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 Human structure-based plantar pressure (PP) analysis has been widely used in medical, 

sports, footwear design, and footwear sales. The current studies mostly focus on the 

development of PP measuring technologies and the analysis of pressure distribution features 

based on sensing results. Relatively few scholars have tried to analyze PP through image 

processing. To bridge the gap, this paper tries to classify PP images based on convolutional 

neural network (CNN). Firstly, the authors prepared the zoning and center calculation for 

PP images, and established a PP image classification model. Then, the PP image features 

were selected dynamically based on sparse, low-redundancy feature subsets, and the results 

of principal component analysis (PCA) were combined with the CNN to realize dynamic 

extraction of features from PP images. Finally, an image classification algorithm was 

designed based on the inter-area difference in PP distribution. The proposed algorithm was 

proved feasible through experiments. The research findings provide a reference for 

processing pressure images in other scenarios. 
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1. INTRODUCTION 

 

Human structure-based plantar pressure (PP) analysis has 

been widely applied. In the medical field, plantar features are 

used to assess whether the bones are healthy, and assist with 

the doctors in diagnosing the patients with foot disease or 

those having trouble walking due to brain disease [1-4]. In the 

field of sports, more and more researchers have paid attention 

to the variation in PP distribution induced by the changing 

sports pattern [5-7]. PP measurement and analysis are also 

meaningful in the design and purchase of sneakers [8-10]. 

In health monitoring and medical diagnosis, the existing 

detection devices for PP distribution are very expensive and 

not portable [11-16]. Sathish Babu et al. [17] designed a PP 

distribution measuring insole with conductive fabric and the 

microporous filter membrane, and optimized the sensitivity 

and response time of the device by regulating the ion liquid 

load; the authors analyzed the PP distribution features under 

different poses, identified the pressure center, and examined 

the proportion of the main bearing area and variation of PP; on 

this basis, the gait process was calibrated according to the 

analysis results. 

When the pressure measuring insole moves, the PP 

measurement system often has a large error due to signal 

attenuation [18-22]. Through thorough consideration of 

multiple attributes of flexible sensing materials, Neri et al. [23] 

designed the framework for a system based on multiplexing 

circuit with a resistive voltage amplifier and Ardunio module, 

and chose Windows Forms (WinForms) and MongoDB to 

realize software visualization and data storage, respectively. 

There are two common human gait analysis methods. One 

is optical image acquisition, which has a high cost and a high 

recognition rate. The other is sensor acquisition, which offers 

a variety of optional sensors. Anzai et al. [24] collected PP and 

foot pose information with a sensor array, reduced the 

dimensionality and noise level of the collected data through 

singular value decomposition (SVD) and principal component 

analysis (PCA), and established a pose-based gait model to 

correct the error of kinematical modeling, which arises from 

the omission of foot movement. Castro et al. [25] analyzed the 

PP features of flatfeet based on the PP distribution images of 

youngsters, and drew two important conclusions through 

contrastive experiments: the flatfoot group had a much higher 

momentum in different areas of the foot than the normal foot 

group, and the pressure trajectory at the pressure center 

skewed outside among the flatfeet subjects. Sadler et al. [26] 

collected the PP distribution images of multiple modes of 

motions, namely, walking, running, ascending steps, and 

descending steps, divided the PP areas in the images into eight 

regular arrays, constructed a solving equation for the point of 

action for the resultant ground reaction force to the planar 

under the multi-motion model, and obtained the influence law 

of the peak force in different plantar bearing areas on the 

plantar force. Aqueveque et al. [27] predicted the PP 

distribution by least mean squares (LMS) and recursive least 

squares (RLS) adaptive filtering algorithms, analyzed the 

coefficients and monotonicity of PP distribution features and 

joint angles, divided the gait cycle of subjects based on the 

analysis results, and further classified the PP images through 

gait recognition. 

The current studies mostly focus on the development of PP 

measuring technologies and the analysis of pressure 

distribution features based on sensing results. Relatively few 

scholars have tried to analyze PP through image processing. 

