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The purpose of this research is to evaluate the performances of some features extraction
methods and classification algorithms for the electroencephalographic (EEG) signals
recorded in a motor task imagery paradigm. The sessions were performed by the same
subject in eight consecutive years. Modeling the EEG signal as an autoregressive process
(by means of Itakura distance and symmetric Itakura distance), amplitude modulation (using
the amplitude modulation energy index) and phase synchronization (measuring phase
locking value, phase lag index and weighted phase lag index) are the methods used for
getting the appropriate information. The extracted features are classified using linear
discriminant analysis, quadratic discriminant analysis, Mahalanobis distance, support vector
machine and k nearest neighbor classifiers. The highest classifications rates are achieved
when Itakura distance with Mahalanobis distance based classifier are applied. The outcomes
of this research may improve the design of assistive devices for restoration of movement
and communication strength for physically disabled patients in order to rehabilitate their lost

motor abilities and to improve the quality of their daily life.

1. INTRODUCTION

Brain computer interface (BCI) is the technology that
acquires, analyses and translates brain signals into commands
in order to control an external device [1].

Electroencephalography (EEG) records the brain signals
noninvasively with electrodes placed on the scalp [2].

The aim of BCI based EEG was to offer a better
communication way for persons with motor disabilities
through evaluation and classification of features contained in
the EEG signals.

Sensorimotor rhythms are those EEG rhythms related to
motor actions such as preparing, movement or even imagining
a limb movement. These actions determine changes in the
brain activity. The sensorimotor rhythms are located over the
motor cortex in the frequency bands 8—13 Hz (rhythm Mu) and
13-30 Hz (rhythm Beta).

Motor imagery (MI) is the translation of the subject’s motor
intention through motor imagery states [3].

Various forms of electrical brain activities [4] have been
used for EEG based BCI systems. Mu rhythm [5-7], P300 [8,
9], steady state visual evoked potential [10-12] are some of
them.

The most successful feature extraction methods widely used
are: common spatial pattern [13], Fourier transform [14],
independent component analysis [15], phase synchronization
[16], wavelet transform [17] and autoregressive (AR) spectral
estimation [18].

Many studies were performed in order to establish which
the most convenient method is for extraction the important
features from certain EEG signals recorded in sessions from
the same day. The purpose of this research is to look for the
changes that appeared during a period of eight years from a
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single female subject which has performed a motor imagery
paradigm.

The remainder of this paper is organized as follows: Section
2 describes the EEG recordings, Section 3 details the applied
features extraction methods, Section 4 presents the results and
Section 5 the conclusions.

2. EEG RECORDINGS

The experiments were performed in the Signal Processing
Laboratory from the Faculty of Medical Bioengineering. The
acquisition system was composed from a gMobilab+ module,
a g2.GAMMAcap, a g GAMMAbox [19] and the BCI 2000
platform [20].

The electrodes were placed in C3, C4, P3, P4, CP3, CP4, Cz
and Pz positions according to International 10-20 System and
the reference electrode on the right ear. The sampling
frequency was 256 Hz.

Sitting comfortably in front of a PC monitor, the subject
tried to imagine the hand movement indicated by the displayed
arrow. If it was displayed a left/right oriented arrow, the
subject had to imagine the left/right hand movement. The
arrows were randomly displayed 30 times. When the screen
was white, the subject had to relax. Before each session, the
subject was trained by performing a trail with left and right
hand movements instead of imaging the movement.

