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In this paper, we propose a method for classification 3D human activities using the 

complementarity of CNNs, LSTMs, and DNNs by combining them into one unified 

architecture called CLDNN. Our approach is based on the prediction of 3D Zernike 

Moments of some relevant joints of the human body through Kinect using the Kinect 

Activity Recognition Dataset. KARD includes 18 activities and each activity consists of 

real-world point clouds that have been carried out 3 times by 10 different subjects. We 

introduce the potential for the 3D Zernike Moment feature extraction approach via a 3D 

point cloud for human activity classification, and the ability to be trained and generalized 

independently from datasets using the Deep Learning methods. The experimental results 

obtained on datasets with the proposed system has correctly classified 96.1% of the 

activities. CLDNN has been shown to provide a 5% relative improvement over LSTM, the 

strongest of the three individual models. 

Keywords: 

classification, CNN, DNN, LSTM, 3D 

human activity, 3D Zernike moment 

1. INTRODUCTION

In this study, a novel technique is proposed to the 

classification of 3D Zernike Moments (ZM) obtained from 3D 

human activities point cloud by combining deep learning 

methods into one unified architecture. 3D Human activity 

classification is one of the popular research topics of recent 

years such as computer vision, robotics, and machine learning 

[1]. Especially in the last decade, various solutions related to 

3D datasets have been developed with many applications such 

as healthcare, entertainment and multimedia, surveillance, and 

robotics realized with sequential depth video frames [2-4]. 

The activity can be defined as the evolution of human body 

postures in different spatiotemporal procedures. Human 

activities are modeled by defining repetitive configurations of 

their positions, which are achieved by connecting full body 

parts (head, arm, leg, etc.) as a set of joints [5]. Microsoft 

Kinect can be preferred as a sensor in the production of real-

world data of human joint information for reasons such as 

competitive cost, reliability, and practicality [1]. The output of 

the proposed framework is to develop a human activity 

classification system using real-world data from the sensing 

infrastructure of unconstrained videos represented as input [6]. 

The use of 3D action data in activity recognition studies has 

become widespread as sensor cameras capable of capturing 

depth video become more accessible and cheaper [7]. In this 

regard, it is represented by depth information effectively on 

real-world scenes of objects and human actions [7, 8]. Some 

uncertain situations such as not being able to be identified by 

using real data are prevented in determining human 

movements. Since people use their joints belonging to their 

skeletons while exhibiting their daily movements, 3D joint 

information is used directly in extracting human activity 

information [9, 10]. Thus, the direct use of human skeleton 3D 

real-world joint position data in human action recognition and 

classification has been of intense interest for researchers. 

Human activity classification studies can be classified into 

two categories on skeleton-based applications. These are 

handcrafted feature-based and deep network-based methods. 

A human activity classification is made by learning 3D ZM 

features obtained directly from the data using deep network-

based methods, unlike handcrafted feature-based methods [11, 

12]. Especially in the last few years, high-performance results 

have been obtained by using methods based on deep learning. 

Data with 3D skeletal joint information is often given directly 

to the system as input and produces an action class label as 

output [13]. While in some deep learning methods, temporal 

data entry is considered static, temporary sensitive deep 

learning methods are used where CNNs, LSTMs, and CNNs 

are trained jointly and combined into a single framework [14]. 

Therefore, the proposed approach in our paper is unique. 

Kinect Activity Recognition Dataset (KARD), a database 

that has been detected a series of body skeletal joints by Kinect 

has been subjected to some pretreatment (such as splitting into 

video frames, decomposing postures). However, methods that 

perform a classification task from raw 3D skeleton frames face 

some problems for deep learning systems in end-to-end 

classification approaches. Because these systems that use 3D 

skeleton data often need huge amounts of data for training. The 

processes of obtaining, training, and processing the data cause 

many disadvantages in terms of cost and performance [15]. 

For this reason, instead of using real-world data of skeletal 

joint information, the 3D ZM value of skeletal information 

obtained from each frame has been calculated from a depth 

video of human action [16]. The measurement of different 

human activities using Kinect is illustrated in Figure 1. 
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Figure 1. Illustration of nine out of eighteen different human activities measurements of KARD 

In this article, the 3D human activity classification task is 

presented as a system that learns the similarity of 3D ZM 

features between 3D joint sequence data using deep learning 

methods. In the classification of sequential joint sequence, 

different 3D joint arrays can be compared, in which 3D ZM 

features are automatically learned. We argue that classifiers 

can learn more easily because the Deep Metric Learning 

(DML) network can be trained with combinations of different 

joint sequences with 3D ZM results.  

In the proposed model, spectral variations of the 3D Zernike 

Moment input features of the activity joint information are 

reduced with the CNN layer, and the output is fed with a 

Siamese LSTM (S-LSTM) layer. 

