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Focus is limited and singular in many image capture devices. Therefore, different focused 

objects at different distances are obtained in a single image taken. Image fusion can be 

defined as the acquisition of multiple focused objects in a single image by combining 

important information from two or more images into a single image. In this paper, a new 

multi-focus image fusion method based on Bat Algorithm (BA) is presented in a Multi-Scale 

Transform (MST) to overcome limitations of standard MST Transform. Firstly, a specific 

MST (Laplacian Pyramid or Curvelet Transform) is performed on the two source images to 

obtain their low-pass and high-pass bands. Secondly, optimization algorithms were used to 

find out optimal weights for coefficients in low-pass bands to improve the accuracy of the 

fusion image and finally the fused multi-focus image is reconstructed by the inverse MST. 

The experimental results are compared with different methods using reference and non-

reference evaluation metrics to evaluate the performance of image fusion methods. 
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1. INTRODUCTION

Image fusion is a process of combining information from 

multiple sources like multi-focus, multi-spectral, or multi- 

sensor images to produce a more informative single fused 

image. The fused image combines two or more source images 

into a single fused image and has a higher information content 

than any of the single source images. The goal of image fusion 

s not only to reduce the amount of data but also to create new 

images that are more suitable for human visual perception. 

Multi-focus image fusion is a technique that combining 

multiple images from the same scene with different focuses to 

get an all-in-one focus image by using specific fusion 

techniques to get more information from the fused images 

rather than the single image. It is used to get more quality 

image because the object space (depth of field) lens sensor in 

image device is limited and only objects that are in a certain 

depth remain ‘in focus’, while all other objects become ‘out of 

focus’. If one object in the scene is in focus, another one will 

be out of focus, therefore, a fusion process is required to 

achieve all objects in focus and all focused objects are selected 

[1, 2]. The multi-focus image fusion is a sub-domain of image 

fusion, and it is the basis of many fusion fields such as digital 

imaging, medical imaging, remote sensing, and machine 

vision [3-7]. 

Multi-focus image fusion methods can be divided into two 

categories based on spatial and transform domain. In the 

spatial domain, the source images are fused directly in gray 

level such as image fusion using weighted average value and 

Principal Component Analysis (PCA) [8]. In the transform 

domain, images are fused by frequency domain using 

decomposition procedure. Generally, the decomposition 

procedure is completed with a Multi-Scale Transform (MST) 

[9]. Typical transform algorithms such as Wavelet Transform 

(DWT) [10], Laplacian Pyramid (LP) [11], Curvelet 

Transform (CvT) [12], Contourlet Transform (CT) [13], 

Stationary Wavelet Transform [14], Nonsubsampled 

Contourlet Transform [15] and Nonsubsampled Shearlet 

Transform [16] are MST image transformations that 

decompose the source images into a set of sub-images to 

extract the detailed information. After the decomposition, the 

fused sub-images (coefficients) are obtained by specific fusion 

rules as Choosing Max (CM) and Weighted Average (WA) 

[17-19]. At last, the fused image is generated by inverse MST 

using the sub-image decomposed into a base and several detail 

layers. A general framework for MST image fusion is shown 

in Figure 1.  

For fusion mainly, low-frequency information, which can 

control in contrast of the fused image, is used [20]. The 

standard fusion rule, used in many researches, is a weighted 

average which average the low frequency coefficient. 

However, the weighted average fusion rule is not suitable for 

all types of images because it can reduce the contrast of the 

fused image and sometimes may not produce the desired 

results. To solve this problem, some image fusion techniques 

based on optimization algorithms such as Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA) have been 

proposed to find out the optimum weights from extracted 

edges, in recent years. These algorithms are widely used in 

many optimization problems to get optimal solution result. In 

many studies of fusion, PSO is used to optimize the weights in 

a region-based weighted average fusion rule.  

An et al. [21] presented a new multi-objective optimization 

method of multi-objective image fusion based on Adaptive 

PSO, which can simplify the multi-objective image fusion 

model and overcome the limitations of classic methods. Fu et 

al. [22], implemented an optimal algorithm for multi-Source 

RS image fusion. This algorithm considers the Wavelet 

Transform (WT) of the translation invariance as the model 

operator, also regards the contrast pyramid conversion as the 
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observed operator. Then it designs the objective function by 

taking the weighted sum of evaluation indices and optimizes 

the objective function by employing genetic-iterative self-

organizing data analysis algorithm to get a higher resolution of 

RS image. Kanmani and Narasimhan [23] proposed an optimal 

weighted averaging fusion strategy for images using Dual-

Tree Wavelet Transform (DT-WT) and Self-Tunning PSO 

(STPSO). In this method, a weighted averaging fusion rule is 

formulated that uses to find optimal weights from STPSO for 

the fusion of both high and low frequency coefficients, 

obtained through Dual Tree DWT to fused thermal and visual 

images. Daniel [24] proposed an optimum wavelet-based 

homographic filter that provides multi-level decomposition in 

homographic domain using Hybrid Genetic-Grey Wolf 

Optimization algorithm to get optimal scale value in medical 

image fusion technique. Yang et al. [25], within the Non-

Subsampled Shearlet Transform (NSST), presented a new 

multi-focus image fusion method based on a non-fixed-base 

dictionary and multi-measure optimization. In their work, the 

authors proposed an optimization method to resolve the 

problem blurred in some details in the focused region for the 

NSST. Paramanandham and Rajendiran [26], have presented 

a multi-focus image fusion based on Self-Resemblance 

Measure (SRM), consistency verification and multiple 

objective PSO. In this method, the multi-objective PSO is used 

to adaptively select the block size of the fused image. The 

source images are divided into blocks and evaluation metrics 

are used to measure the degree of focus in pixel and select 

correct block. To create an all-in-focus image, Abdipour and 

Nooshyar [27], proposed an image fusion technique in wavelet 

domain based on variance and spatial frequency. The variance 

and spatial frequency of the 16×16 blocks of wavelet 

coefficients were considered for measuring the contrast and 

identifying high clarity of the image. Then, the Consistency 

Verification (CV) is used to improve the fused image quality. 