In order to assess the efficiency of some of the feature
extraction and of the classification methods, EEG signals
recorded from the same person during the period of eight years
(2012 — 2019) were handled. The EEG recordings were
acquired in different hours, days, months and years in
illumination conditions chosen by the subject (Table 1).


https://crossmark.crossref.org/dialog/?doi=10.18280/ts.380202&domain=pdf

Table 1. The EEG recordings grouped by month and year

Session Month Year
1 November 2012
2 November
3 December 2013
4 November 2014
5 March 2015
6 March
7 April 2016
8 May
9 May 2017

10 April 2018
11 April 2019

3. FEATURE EXTRACTION AND CLASSIFICATION
METHODS

Three methods are taken into account: modeling the EEG
signal as an autoregressive process, amplitude modulation and
phase synchronization. The handled measures are: the Itakura
distance for the autoregressive process, the amplitude
modulation energy index for the amplitude modulation and
phase locking value (PLV), phase lag index (PLI) and
weighted phase lag index (WPLI) to estimate the
synchronization between two EEG signals.

In what follows, the main aspects of the proposed methods
will be highlighted. The detail descriptions for an interested
reader are found in Ref. [21-26].

Three EEG datasets were created: one for right hand
movement imagination, Yg;cur(n), one for left hand
movement imagination, y;grr(n), and one for relaxation,
Yrest ().

For further processing, the frequency band 8 — 12 Hz (Alpha
rhythm) was considered.

3.1 Autoregressive process

As itis already known, an EEG signal, denoted by y(n), can
be considered as the output of an AR process described by the
expression:

y() = -Xi ay(n —k) +n(n) (1
where, a; are the parameters of the model, p is the model
order and n(n) the unpredictable part of the EEG signal y(n).

The best AR model may be obtained by minimizing the
mean square error (MSE). It is shown that [21] the minimum
MSE is:

MSE, = a"R,(p)a )

where, a = [1 a; a, .. ap]T, R,(p) is the autocorrelation
matrix of y(n), and T the transpose of a matrix.

Passing the yggsr(n) signal through AR(p) model
caracterized by the aREST parameters, the minimum MSE is:

MSE

yREST.aREST = (aREST)TRJ’REST(p)aREST

(€)

and passing the same signal through any other AR(p) model,
caracterized by a®'“H7 or by atEFT gives the MSEs as:

MSE

yREST,aRIGHT — (aRIGHT)TRyREST(p)aRIGHT

(4)
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MSE

yRESTvaLEFT = (aLEFT)TRyREST (p) aLEFT

)
Any of the MSEs from (4) or (5) is higher or equal then
MSE rest from (3). The equality occurs when the AR

YREST/@
models for relaxation period is the same for imagination of the

right/left hand movement. The larger the deviation from the
AR model from the relaxation period is, the more significant
changes in the EEG signal from the EEG during relaxation are.

The Itakura distance (ID) measures the similarity between
right/left hand movement imagination and the relaxation state.
So, for imagination of the right hand, ID is defined by:

MSE RIGHT
Y ,a
IDrgsr-rigur = log (%) (6)
yREST'aREST
and for the left by:
MSE LEFT
y ,a
IDggsr—LeFr = log (MSEL) @)
YRESTlaREST

The two classes formed for further processing are
IDggsr—ricnr and IDpgsr—pgpr-

The symmetric Itakura distance, IDg;yr, for imagination
of right hand movement (using (6) and a relation similar to it)
is [22]:

1
IDgigur =5 (IDresr—ricur + IDriguT-REST) (®)
and for movement of left hand movement, ID; ppr, using (7)
and a relation similar to it, is:

1
IDpgpr =3 (IDrgsr-Lerr + 1D gpr—gEsT) 9)
Both for ID and symmetric ID the model order p=6 and
model order p=10 was evaluated.
The data contained on channels C3 and C4 and frequency
band 8 — 12 Hz were chosen.

3.2 Amplitude modulation

The amplitude modulation analysis allows for
understanding which modulation frequencies ride a cerebral
rhythm over short periods of time. From the five rhythms
(Delta, Theta, Alpha, Beta and Gamma), only the EEG signal
from Alpha rhythm is handled here as the best results were
found for this band.

The temporal amplitude envelope is computed by means of
Hilbert transform [23].