Each CNN, LSTM, and DNN block captures 3D Zernike 

Moment information of the skeletons about the input 

representation. For this reason, it has been investigated 

whether the information obtained with Zernike Moment can 

be combined in multiple scales to achieve further 

improvement. Besides, the complementarity between the 

modeling capabilities of using LSTM and DNN layers 

together is emphasized. In particular, the transfer of the output 

of the CNN layer to both LSTM and DNN layers has been 

investigated. This article discusses a multi-scale CLDNN for 

the CLDNN architecture created using known additional 

connections. CLDNN architecture and multi-scale additions 

are described in section 3. 

The article content is organized as follows. Related works 

are given in section 2. The architecture of the developed 

system is described in section 3. Section 4 presents the 

experimental results of the proposed system of the data set. 

The conclusion is presented in chapter 5. 

2. RELATED WORKS

Especially in the last few decades, various human activity 

classification studies based on RGB or RGB-D streams have 

been introduced. Traditional methods have focused on the 

processing of color images taken with the help of RGB 

cameras [17]. In some studies, RGB images of the human 

silhouette have been used as input to the hidden Markov model 

(HMMs) [18]. In these studies, some analyzes have been 

implemented by defining human silhouettes with various 

machine learning algorithms to classify them into different 

postures. In the methods based on RGB data, the required 

silhouette feature prevents real-time use due to the complexity 

of time in the production process such as image normalization, 

background removal, etc. Besides, they have poor 

applicability in situations with limited conditions, such as 

complex background or low lighting. 

In some studies, approaches that do not require 

segmentation have been proposed by analyzing the appearance 

of salient points in both space and time. The relevance of the 

salient points represented is classified by machine classifiers 

such as KNN or SVM in each image sequence [19]. While 

temporal scales can produce good results in distinguish actions 

at different speeds in classifications made using invariant 

features, they cause errors in different actions at the same time 

cost rate [20]. 

Some researchers have used the capabilities of wearable 

sensors in human activity recognition studies. Using such 

sensors in the recognition of human movements provides more 

precise information [21]. However, portable video sensors are 

preferred because they produce similarly precise results 

without the need to wear and maintain any electronic 

equipment. In terms of these issues, the KARD dataset, in 

which Kinect was used to collect transparent observations 

about 3D human behavior, was accepted as a dataset in our 

study [22]. The data contained in human activity recognition 

studies, in particular using Kinect, are modeled in a series of 

kinematic joints of the human body, and recognition processes 

are performed by interactions between actions, joints, and 

subsets. The authors used data mining technique to discover 

the most discriminatory and represent the action as a 

combination of actions, due to the large number of possible 

actions that can be taken in human movements [23]. 

In some studies, researchers have proposed a posture-based 

approach in which prominent 3D points of human postures are 

represented by projecting and sampling depth maps on 

orthogonal planes [24]. The defined postures are associated 

with a node of an action graph created to model the dynamics 

of the subsequent actions. Although this technique produces 

noisy results due to the low-resolution levels of the sensors 

used, 3D projections produced with depth maps still yield 

more efficient results than 2D silhouettes. In this respect, more 

interpolation processes are needed in repairing corrupted 

projections, which leads to unnecessary increases in 

recognition time. 

In histogram-based approaches, human postures are divided 

into n bins according to the 3D global coordinate system and 

are assigned to each area at 12 different joint uncertainty levels. 

The linear discriminant analysis (LDA) method is used to 

reduce the dimensions of the property space from n to C-1 for 

C classes and the generated properties are clustered in K-word 

strings numbers. Human activities are represented by word 

sequences and are recognized by discrete HMM classifiers. 

According to the approach, using a complex model in which 

joints are represented, the dimensions of feature vectors are 

reduced through LDA. In real-time applications where some 

feature spaces contain appropriate clusters, it is stated that 

using LDA does not contribute to increasing system 

performance in reducing this area [22]. 

In another approach used for gesture recognition, spherical 

angular representation is used. In this approach, nine different 

joints are represented by a pair of spherical angles. When 

defining poses, a multiclass classifier is defined. Using the 

decision tree, nodes are associated with the leaves in which 

key poses of different poses are represented. The difficulty of 
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this method is that it is not possible to define and train the key 

sequence because it cannot be obtained from dynamic 

environments [25]. 

Some researchers have focused on the restructuring of the 

valid movement from noisy and missing poses obtained using 

Kinect. Here, the unidentified poses are kinematically 

corrected through similar valid poses in a database. Although 

this approach has improved improvements in undefined poses, 

its accuracy has not been established, since it is assumed that 

similar poses are always present in the database [26]. 