This paper attempts to classify PP images based on 

convolutional neural network (CNN). Section 2 summarizes 
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the workflow of PP image classification; Section 3 presents 

the zoning and center calculation methods for PP images; 

Section 4 builds up a classification model for PP images; 

Section 5 dynamically selects the features of PP images based 

on sparse, low-redundancy feature subsets, and reduces the 

complexity of CNN feature extraction by combing the PCA 

results with the CNN. Section 6 puts forward an image 

classification algorithm based on the inter-area difference in 

PP distribution. The proposed algorithm was proved feasible 

through experiments.  

 

 

2. WORKFLOW OF PP IMAGE CLASSIFICATION  

 

 
 

Figure 1. Flow chart of CNN-based PP image classification 

algorithm 

 

Figure 1 shows the workflow of the CNN-based PP image 

classification algorithm. By zoning and computing the center 

of PP images, the algorithm extracts the difference of PP 

distributions in different areas. Then, the CNN is combined 

with PP area feature selection algorithm to dynamically 

describe PP image feature distribution by Gaussian mixture 

model and classify the images based on inter-area distribution 

difference. 

 

 

3. ZONING AND CENTER CALCULATION OF PP 

IMAGES 

 

 
 

Figure 2. Dynamic acquisition of PP image data 

 

The PP center can effectively represent the direction of PP. 

The ground reaction force at this point is equivalent to the 

resultant force of the ground reaction forces acting on different 

areas of the planta. Figure 2 gives an example of the dynamic 

acquisition of PP image data. Let MC and MR be the number of 

columns and rows in the established static PP matrix, 

respectively; Wij be the pressure. Then, the abscissa and 

ordinate of PP center to be solved can be respectively 

expressed as: 

1 1 1 1
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i j i j

O i W W
= = = =
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Figure 3. Dynamic zoning of PP image 

 

Similarly, the ground reaction force at the local pressure 

center is equivalent to the resultant force of the ground 

reaction forces acting on the local plantar area. Here, the planta 

is divided into five areas with independent pressure centers. 

The dynamic zoning of PP image is illustrated in Figure 3. The 

abscissa Ia1 and ordinate Ib1 of the pressure center of local area 

1 can be respectively calculated by: 
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The abscissa Ia2 and ordinate Ib2 of the pressure center of 

local area 1 can be respectively calculated by: 
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The abscissa Ia3 and ordinate Ib3 of the pressure center of  
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local area 3 can be respectively calculated by: 
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The abscissa Ia4 and ordinate Ib4 of the pressure center of 

local area 4 can be respectively calculated by: 
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The abscissa Ia5 and ordinate Ib5 of the pressure center of 

local area 5 can be respectively calculated by: 
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4. PP IMAGE CLASSIFICATION MODEL  

 

This paper proposes an image processing method for feature 

selection from PP areas, with the goal to dynamically extract 

the difference of PP distribution features in different areas 

from PP images. The CNN was combined with PP area feature 

selection algorithm. The former was used to dynamically 

extract image features for PP image training set, and the latter 

was used to select features that contribute greatly to 

classification for image classification. Figure 4 displays the 

workflow of the image classification method for PP area 

feature selection. 

 

 
 

Figure 4. Image classification method for PP area feature 

selection 

 

In the established CNN, the convolution kernel is 3 pixels 

in height and 3 pixels in width. Through max pooling, the 

pooling layer reduces the dimensionality and size of the target 

PP image, and extracts the PP features from that image. Then, 

the fully connected layer, which contains at least one hidden 

layer, fuses the PP local features into global features of PP. 