The Hilbert transform H{.} of yg;eur(n) EEG signal is
described by:

+oo
Hpour (0} = 2Py | 280 g (10)
where, PV is the Cauchy principal value.
The analytic signal yg;cur (1), is defined as:
YricarMa = Yricur (M) + JH {Yrigur (M)} (11)

The amplitude modulation (or the temporal amplitude
envelope) for ygeur (M) 4, represented by R4y, (n), is defined
as:



Ra () = v/ Yrigur )2 + H{Yrigur ()} (12)

R,y (n) is multiplied by a 5 s Hamming window with 0.5 s
delay and is obtained the temporal envelope for frame m,
expressed by Ry, (m, n).

Then the modulus of the Fourier transform of the amplitude
modulation for frame m is computed:

Ram(m, f) = |F{Ram (m, n)}| 13)

where, f'is the modulation frequency and F{R4,,(m, n) is the
discrete Fourier transform of R4y, (m, n).

The energy of the j modulation band, denoted by
RE;(m, f), is computed as:

RE(m, £) = Rag; (m, )7 (14)

and the average of energies over all the frames, expressed by
RE,(m, f).

The amplitude modulation energy index of the
j modulation band [27], REI;(f), is defined by the following
expression:

RE,; (m,f)

REL(f) =%
ijlRE}(m.f)

(15)

where, k is the number of the modulation bands for the rhythm
taken into account. For Alpha rhythm, k=3, because there are
possible delta, theta, and alpha modulation bands.

3.3 Phase synchronization

The phase locking value represents the stability of the phase
difference between instantaneous phases ¢, (t) and ¢, (t),
and it is expressed as:

PLV = |[(e/2¢®)]

Bt = 9,(D) — px(1) (1o
The phase lag index [25] is stated as:
PLI = [(sign[Ap(ti)])] (17

sign is the signum function and (.) denotes the average
over the time.
The weighted phase lag index is determined by [26]:

[KIT(X)|sign 1(X))|
I

wPLL = [(ICON/ (O = (18)

where, /(X) is the imaginary part of the cross spectrum
between signals x(t) and y(t).

In order to compute the phase synchronization parameters,
four combinations Cz-C3, Cz-C4, Pz-C3 and Pz-C4 were
taken into account.

The above described methods were conducted also for left
hand movement imagination.

3.4 Classifiers

Discrimination between right hand movement imagination
and left hand movement imagination was assessed using linear
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discriminant analysis (LDA), quadratic discriminant analysis
(QDA), Mahalanobis distance (MD), k nearest neighbor (kNN)
with k=5 and support vector machine (SVM) classifiers [28-
33]. A 5x5 fold cross validation procedure estimated the
classification rate, specificity and sensitivity for the sessions
performed by the subject.

The terms commonly used for the description of sensitivity,
specificity and classification rate are: true positive (TP), true
negative (TN), false negative (FN) and false positive (FP).

The classification rate, specificity and sensitivity [34] are
defined by:

Sensitivity = e (19)
ensitivity = TFN
Specificity = i (20)
pecificity = TN+ FP
. TN +TP
Classification rate = (21)

TN+TP+FN + FP

4. RESULTS

In Table 2 and Table 3 are displayed the classification rates,
sensitivity, specificity (%) for Itakura Distance (model order 6
and model order 10) obtained with all the classifiers. The
highest classification rates of 93.33%, for both orders, were
attained with Mahalanobis distance classifier.

In Table 4 and Table 5 are shown the performance of
classifiers for symmetric Itakura Distance (model order 6 and
model order 10, respectively) with the same classifiers as in
the previous cases. In these situations, the highest
classification rates of 90% and 91.67% for model order 6, and
model order 10 respectively, were achieved with quadratic
discriminant analysis.

The classification rates (%), the sensitivities (%) and the
specificities (%) for Alpha_Alpha and Theta Alpha (the first
word meaning the modulation band and the second the rhythm)
with all the classifiers are displayed in Table 6.