Approaches to using only depth information in obtaining 

silhouette are more practical because body appearance 

variations are more robust compared to RGB and depth 

information intensities are unchanged. By creating a body pose 

codebook, the researchers train the system using codes similar 

to the pose codeword of the human body. The common 

problem with these approaches is the routine background 

removal process or subjecting users to a remote background 

positioning [27]. 

In some studies, a hybrid method has been developed that 

integrates optical flow with transferable two-stream CNN to 

increase accuracy in human action recognition for reliable 

human-robot collaboration [28]. Besides, human action 

recognition from skeletal data supported by the Graph 

Convolutional Network (GCN), which has the ability to model 

powerful non-Euclidean data, has attracted a lot of attention 

[29]. 

In another study that addressed the problem of complex 

activity recognition, it was emphasized that system 

performance can be increased by using grayscale data together 

with depth information. It has been observed that the 

experimental results produced from this approach have 

significantly improved recognition and localization accuracy, 

but have a process lacking time cost analysis. In this respect, 

it is not possible to comment on the suitability of real-time 

applications [30]. Besides, there are studies in which both 

color and depth information are used together for activity 

recognition. In one of them, using the Kinect sensor, a data set 

called RGBD-HuDaAct was created containing 12 different 

activities performed by 30 different subjects at a distance of 

about 3m. In this approach, the results obtained with the 

multimodal feature, in which color and depth information are 

combined, are compared with single-mode approaches. 

However, neither an evaluation in terms of time-cost nor a 

comparison with other approaches have been made [31]. 

3. ACTIVITY CLASSIFICATION SYSTEM

In the 3D human action classification problem, the system 

introduces a DML method that learns the similarity metric 

between the two joint arrays using 3D ZM data obtained from 

3D skeletal joint information. Thus, the learned metrics are 

used to compare two different 3D joint arrays to classify 

different sequences. The most important advantages of the 

approach are to reduce the data by using a single 3D ZM value 

obtained from all joints in each frame instead of using all 

skeletal information for the collecting data. The other 

advantage is that it is easier to learn the similarity metric in 

smaller datasets than learning a classifier since it can be 

trained with different combinations of existing arrays with the 

DML network [32]. 

3.1 KARD-Dataset 

KARD dataset, which has produced by making use of 

Kinect’s abilities and paying attention to the accuracy of the 

basic truth, has been used in the proposed system. In the 

dataset, 18 different human actions have been evaluated as an 

activity. These are horizontal arm wave, high arm wave, two 

hand wave, catch cap, high throw, draw x, draw tick, toss paper, 

forward kick, side kick, take umbrella, bend, hand clap, walk, 

phone call, drink, sit down, and stand up. This dataset 

containing human movements is useful in evaluating simple 

sequences with complex actions in which different parts of the 

body interact with each other to reveal the distinction between 

classes of activity [33]. Fifteen different joints detected during 

the measurement of human activities using Kinect are shown 

in Figure 2. 

Figure 2. Fifteen different detected joints of the human 

through Kinect 

The video, prepared for each of the 18 activities, has 

repeated three times, between 20 and 30 years old, between 

150 and 185 cm height, nine males and one female, 10 

different individuals in total. Video users have asked to do 

their actions by naming them (e.g. Catch Cap) without 

specifying how they would do the action with the aim of 

naturalness. The dataset has captured from a scene with a desk, 

phone, coat rack, and a waste bin in the office with a Kinect 

sensor at a distance of 2 to 3 meters from the subject. The 

dataset consists of 540 sequences (18 activities x 3 repetitions 

x 10 subjects) in total. Each of these is an average of one hour 

of videos at a resolution of 640x480 pixels at 30 fps. In each 

sequence, besides RGB and depth images, real-world and 

screen coordinates are included in the list of detected joints. 

Each file in the KARD is consisting 15xF (x, y, z) real-world 

data lines, containing head, neck, right shoulder, right elbow, 

right hand, left shoulder, left elbow, left hand, torso, right hip, 

right knee, right foot, left hip, left knee, and left foot 

respectively. Here F is the number of frames in the motion 

video for this sequence, and each line reports real-world 

coordinates (x, y, z) data in realworld.txt file. 

The real-world data of 15 joints within each frame in each 

activity of the data set is separated frame by frame for 

calculating the 3D ZM before the classification phase of the 

KARD data set. Figure 3 shows the circular plotting of each 

frame consisting of 15 lines separated from a subject during a 

sequence activity. 