Finally, the decision map based on the maximum selection rule 

is used to register the selection results. 

 

 
 

Figure 1. A general framework for MST image fusion [19] 

 

2. AN OVERVIEW OF IMAGE FUSION TECHNIQUES 

 

Image fusion methods are classified into two categories as 

“transform domain methods” and “spatial domain methods”. 

In the spatial domain methods, the source images are fused 

using some spatial features of images. In spatial domain 

methods, a fused image is obtained as the weighted average 

values of pixels of all the source images. The most prominent 

characteristic of these methods is that they do not contain the 

inversion step to reconstruct the fused image. However, since 

these methods only use spatial properties, structural properties 

are not used sufficiently. 

The domain transform methods consist of three main stages 

as mage transform, coefficient fusion and inverse transform. 

Firstly, an image decomposition/representation approach is 

applied to all source images and images are converted into a 

transform domain. After then, the transformed coefficients 

taken from source images are merged by a fusion rule. Finally, 

an inverse transform is used on the fused coefficients for 

obtaining the fused image. Laplacian Pyramid and Curvelet 

Transform are two basic transform methods used frequently in 

the literature. 

 

2.1 Laplacian pyramid (LP) 

 

The idea of image pyramid goes back to Burt and Adelson 

in 1983 [28]. The principle of this method is to decompose the 

original image by applying the Gaussian filter and the 

interpolation expansion for the Gaussian Pyramid to get the 

multi-resolution image. LP produces the edge information 

detail of the image at each level. The LP decomposition is 

performed in two stages [2, 11, 28, 29]: 

The first stage: Gaussian Pyramid decomposition.  

Multi-scale images are produced by applying Gaussian 

filter (low-pass) by convolving the image with Gaussian 

weighting function (w) and then subsampling of these images. 

This operation is called REDUCE. The decomposition 

transformation of the Gaussian pyramid using discrete 

formulation of an image can be calculated as follows using Eq. 

(1).  

 

𝐺𝑙(𝑖, 𝑗) = ∑ ∑ 𝑤(𝑥, 𝑦) ∙ 𝐺𝑙−1(2𝑖 + 𝑥, 2𝑗 + 𝑦)

2

𝑦=−2

2

𝑥=−2

 

𝑙 ∈ [1, 𝑁), 𝑖 ∈ [0, 𝑋𝑙), 𝑗 ∈ [0, 𝑌𝑙) 

(1) 

 

In Eq. (1), 𝐺𝑙  is Gaussian pyramid, w(x,y) is Gaussian 

weighting function at low pass filters. The source image in the 

initial layer is the 𝐺0  and N is the number of the Gaussian 

layers; 𝑋𝑙 and Yl represented the number of columns and rows 

in the ith layers of pyramid.  

The second stage: Laplacian Pyramid decomposition.  

The LP is obtained by computing the convolving difference 

between the adjacent level of the Gaussian Pyramid. This 

operation is called EXPAND. LP produces the edge 

information detail of the image at each level and consisting of 

layers as given Eq. (2). 

 

𝐿𝑃𝐿 = 𝑓(𝑥) = {
𝐺𝑙 − 𝐺𝑙+1

∗ , 𝐿 ∈ [0, 𝐿)

𝐺𝑙 , 𝑙 = 𝐿
 (2) 
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In Eq. (2), 𝐺𝑙+1
∗  is Gaussian expanded of 𝐺𝑙 . LPL is 

Laplacian pyramid and l is the l-th level decomposed; L is the 

number of LP levels. 

Reconstruction image is obtained by adding layers of the 

pyramid. The inverse transformation is given in Eq. (3). 

 

𝐺𝑙(𝑖, 𝑗) = 4 ∑ ∑ 𝑤(𝑥, 𝑦)𝐺𝑙+1 (
𝑖 + 𝑥

2
,
𝑗 + 𝑦

2
)

2

𝑦=−2

2

𝑥=−2

 (3) 

 

In this paper, firstly LP is used as MST. For this aim, the LP 

transform was subjected to obtain the pyramid levels of images 

(Figure 2). A low level of the pyramid contains high quality 

information of the image. For fusion; while "the adaptive 

region average gradient weighted rule" was used for low levels 

of the pyramid, "choose max with consistency check rule" was 

used for high levels of the pyramid. After the fusion, the fused 

image is obtained by applying the inverse LP transform. 

 

 
 

Figure 2. Laplacian pyramid transform 

 

Standard image fusion approach using LP is summarized 

below: 

1. Apply a multi-scale decomposition for input images I1, 

I2 based on LP to acquire the high-pass bands and the 

low-pass bands using Eq. (1) and (2). 

2. Fused high-frequency bands coefficients based on 

maximum selection rule according to Eq. (11). 

3. Fused low-pass bands coefficients based on average rule 

according to Eq. (12). 

4. Perform “LP inverse multi-scale transform” to fuse the 

merged high-pass and low-pass bands to reconstruct the 

final images according to Eq. (3). 

 

2.2 Curvelet transform (CvT) 

 

Curvelet transform, a multi-scale directional transform, is 

used to represent the image at different angles and scales. It is 

developed by Candès and Donoho to solve the problem 

limitation of Wavelet and Gabor transform [30] (Figure 3).  

There are two types of CvT called first and second 

generation. Although the first generation Curvelet is used 

effectively to remove noise from images, it requires more 

processing time compared to the second generation. Also, the 

numerical application of the first generation CvT is quite 

complex. The second generation CvT can be applied in a 

shorter time, with less operation and in a simpler way. 