The highest classification rates for Alpha Alpha and
Theta_Alpha were obtained with k nearest neighbor classifier.
The classification rates attained for Theta_Alpha were smaller
than the classification rates obtained for Alpha Alpha. The
most consistent results were obtained for session 9. In Table 7
are represented the classification rates, sensitivity and
specificity for phase locking value. The highest performances
were obtained with k nearest neighbor classifier (85.06%,
84.82% and 83.06% for classification rate, sensitivity and
specificity, respectively, in session 8).

The classification rates, sensitivity and specificity realized
for PLI are depicted in Table 8 and it is easy to see that the
best performances are for k nearest neighbor classifier, for
session 8 (classification rate of 85.16%, sensitivity of 87.16%
and specificity of 78.85%).

In Table 9 are detailed the results for weighted phase lag
index. The results are inferior to those for phase locking value
and phase lag index.

So, for phase synchronization, the best performances are
similar for phase locking value and phase lag index using k
nearest neighbor classifier for the same session, with the
remark that the specificity was lower for phase lag index.

Because no significant performances were found due to
subject’s practice, the calculus of the average values for



classification rates, sensitivities and specificities of all the
sessions makes sense. In Figure 1, Figure 2 and Figure 3 are
displayed the mean of the classification rates, of the
sensitivities and of the specificities, for all proposed feature
extraction methods and classifiers.

The best result for the mean of classification rates, 80.05%
was achieved using amplitude modulation energy index for
amplitude modulation method (alpha rhythm in alpha
modulation band) and k nearest neighbor classifier. A close

result was found for autoregressive process by means of
Itakura distance of order 6 and Mahalanobis distance classifier,
when 79.39% was attained. The k nearest neighbor classifier
and amplitude modulation with amplitude modulation energy
index (in case of theta modulation band) and phase
synchronization method by means of phase locking value and
phase lag index as feature vectors, were also achieved very
good results (78.26%, 79.3% and 78.12%, respectively).

Table 2. Classification rates, sensitivities, specificities (%) for Itakura distance (model order 6)

1 2 3 4

Session

5 6 7 8 9 10 11

LDA
QDA
MD
SVM
KNN
LDA
QDA
MD
SVM
kNN
LDA
QDA
MD
SVM
KNN

56.67 81.67
73.33  91.67
71.67 | 93.33
58.33 90
64.17 89.72
39.72  92.06
80 97
63.44 92.72
71.19  90.01
75.03 93.24
79.61 75.61
68.5 905
75.78 | 97.39
59.38 85.98
59.96  89.1

63.33
61.67
71.67
70
54.17
73.61
84.83
70.33
65.69
56.77
47
50.67
79.17
64.01
51.22

Classification
rates
(%)

Sensitivity
(%)

Specificity
(%)

71.67
88.33
90
78.33
88.06
83.33
95.72
95.72
83.91
91.02
57.56
88.78
93.06
87.54
88.62

68.33
66.67
58.61
62.33
69.61
56.72
55.89
56.57
38.67
65.89
76.72

56.67

61.03

80
88.33
86.67

90
86.67
67.44
92.44
96.72

85.1
88.46
87.33
81.22

71
84.38
84.74

56.67
83.33
86.67
76.67
81.67
84.83
83.33
83.33
81.66
85.9
46.17
86.94
89.11
82.57
84.58

65
71.67
71.67
78.33
73.89
57.83
78.44
85.17
73.49
73.74
57.06

63
52.94
77.04
76.23

85
88.33
88.33
88.33
84.17
81.56
91.78
91.78
80.38
88.17
87.17
87.17
87.17
88.91
83.47

68.33
70
68.33
70
67.5
46
49.61
35.56
71.94
57.78
81.61
81.44
92.61
68.71
78.59

80
78.33
76.67
76.67
76.67
91.11
91.11
89.61
71.04
78.31

82
81.33
81.33
71.61
82.39

70

54.7

Table 3. Classification rates, sensitivities, specificities (%) for Itakura distance (model order 10)