271



 

 
a) horizontal arm wave 

 
b) high arm wave 

 
c) two hand wave 

 
d) catch cap 

 
e) high throw 

 
f) draw x 

 
g) draw tick 

 
h) toss paper 

 
i) forward kick 

 
j) side kick 

 
k) take umbrella 

 
l) bend  

 
m) hand clap 

 
n) walk  

 
o) phone call  

 
p) drink  

 
q) sit down 

 
r) stand up 

 

Figure 3. Circular plot representation from 18 activity (a-r) frames consisting of a subject in a sequence of real-word motion data 
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Figure 4. Illustration of the 3D ZM calculation of all skeletal joint connections in each frame in the KARD dataset 

 

3.2 3D Zernike moment computation 

 

In the KARD data set, the calculation of the 3D ZMs by 

decomposing all frames containing 15 lines skeletal 

information in each motion video is shown in the flow diagram 

in Figure 4. 

The 3D ZM calculation step has been applied to the entire 

KARD data set. After each frame containing 15 lines of 

skeleton joint information from the activity videos has been 

separated, a single 3D ZM value has been computed for those 

frames. The ZM calculation process can be summarized as 

follows briefly. Three-dimensional Zernike polynomials on 

point cloud during the calculation of classical ZM are defined 

as Zl,m,n, orthogonal polynomials [34]; 

 

𝑍𝑙,𝑚,𝑛(ℜ) = 𝑅𝑙,𝑚(𝑟)𝜰𝑚,𝑛(𝜃, 𝜙), (1) 

 

where, l ϵ [0, Max], m ϵ [0, l], and n ϵ [-m, m]. The (l - m) must 

be selected from integers with positive values. The maximum 

order is defined as a max-term during the calculation 

operations. 𝑅𝑙,𝑚(𝑟)  and 𝜰𝑚,𝑛(𝜃, 𝜙)  are referred to as radial 

functions and spherical harmonics with a real numerical value. 

As described in Eq. (2), 3D Zernike can be expanded using the 

polynomials defined in a unit ball of any function 𝑓(ℜ); 

 

𝑓(ℜ) = ∑ ∑ ∑ Ω𝑙,𝑚,𝑛𝑍𝑙,𝑚,𝑛(ℜ)

𝑚

𝑛=−𝑚

𝑙

𝑚=0

∞

𝑙=0

. (2) 

 

Ω , which is the coefficient of expansion in Eq. (2), 

represents 3D Zernike Moment. Then the complex conjugate 

of polynomials as in Eq. (3) is generated. 

 

Ω𝑙,𝑚,𝑛

= ∫ ∫ ∫ 𝑍𝑙,𝑚,𝑛(ℜ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝜋

0

2𝜋

0

1

0

𝑓(ℜ)(𝑟2𝑠𝑖𝑛𝜃 𝑑𝑟𝑑𝜃𝑑𝜙). 
(3) 

 

The transformation between 3D spherical and cartesian 

coordinates is formulated with 3D Zernike polynomials as 

follows; 

 

[
𝑥
𝑦
𝑧

] = [

𝑟 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙
𝑟 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜙

 𝑟 𝑐𝑜𝑠𝜙
]. (4) 

3D Zernike polynomials are defined as follows; 

 

𝑍𝑙,𝑚,𝑛(𝑋) = ∑ 𝒬𝑘,𝑚,𝑣|𝑋|2𝑣𝑒𝑚,𝑛(𝑋)

𝑘

𝑣=0

, (5) 

 

where, 𝑘 = (𝑙 − 𝑚)/2, is an integer value in the interval of 

0 ≤ 𝑣 ≤ 𝑘. So the coefficient of 𝒬𝑘,𝑚,𝑣 is defined as; 

 

𝒬𝑘,𝑚,𝑣 =
(−1)𝑘

22𝑘
√

2𝑚 + 4𝑘 + 3

3
(

2𝑘
𝑘

) (−1)𝑣 

(
𝑘
𝑣

) (
2(𝑘 + 𝑚 + 𝑣) + 1

2𝑘
)

(
𝑘 + 𝑚 + 𝑣

𝑘
)

. 

(6) 

 

The formulas given above implements the calculation of 3D 

ZMs with very fast and low complexity using voxels of point 

clouds. 3D ZMs are expressed as the mathematical calculation 

of 3D monomial terms over digital point cloud voxels. The 3D 

ZM calculation of the point clouds of the original data in the 

real-world.txt format for each activity in the data set is 

performed in less than one second. In this respect, the 3D ZM 

feature extraction step calculated in milliseconds has no 

additional cost to the classification process [35]. 3D Zernike 

descriptors are generally used to compare to similar structures 

and the vectors, whereas the independent 3D ZM is used for 

feature computation in object classification. The definition of 

a set of suitable features for the high accuracy classification of 

the 3D point cloud is an issue that directly affects success [36].  