The first generation CvT, proposed based on an anisotropic 

geometric wavelet called Redgilet transform, is decomposed 

the image into a set of wavelet bands and to analyze each band 

by a local ridgelet transform. 

 

 
 

Figure 3. Curvelet transform 

  

In this work second generation 2D Fast Discrete Curvelet 

Transform version implemented via ‘‘wrapping” transform 

(FDCT-Wrap) that utilizes fast Fourier Transform and 

proposed by Candès et al. in 2006 was used [31]. This method 

is faster and more robust than Curvelet based on Ridgelet.  

In the frequency domain decomposition, it adopts local 

Fourier transform and is applied at four steps (FDCT-Wrap): 

1. The Fourier coefficients are obtained by applying a 2D 

Fast Fourier Transform (FFT) as given in Eq. (4). 

 

𝑓[𝑖, 𝑗], −
𝑛

2
≤ 𝑖, 𝑗 <

𝑛

2
 (4) 

 

In Eq. (4), 𝑓[𝑖, 𝑗] is the Fourier coefficients and i, j is the 

index of the pixel image; n is Fourier sample. 

2. The interpolated object is multiplied with the parabolic 

window as given in Eq. (5). 

 

𝑓[𝑖, 𝑗] = 𝑓[𝑖, 𝑗 − 𝑖 ∗ tan 𝜃𝑖] × �̂�[𝑖, 𝑗] (5) 

 

In Eq. (5), θ is orientation in the range (−
𝜋

4
,
𝜋

4
) and �̂� is 

parabolic window.  

3. Fourier coefficients 𝑓[𝑖, 𝑗] are resampled to obtain 

sampled value 𝑓[𝑖, 𝑗 − 𝑖 tan 𝜃𝑖] to f(i,j) for each scale 

and angle pair (i,j). That means apply the wrapping 

transformation to re-index the data. 

4. Finally, the inverse 2D FFT is applying to obtain the 

discrete CvT coefficients. 

 

The CvT divides the image into three parts as the coarsest 

layer, detail layer and finest layer. The coarsest layer is the 

low-frequency sub image information and represents the main 

information of the image. The finest layer contains the high-

frequency sub-images information and noise which reflects the 

details components and detail layer contains the strong edge 

details information of the source image from different 

directions and scales [32]. Commonly for the fusion, while an 

average or weighted average rule is used in the low-frequency 

sub image, the maximum absolute rule is often used in the high 

frequency sub image. 

Standard image fusion approach using CvT is summarized 

below: 

1. Decompose input images I1, I2 into low-frequency 

coefficients and high-frequency coefficients using CvT.  

2. Fused a single set of high-frequency coefficient based on 

the maximum selection rule using Eq. (11). 

3. Fused low-frequency coefficients bands based on 

average rule using Eq. (12). 
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4. The fused image is obtained by Perform inverse CvT on 

merged high-frequency and low-frequency bands. 

 

 

3. OPTIMIZATION METHODS 

 

3.1 Particle Swarm Optimization (PSO) 

 

PSO is a stochastic optimization and an evolutionary 

computational technique that is able to simulate the social 

behavior of bird flocking or fish [33]. It was introduced by 

Kennedy and Eberhart in 1995 to find the parameters that 

provide the minimum or maximum value of an objective 

function. PSO works by having a population called as 

“swarm”. Each candidate solution of the swarm is called a 

“particle” and each particle is moved around in the search 

space by their own “velocity”. The velocity (𝑉𝑖) is the distance 

travelled by the particle from one position to the current 

position (𝑥𝑖). The concepts of velocity and position are used 

by PSO algorithms in order to find the optimal point(s) in 

working space. 

In PSO, each particle affected by its personal best achieved 

position (𝑃𝑏𝑒𝑠𝑡 ) and the group global best position (𝑔𝑏𝑒𝑠𝑡 ) 

(solution of the problem). The velocity and position are 

updated using Eq. (6) and Eq. (7) [33]:  

 

𝑉𝑖
𝑘+1 = 𝑤 × 𝑉𝑖

𝑘 + 𝑐1 × 𝑟𝑎𝑛𝑑 × (𝑃𝑏𝑒𝑠𝑡𝑖
𝑘 − 𝑋𝑖 𝑣

𝑘 ) + 

𝑐2 × 𝑟𝑎𝑛𝑑 × (𝑔𝑏𝑒𝑠𝑡
𝑘 − 𝑋𝑖

𝑘) 
(6) 

 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1, 𝑖 = 1,2, … . 𝑛 (7) 

 

In Eq. (6) and (7), 𝑉𝑖
𝑘+1 is velocity and 𝑋𝑖

𝑘+1 is a position 

of 𝑖𝑡ℎ  particle in iteration 𝑘 + 1 . 𝑃𝑏𝑒𝑠𝑡  is the best value of 

fitness function achieved by 𝑖𝑡ℎ particle before iteration k and 

𝑔𝑏𝑒𝑠𝑡  is the best fitness function value achieved so far by any 

particle. 𝑐1 and 𝑐2 acceleration coefficients, rand is a random 

variable between [0, 1], and 𝑤 is represented the inertia weight 

factor used to provide well-balanced mechanism between 

global and local exploration abilities. PSO pseudo-code is 

described in Algorithm 1. 

 

Algorithm 1. Pseudo-code of the PSO algorithm 

1. Initialize population of particles, parameters 

𝑐1, 𝑐2, 𝑤𝑚𝑎𝑥 , 𝑤𝑚𝑖𝑛 ,population size 𝑛𝑝𝑜𝑝, position 

𝑥𝑖(1,2, … . . , 𝑛), velocity 𝑣𝑖(1,2, … . , 𝑛)and maximum 

number of iteration or generation (Max_Gen) 

2. Evaluate the fitness of each particle and set all initial 

positions as 𝑃𝑏𝑒𝑠𝑡𝑋𝑖.  
3. Select the 𝑔𝑏𝑒𝑠𝑡particle in the swarm, which has the 

maximum fitness value. 