1 2 3 4

Session

5 6 7 8 9 10 11

LDA
QDA
MD
SVM
KNN
LDA
QDA
MD
SVM
kNN
LDA
QDA
MD
SVM
KNN

4833 81.67
45 85
51.67 81.67
31.67 83.33
525 81.67
37.78  94.78
19.44  95.06
5444 65.11
5048 82.46
53.59 71.76

60.44 84

60.22  86.17
59.28 95.89
37.1  80.36
52.04 8791

60
66.67
63.33

75
67.78
64.94
73.33
62.33
60.49
61.03
61.56
71.94
76.06
64.21

75.9

Classification
rates (%)

Sensitivity
(%)

Specificity
(%)

75
76.67
83.33
81.67
75.83
77.89
77.89
73.61
75.66
77.04

535
57.78
80.56
76.93
65.07

61.67

68.33
68.33
70.28
63.67
74.72

63.71
66.51
55.72
69.94
75.72
69.54
72.21

91.67
90
90

88.33

92.5

81.67

81.67

87.44

93.73

95.18

100

97.39

94.39

87.01

91.89

61.67
66.67
71.67
66.67
69.17
85.17
93.72
72.61
63.1
73.16
35.61
42.39
68.28
61.52
70.62

81.67
83.33
81.67
85
83.06
61.39
69.94
88.44
78.4
77.93
98.5
94.22
81.44
84.37
89.04

91.67
91.67
93.33
91.67
92.78
93.28
93.28
93.28
91.37
91.48
89.78
89.78
97.39
90.8
93.11

76.67
76.67
76.67
81.67
77.78
71.06
68.44
74.06
79.49
76.63
81
86.11
79.67
73.56
80.71

88.33
90
83.33
88.33
83.06
100
100
90.56
72.51
91.03
62
69.61
77.22
69.62
70.6

70

63

Table 4. Classification rates, sensitivities, specificities (%) for symmetric Itakura distance (model order 6)

Session

5 6 8 9 10 11

LDA
QDA
MD
SVM
kNN
LDA
QDA

45
63.33
61.67
48.33
59.44
34.67
78.83
41.67
61.88

64.2
55.28
47.61
67.72
54.94
52.02

85
90
88.33
88.33
85.56
89.39
89.39
77.5
87.44
87.07
91.56
96.33
97
86.7
88.89

61.67
63.33
68.33
70
55.56
69.44
72.06
67.11
62.43
56.11
455
48.83
64.94
63.59
56.21

Classification
rates
(%)

Sensitivity

%) SVM

kNN
LDA
QDA
MD
SVM
kNN

Specificity
(%)

71.67
88.33
88.33
83.33
82.78
82.67
97.39
97.39
84.01
89.57
64.06
76.83
76.83
88.5
79.57

66.67
68.33
68.33
66.67
61.11
74.11
85.33
70.17
63.51

63.67
61.72
72.44
64.94

83.33
81.67
81.67
85
82.5
81.56
84.17
84.83
90.39
84.21
76.5
65.44
63.94
80.54
74.6

51.67
86.67
83.33
76.67
75.83
64.06
98.5
85.61
77.53
76.84
49.67
86.17
92.44
75.83
87.64

46.67
60
61.67
61.67
60
54.89
44.78
74.33
63.63
57.51
32.67
54.22
45.33
61.08
57.51

85
86.67
85
86.67
84.17
81.28
81.28
81.28
82.88
81.87
90.78
91.44
89.94
89.34
88.46

75
70
63.33
75
71.94
69.72
64.94
80.28
69.84
82.88
84.72
88.33
41.44
64.64
59.86

80
80
76.67
78.33
76.67
93.06
93.06
88.94
68.3
80.23
65.33
65.33
65.33
59.86
72.43

60.2

67.7
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Table 5. Classification rates, sensitivities, specificities (%) for symmetric Itakura distance (model order 10)

Session

1 2 3 4 5 6 7 8 9 10 11
LDA 40 83.33 61.67 76.67 60 90 63.33 80 91.67 86.67 88.33
Classification QDA 50 85 68.33 81.67 68.33 85 66.67 83.33 91.67 8833  91.67
rates (%) MD 51.67 8333 66.67 8333 61.67 85 66.67 71.67 90 73.33 83.33