In this study, it is thought that in the activity classification 

problem, higher performance will be obtained by preferring 

the classification of 3D ZM features from skeleton information 

instead of directly classifying 3D point clouds of skeletal joint 

information. In this regard, instead of using the skeleton joint 

information found in the entire data set, it is purified from the 

data crowd by using the 3D ZM obtained from the frame 

containing the 15-line skeleton joint information. Thus, the 

data is reduced by 1 in 15 in the first place. The 3D ZM 

calculation process has been completed in the Matlab R2019b 

environment in a very short time regardless of its inclusion in 

the time-cost computation process [37]. 
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3.3 LSTM-based DML Module 

 

In this paper, a Deep Metric Learning (DML) approach is 

proposed in the human activity classification problem, using 

deep learning methods, learning the similarity metric between 

the two joint sequence data via 3D ZM properties from skeletal 

joint information [32]. The classification process can be 

completed by using the auto-learned metric in the comparison 

of each subsequent two different sequences of joints. Here the 

DML network is advantageous because learning a similarity 

metric with small datasets is more practical than learning a 

classifier since it can be trained with different sequences 

available with various combinations. 

This is the first known study using DML for a 3D human 

activity classification problem using 3D ZM feature extraction 

over skeletal joint information. Although manual systems 

using similarity metrics for activity classification have been 

proposed, the deep-learning-based metric learning approach 

with feature extraction has not been addressed yet [38]. This 

study is stunning, considering that DML systems are widely 

used especially in redefinition and biometric identification 

problems [39]. 

The proposed DML network uses an LSTM structure where 

the parameters are repeated in parallel within the same 

network in the form of the Siamese. S-LSTM architecture is 

used in networks in the human activity classification system 

since temporary sequence information can be learned 

efficiently with LSTM [4]. In this respect, the architecture is 

named Siamese-LSTM (S-LSTM) because a pair of LSTMs 

are repeated in parallel to be a copy of each other. 

The proposed classification system consists of two modules, 

where 3D Zernike Moment values obtained from skeleton 

joint information are learned. The first one S-LSTM is used to 

calculate the similarity metric between activity pairs as shown 

in Figure 5. The second is the multi-class classification (McC) 

used for real activity classification as shown in Figure 6. In the 

proposed DML approach, since there is no fixed number of 

classes in the classification, the S-LSTM module is not 

restricted to the initial activity classes for the training set. In 

the first module, only similarities between activity sequences 

are learned. With this module, activity pairs with many 

different data sets can be trained. Therefore, the system can be 

generalized as learning the similarity with the data sets in a 

much larger scope with the proposed method shows higher 

performance compared to learning from a single group. 

Therefore, the S-LSTM module has an important place in the 

classification system in terms of its effect on recognition 

accuracy. 

The main goal in the implemented system is to find as many 

accurate activity classes as accurate as possible, in response to 

the given 3D skeleton frame sequences. Besides, it is 

emphasized that learning the similarity metric provides an 

advantage with the S-LSTM method, where the proposed 3D 

action pairs are input to the system and the similarity between 

them is learned. 

The classification system we propose consists of two 

consecutive modules. The first of these, Siamese-LSTM, is 

used in the similarity metric calculation between action pairs. 

Second, multi-class classification performer (MCC) is used in 

real action classification. 

In the implemented DML approach, it is not limited to the 

first action classes in the training set, since there is no 

classification for a fixed number of classes in the S-LSTM 

module. On the contrary, the similarities between this module 

and action sequences are learned. 

In this respect, in our proposed S-LSTM module, multiple 

action pairs with different data sets can be trained. This 

situation causes our method to be more generalizable. Because 

learning the similarity in multiple different data sets is 

expected to perform better than learning this information from 

a single set. With this expectation, it is obvious that the S-

LSTM module in our system contributes significantly to the 

recognition accuracy. Besides, it is emphasized that the system 

can use any LSTM or RNN based network structures within 

the S-LSTM DML module. This makes the proposed system 

more modular and generalizable. 

The S-LSTM module shown in Figure 5 takes the two 3D 

activity sequences Sp = {sp
1, sp

2, sp
3, … sp

T} and Sq = {sq
1, sq

2, 

sq
3, … sq

R}. Here T and R are the total number of frames in 

each sequence. sp
t= {jt

1, jt
2, jt

3,… jt
N}p is a single skeleton frame; 

where N is called the total number of 3D joints in a single 

frame at time t. jt
n={Zxn, Zyn, Zzn} ∈  R3 is the 3D Zernike 

Moment values obtained from the real coordinate data of the 

single joint jt
n. Here T and R can take different values in each 

activity sequence. For this reason, LSTM cells are used in the 

metric learning system. One sequence is taken as input in two 

LSTM networks. As the output vector, Op ∈ RM and Oq ∈ RM 

are produced respectively. The vector sizes here are fixed 

regardless of the number of frames (T and R) of the input 

sequences. 