4. while (t<Max_Gen) 

5. For i=1: npop 

6. Update the velocity of particle Eq. (6).  

7. Update the position of particle Eq. (7). 

8. end for  

9. for i=1: nPop 

10. Evaluate the fitness of updated particle 𝑋𝑖. 
11. If 𝑓(𝑥) < 𝑓(𝑃𝑏𝑒𝑠𝑡𝑋𝑖) 
12. set current best position as 𝑃𝑏𝑒𝑠𝑡𝑋𝑖 
13. end if 

14. If 𝑓(𝑥) < 𝑓(𝑔𝑏𝑒𝑠𝑡𝑋𝑖) 
15. set current global best position as 𝑔𝑏𝑒𝑠𝑡𝑋𝑖 
16. end if 

17. end for  

18. Find the best particle. 

19. Update the inertia weight. 

20. end while 

 

3.2 Bat algorithm (BA) 

 

Bat algorithm was developed by Xin-She Yang in 2010 for 

global optimization. It is a metaheuristic algorithm inspired by 

the echolocation system of the bats and it simulates the 

behaviors a swarm bat uses to find prey/food [34]. Just like 

particles in PSO, also bats in the algorithm have velocity and 

position and they are updated using the Eq. (8-10) [35, 36]. 

In Eq. (8), (9) and (10); β is a random vector in a range [0, 

1], the frequency f is in a range [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥], 𝑥∗ indicates the 

best global value at a time and 𝑣𝑖  is the velocity change at 

position 𝑥𝑖 in iteration 𝑡𝑡ℎ. 

The BA pseudo-code is given in Algorithm 2. 

 

𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽 (8) 

 

𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡−1 − 𝑥∗)𝑓𝑖 (9) 

 

𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑣𝑖 
𝑡  (10) 

 

On the echolocation system, bats calculate the distance to 

their target and transmit with signals of loudness (𝐴 ) and 

wavelength (λ) while flying towards their prey. The frequency 

value in the BAT algorithm allows the pace and ranging of the 

bat movements to be determined. In the algorithm when bats 

approach their prey; 𝐴  decreases, the pulse emission rate 𝑟 
increases, 𝛼 and 𝛾 are constants. 

 

Algorithm 2. Pseudo-code of the BA 

1. Objective function 𝑓(𝑥), 𝑥 = (𝑥1, 𝑥2, … . . , 𝑥𝑑)
𝑇 

2. Initialize the bat population, position 𝑥𝑖(𝑖 =
1,2, … . , 𝑛) , velocity 𝑣𝑖(𝑖 = 1,2, … . , 𝑛) , pulse 

frequency 𝑓𝑖at position 𝑥𝑖, pulse rates 𝑟𝑖, the loudness 

𝐴𝑖  and maximum number of iteration or generation 

(Max_Gen) 

3. while (t<Max_Gen) 

4. Generate new solutions by adjusting frequency 

5. updating velocities Eq. (9). 

6. updating posisition Eq. (10). 

7. if (𝑟𝑎𝑛𝑑 > 𝑟𝑖) 
8. Select a solution among the best solutions 

9. Generate a local solution around the selected best 

solution 

10. end if 

11. Generate a new solution by flying randomly  

 𝑥new = 𝑥old + 𝜖𝐴
−𝑡 

12. if (𝑟𝑎𝑛𝑑 < 𝐴𝑖&𝑓(𝑥𝑖) < 𝑓(𝑥
𝑔𝑏𝑒𝑠𝑡)) 

13. Accept the new solutions 

14. Increase 𝑟𝑖 according to 𝑟𝑖
𝑡 = 𝑟𝑖

0[1 − 𝑒(−𝛾𝑡)]  and 

reduce 𝐴𝑖 according to 𝐴𝑖
𝑡+1 = 𝛼𝐴𝑖

𝑡 

15. end if 

16. Rank the bats and find the current best 𝑥𝑔𝑏𝑒𝑠𝑡  

17. Increase the generation number t 

 

 

4. MATERIAL AND METHODS 

 

In this work, to enhance the contrast preserving the overall 
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brightness of the fused image, a novel multi-scale fusion 

method based on Bat Algorithm (BA) that aims to find optimal 

weights was proposed. Firstly, a specific MST (Laplacian 

Pyramid or Curvelet Transform) on the two source images to 

obtain their low-pass and high-pass bands was performed. 

Secondly, BA was used to find out the optimum weights for 

coefficients in low-pass bands to improve the accuracy of the 

fusion whereas in high-frequency domain, the absolute 

maximum rule was used as given in the literature. Finally, the 

fused multi-focus image was reconstructed by the inverse 

MST. In order to test the performance of BA; PSO which is 

used in the literature, was also used and the results were 

compared. 

 

4.1 Proposed fusion method 

 

The fusion process is categorized into 2 parts as spatial and 

frequency domain. The two employed MST methods used in 

the frequency domain are CvT and LP transforms. In this study, 

CvT or LP was used, and fusion was made in the frequency 

domain. While the pixel values of two source images are added 

as the pixel value in the fused image in the spatial domain, the 

process in the frequency domain is different. In the frequency 

domain, a multi-scale transformation is applied to the source 

images to obtain the transformation space coefficients. Then, 

the image merge rules (fusion rules max and average) are 

applied using the coefficients and finally reverse 

transformation is performed to obtain the fusion image [37, 

38].  

For image fusion, first, the source images are decomposed 

to low-frequency and high-frequency sub-band of images with 

one of the MST methods. The high-frequency sub-band 

images reflect the details components and contain the edge 

details information of the source image from different 

directions and scales. On the other hand, the low-frequency 

sub-band images denote the approximate component, which 

represents the main information of the source image. After the 

decomposition, in the high-frequency domain the fusion rule 

of each image coefficient is the absolute maximum rule Eq. 