SVM 40 85 75 81.67 75 88.33  66.67 80 88.33 88.33 90
KNN 5278 8528 71.94 80.56 69.72 90.28 6333 76.11 8694 8333 82.78

LDA 2439 9239 59.11 86.5 72.44 81 79.17 62.06 96.06 69.22 | 100

SR QDA 57.11 89.11 63.06 82.17 83.72 81 68.61 62.06 96.06 7683 | 100
(%) MD 4856 6883 5394 82.17 75.78 8594 5256 67.67 9539 86.61 82.5
SVM 4798 7538 65.87 80.86 60.83 8736 6093 7021 86.54 76.82 65.6
KNN 4942 785 70.59 82.64 6793 9021 6197 6661 863 7946 84.84
LDA 64.11 5761 73.61 71.67 6156 100 4144 9356 84.78 9239 77.28
Specificity QDA 515 78.78 69 76.89 5528 94.11 4694 98.5 8478 9239 84.17
(%) MD 61 89.78 76.61 77.56 5528 91.11 705 7739 8478 6439 84.17
SVM 4353 80.04 6639 8198 7937 89.01 6359 759 89.16 84.72 6447
KNN 5559 81.53 67.52 77.58 6826 8553 6033 8408 87.72 7743 82.59

Table 6. Classification rates, sensitivities, specificities (%) for modulation_rhythm Alpha Alpha and Theta Alpha

