40.07 47.02 58.3 73.33 65.97 79.73 88.08 68.77 87.58 83.68 37.45 

SVM 61.78 72.89 74.66 71.4 74.52 77.9 77.32 68.06 83.82 69.22 69.73 
kNN 63.18 76.52 79.77 74.5 81.34 80.05 79.79 64.37 80.63 77.13 69.72 

Specificity 

(%) 

LDA 53.48 47.55 49.52 56.25 48.1 66.83 86.42 66.42 77.1 66.03 39.98 

QDA 60.18 66.17 51.48 74.83 50.2 69.68 87.57 80.15 88.55 79.3 27.45 
MD 73.03 85.42 77.62 72.15 73.05 67.95 87.17 38.63 66.42 55.83 70.35 

SVM 68.4 77.39 78.58 71.51 76.74 85.86 71.05 72.09 87.15 76.19 69.34 

kNN 68.01 82.89 81.1 69.07 75.16 86.35 75.87 75.51 87.69 82.6 71.94 

 

Table 7. Classification rates, sensitivities, specificities (%) for phase locking value (PLV) 
 

 
Session 

1 2 3 4 5 6 7 8 9 10 11 

Classification  

rates  

(%) 

LDA 68.98 63.02 63.02 64.36 62.29 55.84 67.64 61.19 65.33 58.64 67.64 

QDA 69.46 67.4 66.18 69.22 64.6 63.5 68.49 74.21 69.34 60.95 69.83 

MD 68.73 66.67 66.55 65.94 65.09 63.14 68.73 72.75 68.61 60.95 66.91 

SVM 76.76 75.43 70.32 72.14 71.41 69.95 77.98 78.71 75.55 74.57 78.35 

kNN 80.01 77.13 78.04 77.23 77.43 75.49 81.33 85.06 80.11 79.95 80.47 

Sensitivity 

(%) 

LDA 73.02 62.24 60.58 61.97 60.72 59.36 72.89 62.35 69.21 56.72 64.5 

QDA 78.08 63.85 70.61 70.63 70.8 67.03 70.53 76.16 71.41 61.55 64.04 

MD 72.36 74.8 58.59 46.61 58.38 80.43 83.18 80.7 79.13 64.1 78.71 

SVM 77.72 77.58 70.85 71.04 72.48 77.43 82 84.82 77.52 74.81 80.03 

kNN 80.54 76.45 73.44 72.72 74.28 76.42 82.15 84.58 81.88 78.8 80.51 

Specificity 

(%) 

LDA 64.2 61.77 64.84 65.92 63.56 56.36 66.5 60.89 63.2 62.24 70.84 

QDA 61.59 68.47 59.65 64.83 57.01 65.75 69.87 73.76 67.21 58.72 77.53 

MD 65.96 58.07 73.61 80.77 73.27 51.63 55.83 65.94 57.92 58.13 56.02 

SVM 76.65 72.03 78.11 76.54 77.86 68.68 76.47 80.03 76.27 76.69 75.94 

kNN 77.87 74.06 79.57 77.92 77.92 71.16 75.92 83.06 74.27 77.83 74.88 
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Table 8. Classification rates, sensitivities, specificities (%) for phase lag index (PLI) 

 

 
Session 

1 2 3 4 5 6 7 8 9 10 11 

Classification 

rates (%) 

LDA 60.83 65.09 61.19 58.27 62.29 55.23 66.67 61.92 66.55 58.64 67.27 

QDA 71.78 68 61.8 62.53 64.23 63.14 73.84 71.29 66.55 60.95 70.19 

MD 70.07 67.64 62.41 60.22 60.95 59.73 69.59 71.05 65.57 62.29 70.19 

SVM 77.25 73.24 71.78 69.59 73.11 67.4 80.05 76.64 71.65 73.11 77.98 

kNN 82.14 76.68 77.23 72.55 75.63 74.49 83.31 85.16 76.72 74.96 80.41 

Sensitivity 

(%) 

LDA 60.17 64.05 64.08 60.33 63.5 57.65 70.96 66.37 67.88 60.64 63.8 

QDA 76.95 66.59 71.91 74.86 70.45 59.65 75.54 73.94 66.86 65 62.51 

MD 63.18 78.65 51.25 34 45.63 71.64 82.1 83.14 72.55 66.37 81.64 

SVM 77.57 78.5 69.05 63.64 71.1 74.23 83.02 81.66 77.09 73.28 81.16 

kNN 81.25 78.03 71.29 66.41 70.16 77.58 84.06 87.16 76.35 74.37 81.89 

Specificity 

(%) 