Figure 5 explains the convolution and feature extraction 

process of the CNN. Let g be the activation function; spz be the 

bias term; ωpz be the connection weight between neurons of 

different layers; IVr and MT be the r-th feature and total number 

of features of the input vector, respectively. Then, the neurons 

σpz on the q-th layer of the CNN can be calculated by: 

 

1

T

pz

M

σ pz pz r

r

g g s ω IV
=

 
= +  

 
   (13) 

 

 
 

Figure 5. Flow chart of convolution and feature extraction of 

the CNN 

 

 

5. PP FEATURE SELECTION AND EXTRACTION 

 

This paper dynamically selects PP image features, using 

sparse, low-redundancy feature subsets. The algorithm first 

dynamically acquires the cluster distribution of the original PP 

image sample in the space by spectral clustering. Let B be the 

class label of each local area in the PP image; ω be the weight 

matrix for selecting PP features embedded in local areas; ξ(B) 

be the score of the clustering results on the previous spectrum, 

which covers angle cosine similarity and contour coefficient; 

Φ(ω) be the regularization term maintaining the sparsity and 

low-redundancy of the feature; β and γ be the weight parameter 

of the loss function and Φ(ω) coefficient, respectively. Then, 

the selection of embedded local PP features can be converted 

into a constrained optimization problem, whose objective 

function and constraint can be respectively described as: 

 

( ) ( ) ( ) ( )

0 0

B,ω
minK B,ω min B β k B,ωA ω

S.T.     B ,ω

 = + +   

 
  (14) 

 

Under the constraints of the non-negativity of B and ω, the 

loss function can be expressed as: 

 

( )
2

2
,k B A A B = −   (15) 

 

Let T(*) be the trace of matrix. Then, Φ(ω) can be described 

as:  

 

( ) ( )( )
1

1

2

T Tω ωω T ωω = −   (16) 

 

The trace norm can be simplified as:  

 

( ) ( )2

1 2

1

2
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Combining formulas (15), (17), and (14):  

 

( ) ( )

( )22

2 1 22
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B,ω

T T

minK B,ω min B

β Aω - B ωω ωω
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



=

 
+ + − 

 

 

  (18) 

 

After solving the constrained optimization of regional PP 

feature selection, the algorithm will output the final selected 

PP features of the area, that is, the PP features in the area with 

relatively large weight. 

Once the features are selected, the matrix can be 

transformed to map high-dimensional features to low-

dimensional features. Here, the PCA is integrated with the 

CNN to realize feature extraction, by replacing the original PP 

image features with a few potential features. The PCA aims to 

find a hyperplane that is as close to each sample in the low-

dimensional space as possible, which supports one-to-one 

mapping to the high-dimensional space. Let A={a1, a2, …, aMT} 

be the PP image sample set; ∑ai=0 be the centralization of the 

samples; Q={θ1, θ2, …, θi…, θc} be a new coordinate system, 

with θi be the standard orthogonal basis vector. Then, the 

hyperplane must be constrained by: 

 

2
1 0T

i i jθ ,θ θ= =   (19) 

 

The mapping of local PP image sample ai in the low-

dimensional space can be expressed as fi=(fi1, fi2, …, fij, …, fic), 

where fij=θTjai is the j-th dimensional feature of ai in the low-

dimensional space. In the low-dimensional space, the original 

PP sample can be reconstructed from the hyperplane: 

 

1

c

i ij j

j

a f 

=

=   (20) 

 

For the local PP image sample set in the high-dimensional 

space, the difference between each original image and the 

reconstructed image can be represented by their distance. The 

optimization objective that the hyperplane should remain close 

to each sample can be expressed as: 

 
2

1 1 2

TM c

ij j i

i j

min f a
= =

−    (21) 

 

The above formula can be simplified as:  

 

( )T T

ω

T

min T Q AA Q

S.T.     Q Q

−

= 

  (22) 

 

To ensure that the local PP image samples in low-

dimensional space have a sufficiently large distribution 

variance, another optimization objective should be defined: 

the sample projections on the hyperplane should be separated 

as much as possible. The distribution variance can be 

expressed as: 

 
T T

i i

i

Q a a Q   (23) 

 

The corresponding optimization objective can be expressed 

as: 

 

( )T T

ω

T

max T Q AA Q

S.T.     Q Q

−

= 

  (24) 

 

When the above two constraints are satisfied at the same 

time, the PP images can be subjected to the PCA. 