Session
1 2 3 4 5 6 7 8 9 10 11
LDA 54 51,5 585 55 585 555 725 525 655 59 53
QDA 66 74.5 65 69 66.5 71.5 86 60 86.5 69.5 515
Classification rates (%) MD 59 64 70 73.5 69 74 85 51 75 69 545
SVM 665 735 785 76 725 79 83 61.5 86 715 665
kNN 6633  79.5 83 83 8217 81.83 8292 7283 | 9275 82.83 73.33
LDA 66.12 7832 6592 2343 8392 608 33.78 3257 3483 51.17 54.08
Sensitivity QDA 49.1 80.8 4135 3287 3262 87.12 3647 30.12 674 6728 28.1
Alpha_Alpha %) MD 4643 50.08 6822 657 6845 61.78 4775 25 7422 49 64.4
SVM 60.85 6672 7992 7936 8128 83.83 8197 73.71 | 93.62 8037 59.16
KNN  63.18 7652 79.77 745 8134 80.05 79.79 6437 80.63 77.13 69.72
LDA 169 31.62 40.1 7677 3785 439 7882 7388 7588 6935 30.25
Specificity QDA 4337 4422 80.08 9252 8652 687 93.15 69.68 82.08 6577 89.43
%) MD 5787 7475 6418 3957 61  90.18 5678 77.48 79.03 8835 56.32
SVM 6831 8422 7879 7927 8096 7291 8248 53.69 8573 72.69 76.77
KNN 7074 8127 8232 8441 798 7498 84.07 6025 | 86.71 79.45 79.01
LDA 49 56.5 54 505 565 505 565 555 57 59 4.5
QDA 52 615 615 62 59.5 76 65.5 52 76 64.5 58
Classification rates (%) MD 52 625 635 515 655 77 55.5 51 715 665 595
SVM 545 56 69.5 685 675 73 69.5 565 765 66 56.5
KNN 67.83 81 8325 77  80.58 83.58 79.58 7425 | 86.17 80.67 73.17
LDA 622 6422 693 6167 7538 4653 7392 4075 59.6 5457 69.63
Sensitivity QDA 70.63 8472 7543 6135 8815 7242 89.17 37.6 81.05 6525 789
Theta_Alpha %) MD  40.07 47.02 583 7333 6597 79.73 88.08 68.77 | 87.58 83.68 37.45
SVM 6178 7289 7466 714 7452 779 7732 68.06 83.82 6922 69.73
KNN  63.18 7652 79.77 745 8134 80.05 79.79 6437 80.63 77.13 69.72
LDA 5348 47.55 4952 5625 481 66.83 8642 6642 77.1 66.03 39.98
Specificity QDA 60.18 66.17 5148 7483 502 69.68 87.57 80.15 | 88.55 793  27.45
%) MD 73.03 8542 77.62 7215 73.05 6795 87.17 3863 6642 5583 70.35
SVM 684 7739 7858 71.51 7674 8586 71.05 72.09 87.15 76.19 69.34
KNN  68.01 82.89 81.1 69.07 75.16 8635 7587 7551 87.69 826 71.94
Table 7. Classification rates, sensitivities, specificities (%) for phase locking value (PLV)
Session
1 2 3 4 5 6 7 8 9 10 11
LDA 6898 63.02 63.02 6436 6229 5584 67.64 61.19 6533 58.64 67.64
Classification QDA 6946 674 66.18 69.22 64.6 63.5 6849 7421 6934 6095 69.83
rates MD 6873 66.67 66.55 6594 6509 63.14 68.73 7275 68.61 6095 6691
(%) SVM 76.76 7543 7032 72.14 7141 6995 7798 7871 7555 74.57 78.35
kNN 80.01 77.13 78.04 7723 7743 7549 8133 85.06 80.11 79.95 8047
LDA 73.02 6224 60.58 6197 60.72 5936 7289 6235 69.21 56.72 645
Sensitivi QDA 78.08 63.85 70.61 70.63 70.8 67.03 7053 76.16 7141 61.55 64.04
e“(s(}A)‘)V'ty MD 7236 748 5859 4661 5838 8043 8318 807 79.13 64.1 7871
SVM 77.72 77.58 7085 71.04 7248 7743 82 84.82 7752 7481 80.03
KNN 80.54 7645 7344 7272 7428 7642 82.15 8458 81.88 78.8 80.51
LDA 642 61.77 6484 6592 6356 5636 665 6089 632 6224 70.84
Specificity QDA 6159 6847 59.65 6483 57.01 6575 6987 7376 67.21 58.72 77.53
(%) MD 6596 5807 73.61 80.77 7327 51.63 5583 6594 5792 58.13 56.02
SVM 76.65 7203 78.11 7654 7786 68.68 7647 80.03 7627 76.69 7594
KNN 7787 7406 79.57 7792 7792 71.16 7592 83.06 7427 77.83 74.88
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Table 8. Classification rates, sensitivities, specificities (%) for phase lag index (PLI)

Session
1 2 3 4 5 6 7 8 9 10 11

LDA 6083 6509 61.19 5827 6229 5523 66.67 6192 6655 58.64 6727
QDA 71.78 68 61.8 6253 6423 63.14 7384 7129 6655 6095 70.19
MD 70.07 67.64 6241 6022 6095 59.73 69.59 71.05 6557 6229 70.19
SVM 7725 7324 71.78 69.59 73.11 674 80.05 76.64 71.65 73.11 7798
kNN 82.14 76.68 7723 7255 75.63 7449 8331  85.16 76.72 7496 80.41
LDA 60.17 64.05 6408 6033 635 57.65 7096 6637 6788 60.64 63.8
QDA 7695 6659 7191 7486 7045 59.65 7554 7394 66.86 65 62.51

Classification
rates (%)

Se“s‘,‘/t‘“ty MD  63.18 7865 5125 34 4563 7164 821 83.14 7255 6637 81.64
) SVM 77.57 785 69.05 63.64 71.1 7423 83.02 81.66 77.09 7328 81.16
KNN 8125 7803 7129 6641 70.16 7758 84.06 | 87.16 7635 7437 81.89

LDA 5868 641 59.18 57.11 6205 51.08 61.65 593 6285 604 7026

Specificity QDA 6824 7141 5477 5196 5507 6537 7103 6915 6761 5636 7569
%) MD 7511 5861 7421 [86.69 7445 47.16 54.13 6185 5783 59.16 56.71