(11) whereas in the low-frequency domain, an average or 

weighted average rule is commonly used in Eq. (12). 

 

𝐶𝐹𝑖𝑗
𝐻 = {

𝐶𝐴𝑖𝑗
𝐻 , 𝐶𝐴𝑖𝑗

𝐻 > 𝐶𝐵𝑖𝑗
𝐻

𝐶𝐵𝑖𝑗
𝐻 , 𝐶𝐴𝑖𝑗

𝐻 < 𝐶𝐵𝑖𝑗
𝐻  (11) 

 

In Eq. (11), 𝐶𝐹𝑖𝑗
𝐻 is high-frequency fusion image coefficient, 

𝐶𝐴𝑖𝑗
𝐻  and 𝐶𝐵𝑖𝑗

𝐻  are high-frequency source images coefficients. 

 

𝐶𝐹𝑖𝑗
𝐿 =

1

2
(𝐶𝐴𝑖𝑗

𝐿 + 𝐶𝐵𝑖𝑗
𝐿 ) (12) 

 

In Eq. (12), 𝐶𝐹𝑖𝑗
𝐿  is a low-frequency fusion image 

coefficient, 𝐶𝐴𝑖𝑗
𝐿  and 𝐶𝐵𝑖𝑗

𝐿  are low-frequency source images 

coefficients.  

The fusion rules are very important for the quality of fusion 

because they control the contrast and intensity of a fused 

image. Therefore, a new fusion rule for the low frequency 

band is proposed in this study to obtain better images in fusion. 

Instead of averaging the coefficients of the source images in 

the low frequency band, image-based adaptive weighted 

coefficients using metaheuristic algorithms were generated as 

in Eq. (13).  

 

𝐶𝐹𝑖𝑗
𝐿 =

(𝑤1 × 𝐶𝐴𝑖𝑗
𝐿 + 𝑤2 × 𝐶𝐵𝑖𝑗

𝐿 )

𝑤1 + 𝑤2
 

𝑤ℎ𝑒𝑟𝑒 𝑤 ∈ (0,1) 

(13) 

 

The optimization algorithm is aimed to get 𝑤1 and 𝑤2 that 

are maximizing the correlation coefficient (CC) as in Eq. (14) 

and Entropy (EN) as in Eq. (15) while minimizing the Root 

Mean Square Error (RMSE) as in Eq. (16).  

 
𝐶𝐶

= 1 2⁄

(

 
 
 
 
 

∑ ∑ (𝐼1(𝑖, 𝑗) − 𝐼1̅)(𝐹(𝑖, 𝑗) − �̅�)
𝑁
𝑗=1

𝑀
𝑖=1

√∑ ∑ (𝐼1(𝑖, 𝑗) − 𝐼1̅)
2𝑁

𝑗=1
𝑀
𝑖=1 √∑ ∑ (𝐹(𝑖, 𝑗) − �̅�)2𝑀

𝑗=1
𝑁
𝑖=1

 +

∑ ∑ (𝐼2(𝑖, 𝑗) − 𝐼2̅)(𝐹(𝑖, 𝑗) − �̅�)
𝑁
𝑗=1

𝑀
𝑖=1

√∑ ∑ (𝐼2(𝑖, 𝑗) − 𝐼2̅)
2𝑁

𝑗=1
𝑀
𝑖=1 √∑ ∑ (𝐹(𝑖, 𝑗) − �̅�)2𝑀

𝑗=1
𝑁
𝑖=1 )

 
 
 
 
 

 (14) 

 

In Eq. (14), 𝐼1(𝑖, 𝑗) and 𝐼2(𝑖, 𝑗) are the references and F(i,j) 

is the fused image at the gray-level value. I and F are the 

average gray-level values, respectively and M, N are the sizes 

of the input image.  

 

𝐸𝑁 = −∑𝑝𝑖 log2(𝑝𝑖)

𝐿−1

𝑖=0

 (15) 

 
𝑅𝑀𝑆𝐸

= 1 2⁄

(

 
 
 
 
 
 √

1

𝑀 ×𝑁
∑∑((𝐼1(𝑖, 𝑗)) − 𝐹(𝑖, 𝑗))

2
𝑁

𝑗=1

𝑀

𝑖=1

 +

√
1

𝑀 × 𝑁
∑∑((𝐼2(𝑖, 𝑗)) − 𝐹(𝑖, 𝑗))

2

𝑁

𝑗=1

𝑀

𝑖=1 )

 
 
 
 
 
 

 
(16) 

 

In Eq. (15), i is the probability density of the grayscale of a 

pixel value i and L is the number of intensity levels in the 

image, 𝑝𝑖  is pixel value. In Eq. (16), 𝐼1, 𝐼2  are source images 

and 𝐹 is a fused image. M, N are the size of the input image 

and (i, j) are image coordinates.  

In this study, a multi-objective function as linear 

combination was used (Eq. (17)). While 𝑓1(𝑋), 𝑓2(𝑋), 𝑓3(𝑋) 
point to three objectives functions, a new (general) objective 

function has been created for multi-objective optimization [39].  

 

𝑓(𝑋) = 𝛼1𝑓1(𝑋) + 𝛼2𝑓2(𝑋) + 𝛼3𝑓3(𝑋) (17) 

 

In other words, ∀ 𝛼𝑖  is scalar weights denoted for multi 

objective function [40]. In Eq. (17); 𝑓1 for CC, 𝑓2 for EN, 𝑓3 

for (1/RMSE) are three objective functions; 𝛼1, 𝛼2, 𝛼3 are 

constant value indicates relative importance that of one 

objective function relative to the others. In our study, 

𝛼1, 𝛼2, 𝛼3 were tested for different values and the best fusion 

results were found when 𝛼1 = 𝛼2 = 0.25  and 𝛼3 = 0.5 

according to the weighted sum of multi-objective function 

based on [41]. Then this optimal values as an optimal weight 

was used during fusion of low band coefficient to get the fused 

image. 