LDA 58.68 64.1 59.18 57.11 62.05 51.08 61.65 59.3 62.85 60.4 70.26 

QDA 68.24 71.41 54.77 51.96 55.07 65.37 71.03 69.15 67.61 56.36 75.69 

MD 75.11 58.61 74.21 86.69 74.45 47.16 54.13 61.85 57.83 59.16 56.71 

SVM 80.71 73.13 78.87 75.36 76.96 70.02 77.42 80.44 73.14 71.98 77.41 

kNN 80.59 74.22 77.5 73.68 79.07 66.77 77.24 78.85 72.6 74.31 75.91 

 

Table 9. Classification rates, sensitivities, specificities (%) for weighted phase lag index (wPLI) 

 

 
Session 

1 2 3 4 5 6 7 8 9 10 11 

Classification 

rates (%) 

LDA 56.08 54.38 54.87 54.14 53.41 53.16 58.15 55.84 50.36 55.6 56.08 

QDA 56.81 64.11 60.1 60.34 62.65 60.22 60.34 57.79 56.45 60.83 56.08 

MD 56.2 51.7 55.6 57.42 56.08 56.81 60.1 57.06 58.15 57.91 56.81 

SVM 66.55 67.88 72.14 66.91 72.87 67.76 66.3 66.67 66.3 62.29 67.27 

kNN 67.19 63.56 69.57 67.7 69.02 69.28 71.74 67.17 68.65 66.95 68.69 

Sensitivity 

(%) 

LDA 51.4 56.37 49.24 53.75 50.75 51.02 52.49 51.09 50.02 49.07 57.94 

QDA 53.76 81.28 54.01 49.58 53.32 69.18 50.15 58.56 52.5 45.27 71.14 

MD 34.65 10.17 87.43 78.02 90.55 40.12 66.41 59.42 66.55 63.8 44.35 

SVM 59.79 52.76 75.71 71.15 75.47 63.45 71.26 68.12 66.94 66.23 64.61 

kNN 61.16 53.41 78.32 71.33 77.94 60.05 71.52 67.96 67.14 67.21 62.76 

Specificity 

(%) 

LDA 60.76 54.78 57.03 54.76 53.85 56.41 61.99 63.35 50.68 57.3 57.6 

QDA 62.21 47.89 72.02 69.83 71.57 53.38 70.94 59.68 59.99 75.49 42.96 

MD 78.07 95.84 25.12 32.85 21.79 75.77 56.17 57.09 49.5 51.42 72.41 

SVM 71.03 72.72 59.84 62.31 59.33 71.31 65.48 64.86 66.7 61.34 69.6 

kNN 71.84 72.01 57.78 60.74 57.78 71.96 68.56 63.63 67.5 66.12 70.8 

 

 
 

Figure 1. The mean of the classification rates (%) 

 

 
 

Figure 2. The mean of the sensitivities (%) 
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Figure 3. The mean of the specificities (%) 

 

The highest means of sensitivity and specificity were 

provided by the autoregressive process (Itakura distance as 

feature vectors for both) with quadratic discriminant analysis 

and Mahalanobis distance classifier, respectively. 

 

 

5. CONCLUSIONS 

 

The research evaluated efficiency of the some of the feature 

extraction methods and classification algorithms for EEG 

signals recorded from a subject in several sessions in eight 

years (2012 - 2019), in a motor imagery task paradigm. So, 

there were not found any systematic enhancement in outcomes 

when the EEG signals were recorded in the sessions performed 

in the last years. We may conclude that the subject’s training 

in performing the imagination of the hand movement didn’t 

augment the performance and, maybe, good or bad results 

were attained due to the subject’s physiological determinants. 

The highest classification rate of 93.33%, from all the 

sessions, was attained with Mahalanobis distance based 

classifier and Itakura distance (no matter the order). The 

maximum sensitivity was obtained with linear discriminant 

analysis and quadratic discriminant analysis for Itakura 

distance, and symmetric Itakura distance model order 10. The 

specificity of 100% was achieved with Itakura distance, model 

order 10 and linear discriminant analysis.  

Regarding the mean of the classification rates, the best 

result was achieved using k nearest neighbor classifier and 

amplitude modulation energy index (in the case of alpha 

modulation band of alpha rhythm) as feature vector. A near 

result was found for Mahalanobis distance classifier and 

autoregressive process by means of Itakura distance of order 

6. As the sensitivities and specificities had high values for both 

cases, any of them would be a valuable choice in an on-line 

brain-computer interface paradigm.  

The future work involves, on one hand, recording of many 

sessions of EEG signals from the same subject in order to 

determine if the biological factors (like fatigue, feeling thirst 

or hungry) affects the performance, on the other hand, 

manipulating a feature vector as a weighted combination of the 

measures used in this paper and involving further EEG 

channels like CP3 and CP4 along with the already used ones. 
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