SVM 80.71 73.13 78.87 7536 7696 70.02 77.42 8044 73.14 7198 7741
kNN 80.59 7422 775 73.68 79.07 66.77 7724 7885 72.6 7431 7591

Table 9. Classification rates, sensitivities, specificities (%) for weighted phase lag index (wPLI)

Session
1 2 3 4 5 6 7 8 9 10 11

LDA 56.08 5438 5487 54.14 5341 53.16 58.15 5584 5036 556 56.08
QDA 56.81 64.11 60.1 6034 6265 6022 6034 57.79 5645 60.83 56.08
MD 562 517 556 5742 56.08 5681 60.1 57.06 58.15 5791 56.81
SVM 66.55 67.88 72.14 6691 7287 67776 663 66.67 663 6229 6727
kNN 67.19 63.56 69.57 67.7 69.02 6928 71.74 67.17 68.65 6695 68.69
LDA 514 5637 4924 5375 50.75 51.02 5249 51.09 50.02 49.07 5794
QDA 53.76 8128 54.01 4958 5332 69.18 50.15 5856 525 4527 71.14

Classification
rates (%)

Se“s‘,‘/t“"ty MD 3465 10.17 8743 78.02 (9055 40.12 6641 5942 66.55 638 4435
(%) SVM 5979 5276 7571 71.15 7547 6345 7126 68.12 6694 6623 6461
KNN 6116 5341 7832 7133 77.94 60.05 7152 6796 67.14 6721 6276

LDA 6076 5478 57.03 5476 5385 5641 6199 6335 5068 573 576

Specificity QDA 6221 4789 7202 983 7157 5338 7094 5968 5999 7549 4296
%) MD 78.07 (9584 25.12 3285 2179 7577 56.17 57.09 495 5142 7241

SVM 71.03 72.72 59.84 6231 5933 7131 6548 6486 66.7 6134 69.6
kNN 71.84 72.01 57.78 60.74 5778 7196 6856 63.63 675 66.12 70.8
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The highest means of sensitivity and specificity were
provided by the autoregressive process (Itakura distance as
feature vectors for both) with quadratic discriminant analysis
and Mahalanobis distance classifier, respectively.

5. CONCLUSIONS

The research evaluated efficiency of the some of the feature
extraction methods and classification algorithms for EEG
signals recorded from a subject in several sessions in eight
years (2012 - 2019), in a motor imagery task paradigm. So,
there were not found any systematic enhancement in outcomes
when the EEG signals were recorded in the sessions performed
in the last years. We may conclude that the subject’s training
in performing the imagination of the hand movement didn’t
augment the performance and, maybe, good or bad results
were attained due to the subject’s physiological determinants.

The highest classification rate of 93.33%, from all the
sessions, was attained with Mahalanobis distance based
classifier and Itakura distance (no matter the order). The
maximum sensitivity was obtained with linear discriminant
analysis and quadratic discriminant analysis for Itakura
distance, and symmetric Itakura distance model order 10. The
specificity of 100% was achieved with Itakura distance, model
order 10 and linear discriminant analysis.

Regarding the mean of the classification rates, the best
result was achieved using k nearest neighbor classifier and
amplitude modulation energy index (in the case of alpha
modulation band of alpha rhythm) as feature vector. A near
result was found for Mahalanobis distance classifier and
autoregressive process by means of Itakura distance of order
6. As the sensitivities and specificities had high values for both
cases, any of them would be a valuable choice in an on-line
brain-computer interface paradigm.

The future work involves, on one hand, recording of many
sessions of EEG signals from the same subject in order to
determine if the biological factors (like fatigue, feeling thirst
or hungry) affects the performance, on the other hand,
manipulating a feature vector as a weighted combination of the
measures used in this paper and involving further EEG
channels like CP3 and CP4 along with the already used ones.
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