 

 
 

Figure 5. Illustration of the S-LSTM-based DML module 
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Figure 6. Multi-class classification module 

 

 
 

Figure 7. CLDNN architecture 

 

LSTM blocks are modeled with the L (Sp, Sq) ∈  R2M 

function which returns a vector that is a combination of Op and 

Oq vectors. The extracted L (Sp, Sq) has deep similarity features 

to the input sequences. This vector is supported by a multi-

layer perceptron (MLP) and a hot vector V ∈ R2 is produced 

that assigns one of the labels (match or not match). 

 

𝐷(𝐿 (𝑆𝑝, 𝑆𝑞  )) = 𝑉𝑝𝑞 , (7) 

 

In this case, D is an MLP model that operates in two hidden 

layers. 

 

𝑉𝑝𝑞 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑏3 + 𝑊3 𝑅𝑒(𝑏2 + 𝑊2 𝑅𝑒(𝑏

+ 𝑊𝐿 (𝑆𝑝, 𝑆𝑞)))) 
(8) 

 

In Eq. (8); the b’s are bias terms. W’s are network weights. 

Re (ReLU) is a rectified linear activation function that is used 

in neural networks because the gradient value of the sigmoid 

or hyperbolic tangent activation drops excessively in the 

extreme regions and training becomes impossible. Both the 

ReLU function itself and its derivative are monotone functions. 

Any negative value is returned by ReLU as zero. Converting 

all negative values to 0 prevents the model from being 

properly trained. Therefore, the model cannot be trained with 

negative values. 

Both the ReLU function itself and its derivative are 

monotone functions. Although rare, 3D Zernike Moment 

values of some activities in the data set can be negatively 

calculated. In this case, any negative value is returned by 

ReLU as zero. Converting all negative values to 0 prevents the 

model from being properly trained. Therefore, the model 

cannot be trained with negative values.  

As shown in Figure 6, the accuracy of the multi-class 

classification module largely depends on the effectiveness of 

the D module. In this respect, it has an important place in the 

classification. 

As mentioned, the implemented 3D activity recognition 

system ultimately produces an action class label. The 

generated S-LSTM model has a 2D match-no match output 

vector that does not have a class label assignment. The McC 

module shown in Figure 6 presents the results of the 

comparison between test action 𝑆𝑝  and other training 

sequences 𝑆𝑞1
, 𝑆𝑞2

... 𝑆𝑞𝑘
 using k training sequences.  

GR2k is considered as the S-LSTM model results obtained 

from the concatenation of 𝑉𝑝𝑞1
 , 𝑉𝑝𝑞2

,… 𝑉𝑝𝑞𝑘
vectors. McC is 

fed from the G vector as input. The output of this module is a 

hot vector of CRu, which will have U number of activity class 

labels. 

Although in the S-LSTM module, which is the first module, 

activity pairs need to be given as input and trained with match-

no match output labels, the second module, McC, must 

eventually be trained with activity class labels. In this method, 

although the activity sequence pairs from different datasets 

can be trained using S-LSTM, the McC module has been 

trained with a single dataset with specific activity class labels. 

The training process is carried out separately with two 

independent modules, S-LSTM, and McC training. In the S-

LSTM training process, a labeling issue has occurred because 

the number of possible “no match” pairs is greater than the 

number of “match” pairs. In order to compensate for this 

balance problem, in the S-LSTM training, the ratio of match / 

no match pairs is kept at 1 / U level for any dataset of the U 

number of activity classes. However, there is no such problem 

of label imbalance in the McC module. Because, as the output, 
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the activity labels are expected to be relatively overlapping 

with the activity classes. Moreover, it should be noted that the 

number of training samples in the McC module is considerably 

less than the number of training samples in the S-LSTM 

module. 

 

3.4 CLDNN architecture 

 

Figure 7 shows that from the left to the right, the xt frame 

surrounded by the contextual vectors l and r are given as input 

to the network. This input expressed as [ xt-l , …, xt+r ], is a 45-

dimensional filter bank with a 3D ZM feature obtained from 

skeleton joint information of 15 lines within each xt frame. 

Each CNN layer given in Figure 7 is inspired by the 

architecture proposed by Sainath et al. [40]. In this regard, the 

input is passed through several convolutional layers. There are 

2 different convolutional layers in architecture, each 

containing 256 feature maps. The first convolutional layer uses 

a 9x9 frequency-time filter, the second convolutional layer 

uses a 4x3 filter. These used filters have been shared across the 

entire time-frequency space. The pooling procedure uses the 

non-overlapping max-pooling strategy to perform frequency 

pooling only, proposed by Sainath et al. [41]. Pooling size has 

been determined as 3 in the first layer, however, no pooling 

has been made for the second layer. 