To obtain the optimal weighted coefficients for optimal 

fused image, the BA parameters in Table 1 selected. In BA, 

each BAT is represented as a candidate solution to the 

optimization problem and represented by a two-dimensional 
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search space that each corresponds to one of the two weights. 

The solution set that maximizes the objective function is stored 

as “𝑔𝑏𝑒𝑠𝑡”. The best of the “𝑔𝑏𝑒𝑠𝑡” value are the 𝑤1 and 𝑤2
optimal weights, which together maximize the correlation 

coefficient and entropy while minimizing the Root Mean 

Square Error (RMSE). 𝑤1, 𝑤2  weights can take values

between 0 and 1 ([0, 1]) so that their sum is 1. In the fusion 

process, obtained optimized weights getting from 

metaheuristic algorithms were used to fuse the low-frequency 

coefficients obtained by applying MST transform. 

In Figure 4, image fusion steps for low frequency 

coefficients with CvT based on PSO are given. Steps are the 

same also for BA. 

Also, in Algorithm 3, pseudo-code of fusion process with 

PSO is given. 

Algorithm 3. Steps of the image fusion using PSO 

1. By using MST, decompose Source images I1, I2 into

high-frequency coefficients and low-frequency

coefficients

2. Fused high-frequency coefficients using maximum

selection fusion rule defined in Eq. (11);
3. In low-frequency coefficients, use optimization

algorithms to search about an optimal weight: 

3.1. Initiate the particles as 𝑤1  and 𝑤2 . The fusion

coefficient 𝑤 is taken as a particle and fuse the low-

frequency coefficients to a fused version 𝐶𝐹𝐿 with

Eq. (13); 

3.2. In objective function performed MST fusion 

algorithm using fusion coefficient 𝑤1, 𝑤2  then

calculate RMSE, CC, and entropy 

3.3. Search about optimal contrast to determine the 

image fusion weight coefficient using PSO 

algorithm. 

3.4. The fitness value that maximizes objective function 

will be stored as global best idea (𝑔𝑏𝑒𝑠𝑡).
3.5. Stop searching until reach the maximum iteration 

times and the 𝑔𝑏𝑒𝑠𝑡  value is the optimal weight

4. Fuse low-frequency coefficients with optimal weights

5. To obtain the fused image, perform the inverse MST on

the fused low-frequency coefficients and high-

frequency coefficients

In Figure 5, image fusion steps for low frequency 

coefficients with LP based on BA are given. Steps are the same 

also for PSO. Also, at Algorithm 4, pseudo-code of fusion 

process with BA is given. 

Figure 4. The image fusion process step with CvT based on PSO algorithm 
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Figure 5. The image fusion process step with LP based on BA 

 

Algorithm 4. Steps of the image fusion using BA 

1. By using MST, decompose Source images I1, I2 into 

high-frequency coefficients and low-frequency 

coefficients 

2. Fused high-frequency coefficients using maximum 

selection fusion rule defined in Eq. (11); 

3. In low-frequency coefficients, use optimization 

algorithms to search about an optimal weight: 

3.1. Initiate the bats as 𝑤1and 𝑤2. The fusion coefficient 

𝑤  is taken as a bat and fuse the low-frequency 

coefficients to a fused version 𝐶𝐹𝐿with Eq. (13); 

3.2. In objective function performed MST fusion 

algorithm using fusion coefficient 𝑤1, 𝑤2  then 

calculate RMSE, CC, and entropy 

3.3. Search about optimal contrast to determine the 

image fusion weight coefficient using BA. 

3.4. The fitness value that maximizes objective function 

will be stored as the best solution value. 

3.5. Stop searching until reach the maximum iteration 

times and the best solution value is the optimal 

weight. 

4. Fuse low-frequency coefficients with optimal weights. 

5. To obtain the fused image, perform the inverse MST on 

the fused low-frequency coefficients and high-

frequency coefficients 

 

4.2 Dataset 

 

For testing, multi-focus gray scale images were used to 

verify the success of the method. The images were taken from 

Image Fusion Dataset [42]. The images’ dataset in gray scale 

format and have different size. There are a total of 93 images 

in the dataset. 

 

 

5. EXPERIMENTAL RESULTS 

 

We tested our method on the multi-focus gray scale images 

[42]. For fusion, parameters of the PSO and BA are given in 

Table 1 below. 
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Table 1. Parameters of PSO and BA for fusion 

 
Parameter value PSO BA 

Population size (s) 40 40 

Inertia weight (w) 0.1 X 

Max. Iteration (iter) 40 40 

Learning constants 
Constants 

𝑐1 = 𝑐2 = 2 
X 

Parameter value  

Frequency 
X 

Frequencies 

𝑓𝑚𝑖𝑛 = 0, 𝑓𝑚𝑎𝑥 = 2 

Initial Pulse rate (r) X 0.5 

Initial Loudness (A) X 0.25 
X: Not parameter value 

 

The performance of the developed fusion technique has 

been compared with the classical methods and fused images 

are evaluated quantitatively by employing reference-based 

metrics. The definitions of metrics are as follows: 

 

1. Root mean square error (RMSE): The RMSE in Eq. (18) 

is used to compare the difference between reference 

images and fused image. When the RMSE value is zero, 

this means the fused image is too close to reference. A 

good image fusion method should have a minimum 

error [43]. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑀 × 𝑁
∑∑((𝑅(𝑖, 𝑗)) − 𝐹(𝑖, 𝑗))2

𝑁

𝑗=1

𝑀

𝑖=1

 (18) 

 

In Eq. (18), R(i,j), F(i,j) are reference and fused image; 

𝑁𝑥𝑀 is the size of the input image. 