 

 
 

Figure 6. Structure of composite model 

 

This paper integrates the PCA results with the CNN to 

effectively reduce the computing complexity of the latter. The 

composite model structure is shown in Figure 6. The input 

layer of the CNN completes the samples of PP distribution 

features. Based on the zoning of PP images (each area has an 

independent pressure center), the size of the l-th area is defined 

as l1*l2. Then, the pixel matrix of each area was converted into 

a column vector. After that, all column vectors were combined 

into the feature matrix of the entire image. Let ai be the feature 

matrix of the i-th image. Since each image is divided into 5 

areas, the full feature matrix contains 5 columns. Then, the full 

feature matrix corresponding to the PP image sample set 

containing N training samples can be expressed as:  

 

  1 2 5

1 2, ,...,
l l N

NA A A A


=    (25) 

 

The AAT eigenvalue decomposition results obtained through 

the PCA were sorted in descending order. The first K1 terms 

were selected to form an l1×l2 matrix:  

 

( )( ) 1 2

1 2

1

,

l lT

k l l kQ mat r AA


=    (26) 

 

In the input layer of the CNN, the original image features 

are extracted by K1 channels, i.e., convolution kernels. The 

local PP image features received by the second layer of the 

CNN can be described as the following matrix: 

 

  1212 521 ,...,,
KllK

BBBB


=
  

(27) 
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Then, the BBT eigenvalue decomposition results obtained by 

the PCA were sorted in descending order. The first K2 terms 

were selected to form a convolution kernel:  

 

( )( ) 1 2

1 2

2

,S S

l lT

N l l NQ MAT r BB


=    (28) 

 

The final image features that meet the task requirements can 

be obtained through the histogram processing at the output of 

the first layer of the CNN, the binarization at the output of the 

second layer, and hash coding. The CNN generates the 

convolution kernel based on PCA results, providing a 

benchmark for the dimensionality reduction algorithm of 

feature extraction.  

 

 

6. IMAGE CLASSIFICATION BASED ON INTER-

AREA DIFFERENCE IN PP DISTRIBUTION  

 

Our algorithm, responsible for selecting the features 

representing the inter-area difference in PP distribution, can be 

divided into two parts: the feature distribution description 

based on Gaussian mixture model, and the detection of inter-

area distribution difference. Let ε and λ be the standard error 

and mean of the probability density function (PDF) W(a) of 

Gaussian mixture model, respectively. Then, the PDF can be 

defined as:  

 

( )
( )

2

2
1

2

2

a λ

ε

2
W a e

πε

− −

=   (29) 

 

After fully considering the class labels of each local area of 

a PP image sample, the Gaussian mixture model could be 

adopted to illustrate the regional pressure distribution of each 

dimensional features of the PP image. The inter-area 

difference can be measured by the indices designed for model 

parameters. 

Suppose the convolution and pooling layers of the CNN 

extract n features from the PP image sample. Then, the feature 

matrix composed of the n features is the input of the feature 

selection algorithm. Then, the set of the σ-dimensional 

features of the image sample can be denoted as Aσ={aσ1, aσ2, …, 

aσMS}, where σ=1, 2, …n, and the number of image samples 

can be denoted as MS. According to the class label B of each 

local area, the subset of each d-dimensional feature can be 

generated as: 

 
( ) ( ) ( ) ( )1 2

... ... Bt N
A A A A A    =        (30) 

 

where, B=1, 2, …NB. The eigenvalues of the σ-dimensional 

image samples belonging to class B can be represented as A(B)
σ. 

To measure the PP distribution difference between 

A(1)
σ,A(2)

σ,…,A(τ)
σ,…,A(N

B
)
σ, the distribution of A(B)

σ can be 

described by the Gaussian mixture model. Suppose there are a 

total of L Gaussian functions, and the weight of the i-th 

function is δi, satisfying ∑L
i=1δi=1. Let λi and εi be the mean 

and standard error of δi, respectively. Referring to formula (29), 

the Gaussian mixture model WH(a) can be defined as: 

 

( ) ( )
1

L

H i i i

i

W a W a | λ ,ε
=

=   (31) 

Although WH(a) has relatively few parameters, the 

derivation of the objective function is a rather complex process. 