The number of dimensions in the last layer of CNN is 

increasing due to the growth of the number of feature-maps x 

time x frequency context. Therefore, in order to reduce the 

feature dimension, a linear layer has added before the LSTM 

layer as shown in Figure 7. They have found that the addition 

of the linear layer before the LSTM following the CNN layer 

allowed a reduction for parameters without loss inaccuracy 

[42]. According to the experience gained from our 

experiments, it has been determined that the number of outputs 

from the linear layer will be 256 with a suitable dimension 

reduction. 

The CNN output is passed to the appropriate LSTM layers 

after the frequency modeling. A multiple S-LSTM layers with 

512 units of projection layer have been used for dimension 

reduction [43]. Moreover, the output state label is delayed 5 

frames to better estimate the current frame with the 

information about the next frames. The CNN outputs with the 

contextual frames l and r are then passed to the LSTM. It is set 

to r = 0 to prevent the future context from seeing more than 5 

frames in CLDNNs. Because increasing this value causes 

growth in LSTM's decoding latency. Finally, outputs of LSTM 

layers are transferred to fully connected DNN layers by using 

temporal modeling. Each fully connected layer consists of 

1024 hidden units. In producing a high-order feature 

representation, it is appropriate to prefer higher layers that can 

be easily separated into a large number of different classes to 

be distinguished [44]. 

 

 

4. EXPERIMENTAL RESULTS 

 

The proposed method has been tested on two internationally 

recognized KARD and Florence Action 3D datasets to 

compare experimental results [45]. In order to better evaluate 

the effective performance of the method, the results of S-

LSTM and MCC modules have been compared separately. 

Also, the results obtained using the direct real-world skeletal 

joint information and their 3D Zernike Moment features have 

been compared for both datasets. Training and experimental 

procedures have implemented using TensorFlow on a PC with 

NVidia GeForce GT 650M GPU board, 2.3GHz, and 8GB 

RAM. 

In the proposed system, 3D human activities for both data 

sets can be classified by deep metric learning and similarities 

can be found between them. In this regard, the results of deep 

metric learning accuracies are shown with an increasing 

number of epochs for both modules used. Firstly, the results 

obtained using the real-world skeletal joint information of the 

datasets are given in Figures 8 and 9. 

Then, the experimental results implemented using 3D 

Zernike Moment features obtained from skeleton joint 

information for two separate datasets are given in Figures 10 

and 11. 

 
 

Figure 8. Accuracy comparison of S-LSTM and McC 

Modules for the KARD dataset using the real-world skeletal 

joint information 

 

 
 

Figure 9. Accuracy comparison of S-LSTM and McC 

Modules for the Florence Action 3D dataset using the real-

world skeletal joint information 

 

 
 

Figure 10. Accuracy comparison of S-LSTM and McC 

Modules for the KARD dataset using the 3D Zernike 

Moment features 
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Figure 11. Accuracy comparison of S-LSTM and McC 

Modules for the Florence Action 3D dataset using 3D 

Zernike Moment features 

As evidenced by experimental results, the performance of 

S-LSTM and McC modules increases with an increasing set of

epoch numbers. In the experimental results, the accuracy

results obtained with 3D Zernike Moment feature extractions

in both modules for both datasets reached higher values

compared to the training done directly with skeletal joint

information. The max accuracy rate obtained for the KARD

dataset is 90.79 for the S-LSTM module while using real-

world skeletal joint information, and it increases to 98.51

while using 3D Zernike Moment features. Similarly, in this

dataset, the accuracy value of 82.69 for the McC module has

increased to 96.14 when 3D Zernike Moment features have

been used. When similar situations have been evaluated for the

Florence Action 3D dataset, the maximum accuracy rate

obtained for the S-LSTM module increased from 88.13 (with

skeletal information) to 95.82 while using 3D Zernike Moment

features. Similarly, in this dataset, the accuracy value of 80.28

for the McC module has increased to 88.22 when 3D Zernike

Moment features have been used. In general, there is an

increase in performances according to the increasing number

of epochs for both modules. However, this increasing rate is

higher in the McC module compared to the S-LSTM module.

The proper training of S-LSTM with robustly established

LSTM blocks has led to a significant improvement in system

performance. In this respect, it is thought that the LSTM

method will make important contributions in classifications 

made using multiple datasets in similar studies. Used for 

training datasets{(75,200,2) LSTM, (200,200,2) LSTM, 

(400,1) CONCAT, (400,300) FC, (300, 150) ReLU-FC, 

(300,50) ReLU-FC, (50,2) ReLU-FC } have trained 400 

epochs for all subjects in model architecture. 