 

2. Coefficient correlation (CC): It is used to compute the 

degree of similarity between the reference and fused 

images [44]. Source images are highly similar to 

reference image if the value of correlation is close to 1. 

CC is defined by Eq. (19): 

 

𝐶𝐶 =
∑ ∑ (𝐼(𝑖, 𝑗) − 𝐼)̅(𝐹(𝑖, 𝑗) − �̅�)𝑁

𝑗=1
𝑀
𝑖=1

√∑ ∑ (𝐼(𝑖, 𝑗) − 𝐼)̅2𝑁
𝑗=1

𝑀
𝑖=1 √∑ ∑ (𝐹(𝑖, 𝑗) − �̅�)2𝑀

𝑗=1
𝑁
𝑖=1

 
(19) 

 

In Eq. (19), I(i,j) is the reference image and F(i,j) is the 

fused image at the gray-level value. I and F are the average 

gray-level value, respectively and M x N is the size of the input 

image. 

 

3. Peak signal-to-noise ratio (PSNR): It is a metric used to 

compute the ratio between the value of gray levels in 

the reference and the fused images. The higher value of 

PSNR denoted to better quality of the fused image [22, 

43]. The PSNR measure as in Eq. (20).  

 

𝑃𝑆𝑁𝑅 = 10 log
(𝐿 − 1)2

𝑅𝑀𝑆𝐸2
 (20) 

 

In Eq. (20), L is the number of the gray levels of the image; 

RMSE is the root mean square error.  

 

4. Entropy: It represents the amount of information 

contained in the image. In fused image, the large value 

of entropy denoted to increase in information content 

[45]. The entropy measure as in Eq. (21). 

𝐸 = −∑𝑝𝑖 𝑙𝑜𝑔2(𝑝𝑖)

𝐿−1

𝑖=0

 (21) 

 

In Eq. (21), i is the probability density of the grayscale of a 

pixel value 𝑝𝑖  and L is the number of intensity levels in the 

image. 

 

5. Structural Similarity Index (SSIM): It's used to 

calculate the similarity between the source and fused 

images. The higher value of SSIM in Eq. (22) indicates 

that the fused image more similar to source images. It 

is given by [46]: 

 

𝑆𝑆𝐼𝑀(𝑅, 𝐹) =
(2𝜇𝑅𝜇𝐹 + 𝑐1)(2𝜎𝑅𝐹 + 𝑐2)

(𝜇𝑅
2 + 𝜇𝐹

2 + 𝑐1)(𝜎𝑅
2 + 𝜎𝐹

2 + 𝑐2)
 (22) 

 

In Eq. (22), 𝜇𝑅 and 𝜇𝐹 are the mean intensity of the 

brightness value of reference (R) and fused (F) images; 𝜎𝑅 and 

𝜎𝐹 are variance of (R) and (F) images and 𝜎𝑅𝐹 is covariance of 

(R) and (F) images.  

 

6. Objective edge-based measure (QAB/F): It is used to 

evaluate the fusion performance at the pixel level by 

measures the relative amount of edge or gradient 

information that is transferred from the input images 

into the fused image by employing a Sobel edge 

detector [47, 48]. The QAB/F is given by Eq. (23).  

 
𝑄𝐴𝐵/𝐹

=
∑ ∑ 𝑄𝐴𝐹(𝑛,𝑚)𝑤𝐴(𝑛,𝑚) + 𝑄𝐵𝐹(𝑛,𝑚)𝑤𝐵(𝑛,𝑚)𝑀

𝑚=1
𝑁
𝑛=1

∑ ∑ (𝑤𝐴(𝑛,𝑚)𝑀
𝑚=1

𝑁
𝑛=1 + 𝑤𝐵(𝑛,𝑚))

 
(23) 

 

In Eq. (23), 𝑄𝐴𝐹(𝑛,𝑚) and 𝑄𝐵𝐹(𝑛,𝑚) are referred to the 

edge preservation values, respectively. 𝑛,𝑚 are image pixel 

location, 𝑤𝐴  and 𝑤𝐵  are the weighting factors. The larger 

value of 𝑄𝐴𝐵/𝐹  indicates better fusion result. 

 

7. Fusion Factor (FF): It measures the amount of Mutual 

information (MI) and the similarity between source 

images and fused image. Where MI indicates the 

amount of information is transferred from source 

images to fused image [49]. The FF is given by Eq. (24). 

 

𝐹𝐹 = 𝑀𝐼𝐴𝐹 +𝑀𝐼𝐵𝐹  (24) 

 

In Eq. (24), 𝑀𝐼𝐴𝐹  and 𝑀𝐼𝐵𝐹  are mutual information is given 

by Eq. (25). 

 

𝑀𝐼𝐴,𝐵𝐹 =∑𝑃𝐴,𝐵𝐹 (𝐼, 𝐽) (log
𝑃𝐴𝐹,𝐵𝐹(𝐼. 𝐽)

𝑃𝐴,𝐵(𝐼)𝑃𝐹(𝐽)
)

𝐼,𝐽

 (25) 

 

In Eq. (25), 𝑃𝐴,𝐵 and 𝑃𝐴𝐹,𝐵𝐹 are the normalized joint 

grayscale of reference and fused images. The larger value of 

FF indicates a good amount of information comes from two 

source images.  

Comparisons of some image examples are given in 

Appendix A. The best results are in bold and result fusion 

images are shown in Appendix B. 
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6. CONCLUSION  

 

Multi-focus image fusion is used to fuse images in different 

depths of field so that objects in different image focus are all 

clear in the fusion results. 

In this paper, a hybrid method combining MST transform 

with metaheuristic algorithms for multi-focus image fusion is 

proposed. The proposed method was used to improve the 

quality of the fusion image by optimizing MST with 

optimization algorithms (PSO, BA). The optimal values for 

fusion rule were selected using PSO and BAT algorithms and 

then these values were used to fuse two focused images in low-

frequency coefficient. The experimental results with BA show 

better performance than the PSO algorithms.  