The performance of the method has also been evaluated 

using several state-of-the-art classification methods [37]. As 

shown in Table 1, both the LSTM module and the 3D Zernike 

Moment feature extraction make a significant positive 

contribution to the system performance applied in the 

proposed method compared to state-of-the-art classification 

algorithms. Our dataset used in experimental results consists 

of 2160 action samples obtained from three repetitions of 18 

different action types from 10 people. These activities (1-

Horizontal arm wave 2-High arm wave 3-Two hand wave 4-

Catch Cap 5-High throw 6-Draw X 7-Draw Tick 8-Toss Paper 

9-Forward Kick 10-Side Kick 11-Take Umbrella 12-Bend 13-

Hand Clap 14-Walk 15-Phone Call 16-Drink 17-Sit down 18-

Stand up) have obtained by means of the Kinect sensor in a

closed environment respectively.

Table 1. Results of state-of-the-art classification methods on 

Florence Action 3D and KARD datasets 

Methods 
Florence Action 3D KARD 

Joint 3D ZM Joint 3D ZM 

SVM 21.0% 43.3% 45.7% 0,50% 

Softmax 55.5% 68.4% 72.2% 75.9% 

1-Layer LSTM 69.3% 81.2% 82.9% 90.1% 

2-Layer LSTM 65.1% 76.3% 84.8% 93.2% 

Multi-part Bag-of-

Poses [45] 
73.9% 76.2% 83.6% 91.9% 

Riemannian 

Manifold [46] 
78.4% 80.9% 86.1% 94.7% 

Latent Variables 

[47] 
80.7% 75.9% 87.6% 69.9% 

Lie Group [48] 81.8% 74.9% 85.3% 69.0% 

Feature 

Combinations [49] 
85.0% 87.8% 90.4% 94.9% 

S-LSTM DML

(Proposed)
80.3% 88.2% 82.7% 96.1% 

Figure 12. Confusion matrix of KARD dataset with S-LSTM DML method 
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According to the experimental results, the proposed method 

correctly classified 96.1% of the activities. As seen in Table 1, 

the proposed method stands out with a significant difference 

(FA3D-88.2% and KARD-96.1%) in the classification of both 

data lists compared to state-of-the-art classification methods. 

On the other hand, it could not reach the best results (FA3D-

80.3% and KARD-82.7%) among state-of-the-art 

classification methods in the classifications made using the 

skeletal joint information directly. 

The confusion matrix of the proposed method applied to the 

KARD dataset is given in Figure 12. Looking at the behavior 

of the method in this dataset, the High throw action (5th action) 

is mostly confused with the Phone Call and Drink actions 

(actions 15 and 16) according to the confusion matrix. 

Similarly, the Phone Call action (15th action) has most 

confused with the Take Umbrella and Drink (actions 11 and 

16). 

As shown in Figure 7, the CNN + LSTM and LSTM + DNN 

models have been combined. The features obtained have first 

transferred to a CNN, then temporal modeling has applied with 

an LSTM, and finally, the produced output has fed with two 

fully connected layers. Table 2 shows the classification error 

rates of activities for both datasets using 3D Zernike Moment 

features in the LSTM, CNN + LSTM, LSTM + DNN, and 

CLDNN models, respectively. According to the results shown 

in Table 2, it can be said that the gains from combining the 

LSTM layer with the CNN and DNN layers are 

complementary. In this respect, it was observed that the 

activity classification error rate results obtained with CLDNN 

for Florence Action 3D and KARD data provided a relative 

improvement of 5% compared to the LSTM model. 

 

Table 2. Results of the classification error rate of activities 

 

Methods 
Activity Error Rate (3D ZM) % 

Florence Action 3D KARD 

LSTM 11.8 3.9 

CNN + LSTM 11.5 3.8 

LSTM + DNN 11.4 3.8 

CLDNN 11.2 3.7 

 

 

5. CONCLUSIONS 

 

This paper introduces a new deep metric learning module 

using 3D Zernike Moment for 3D Human activities 

classification system. In this module, the real skeleton data has 

been simplified with 3D Zernike Moment features and trained 

by making the training data set larger using action sequence 

pairs. This approach is the authority, as the acquisition of 

training data is very important in 3D activity recognition 

systems. Since the applied metric learning system does not 

require training on a single dataset, it can be used modularly 

and portable for different applications. The experimental 

results performed on two different data sets emphasize that 

both the use of 3D Zernike Moment features instead of real 

skeleton information and the S-LSTM DML module instead 

of state-of-the-art recognition systems are at a comparable 

level. It is complementary in terms of the gains from 

combining CNN and DNN layers with LSTM. A unified CNN, 

LSTM, and DNN architecture called CLDNN provide a 5% 

improvement in activity classification error rates compared to 

implementing individual modules. In the future, we plan to 

work on the efficiency of using more advanced LSTM blocks 

with a large number of data sets. 
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