As the size of the images increases, the processing time 

increases. Therefore, the shortness of the computing cost is an 

important comparison parameter. When the optimization 

algorithms are compared according to the computing cost, 

because of the fewer steps, BA's results are faster than PSO. It 

has also been observed that the BA provides better results for 

fusion than PSO. 
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APPENDIX A 

 
A-1. Multifocus image fusion results of the “Lab” image [42] 

Fusion methods MI/ Fusion Factor QAB/F Entropy CC SSIM RMSE PSNR Weights 
Running time  

(Second) 

CvT [50] 6.8233 0.8190 7.0854 0.9881 0.9911 2.9752 182.1958 
𝑤1 = 0.5 
𝑤2 = 0.5 

7.1015 

CvT+ PSO 6.8449 0.897 7.0963 0.9986 0.9919 2.5853 185.8479 
𝑤1 = 0.35 
𝑤2 = 0.65 

1096.0247 

CvT + BAT 6.8582 0.897 7.1053 0.9988 0.9921 2.4697 188.5371 
𝑤1 = 0.21 
𝑤2 = 0.79 

889.2280 

 

LP [51] 7.0939 0.8978 7.0531 0.9991 0.9955 2.0074 189.6441 
𝑤1 = 0.5 
𝑤2 = 0.5 

4.4250 

LP + PSO 7.4230 0.89 7.044 0.9959 0.9946 2.2138 189.6441 
𝑤1 = 0.52 
𝑤2 = 0.48 

981.5157 

LP + BAT 7.5500 0.8978 7.1050 0.9992 0.9956 1.9999 190.2514 
𝑤1 = 0.45 
𝑤2 = 0.55 

764.2680 

 
A-2 Multifocus image fusion results of the “Leopard” image [42] 

Fusion methods MI/ Fusion Factor QAB/F Entropy CC SSIM RMSE PSNR Weights 
Running time 

(Second) 

CvT [50] 8.9055 0.9325 7.4441 0.9998 0.9980 1.2124 193.4649 
𝑤1 = 0.5 
𝑤2 = 0.5 

5.2990 

CvT + PSO 8.9154 0.9335 7.4451 0.9998 0.9981 1.2122 193.5859 
𝑤1 = 0.41 
𝑤2 = 0.59 

861.270 

CvT + BAT 8.9270 0.9325 7.4463 0.9999 0.9980 1.1122 194.6189 
𝑤1 = 0.7 
𝑤2 = 0.3 

667.3025 

 

LP [51] 10.3981 0.9313 7.4207 1 0.9994 0.6117 201.0611 
𝑤1 = 0.5 
𝑤2 = 0.5 

3.0270 

LP + PSO 10.3814 0.9313 7.4218 1 0.999 0.6167 204.5861 
𝑤1 = 0.52 
𝑤2 = 0.48 

739.979 

LP + BAT 10.5334 0.9324 7.44718 1 0.999 0.59217 206.9225 
𝑤1 = 0.37 
𝑤2 = 0.63 

562.473 

 
A-3 Multifocus image fusion average results of the all dataset [42] 

Fusion methods MI/ Fusion Factor QAB/F Entropy CC SSIM RMSE PSNR Running time (Second) 

CVT [50] 7.0809 0.8421 7.2414 0.9882 0.9596 2.7078 173.2437 7.1302 

CVT + PSO 7.1089 0.8427 7.2514 0.9883 0.96 2.2067 174.1863 1125.4445 

CVT + BAT 7.1348 0.917 7.2382 0.9988 0.9918 2.1844 183.9929 895.005 

 

LP [51] 7.8747 0.917 7.2315 0.9992 0.9951 2.08 189.5327 4.2849 

LP + PSO 7.896 0.9156 7.2320 0.9985 0.9949 1.9618 189.3459 989.8594 

LP + BAT 7.9498 0.917 7.2403 0.9993 0.9951 1.7231 189.76 762.876 
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APPENDIX B 

B-1. Multifocus image fusion results of the “Lab” image [42]

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

B-1. (a) Left-focus source image; (b) Right-focus source image; (c) Reference fusion image; (d) Fusion result of CvT; (e) Fusion

result of CvT+PSO; (f) Fusion result of CvT+BAT; (g) Fusion result of LP; (h) Fusion result of LP+PSO; (i) Fusion result of

LP+BAT 

B-2. Differences of the fusion results of "Lab" [42] image with reference fusion image

(a) (b) (c) 

(d) (e) (f) 

B-2. (a) Difference of CvT fusion result with reference fusion image; (b) Difference of CvT+PSO fusion result with reference

fusion image; (c) Difference of CvT+BAT fusion result with reference fusion image; (d) Difference of LP fusion result with

reference fusion image; (e) Difference of LP+PSO fusion result with reference fusion image; (f) Difference of LP+BAT fusion 

result with reference fusion image 
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B-3. Multifocus image fusion results of the “Leopard” image [42]

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

B-3. (a) Left-focus source image; (b) Right-focus source image; (c) Reference fusion image; (d) Fusion result of CvT; (e) Fusion

result of CvT+PSO; (f) Fusion result of CvT+BAT; (g) Fusion result of LP; (h) Fusion result of LP+PSO; (i) Fusion result of

LP+BAT 

B-4. Differences of the fusion results of "Leopard" [42] image with reference fusion image

(a) (b) (c) 

(d) (e) (f) 

B-4. (a) Difference of CvT fusion result with reference fusion image; (b) Difference of CvT+PSO fusion result with reference

fusion image; (c) Difference of CvT+BAT fusion result with reference fusion image; (d) Difference of LP fusion result with

reference fusion image; (e) Difference of LP+PSO fusion result with reference fusion image; (f) Difference of LP+BAT fusion 

result with reference fusion image 
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