Based on maximum likelihood estimation, this paper solves 

and optimizes δi, λi, and εi. That is, the probabilities of local PP 

distribution image samples to fall in a class obey the Gaussian 

distribution in the iterative process. Let MB be the number of 

samples in A(B)
σ. Then, the optimization objective of WH(a) can 

be given by:  

 

( )( ) ( ) ( )

1

BM
B B

σ H σj σj σ
j

maxlnK A ln W a ,a A
=

 
=   

 
  (32) 

 

Combining formula (32) with formula (31):  

 

( )( ) ( )
1 1

BM L
B

σ i σj i i

j i

maxlnK A ln W a | λ ,ε
= =

 
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 
    (33) 

 

The above formula (33) can be solved iteratively with the 

expectation-maximization (EM) algorithm. Dividing A(B)
σ by 

the current WH(a), the Gaussian mixture components of 

eigenvalue aσi can be described by uj∈{1, 2, …L}. Since the 

classification criterion is to check whether the mixture 

components take up the largest proportion, the posterior 

probability of uj can be expressed as:  

 

( )
( ) ( )

( )
j H σj j

H j σj

H σj

W u i W a | c i
W u i | a

W a

=  =
= =   (34) 

 

The division results μi of A(B)
σ can be described as:  

 

 
( )

1,2,...,

|j H j j
i l

argmaxW u i a


= =   (35) 

 

Let MB-I be the number of local PP distribution images that 

provide the features to the i-th Gaussian function. According 

to the current division results, the model parameters δi, λi, and 

εi can be respectively updated by:  

 

( )
1

1
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B iM

i H j j

jB i

W u i a
M
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−
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1

1
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H j σj σj i

j

i M

H j σj

j

W u i | a a λ

ε

W u i | a
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=

= −

=

=




  (38) 

 

Figure 7 presents the distribution of features with the same 

inter-area difference. Let λi and δi denote the position and the 

class weight of position feature of the i-th Gaussian function, 

respectively. When the L is fixed, the inter-area difference in 

PP image feature distribution can be measured by adjusting δi, 

λi, and εi. The difference Dσ of Aσ can be calculated by:  
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( ) ( ) ( ) ( ) 1 2 Bτ N

σ σ σ σ σD max D , D ,..., D ,..., D
   

=   (39) 

 

 
(a) 

 
(b) 

 

Figure 7. Distribution of features with the same inter-area 

difference 

 

Each class of features correspond to a Gaussian mixture 

model, which contains a vector composed of the differences 

between the L functions. Let 

Q(B)
σ=[d(B)

σ1,d(B)
σ2,…d(B)

σi,…,d(B)
σL]T be the difference vector of 

Class B features; λ' and ε' be the mean and standard error of 

the Gaussian mixture model the closest to the λi, as measured 

by Gaussian distance, respectively. Then, the q(τ)
σi in Q(B)

σ can 

be measured by: 

 
( ) ( )imax ε ,εB

σi i iq λ λ d
−=  −    (40) 

 

Formula (40) shows the difference between λi and λ', the 

difference between εi and ε', and δi are all positively correlated 

with q(B)
σi. 

 

 

7. EXPERIMENTS AND RESULTS ANALYSIS 

 

Table 1. Pressure distribution in each area of the planta 

 

 
Area 

1 

Area 

2 

Area 

3 

Area 

4 

Area 

5 

Static pressure 56.32 15.09 55.72 19.75 17.35 

Peak pressure 73.95 19.72 62.34 20.53 19.59 

Proportion 30.21 13.76 30.31 14.12 16.6 

 

This paper divides the planta into five areas: Area 1 (heel), 

Area 2 (arch), Area 3 (metatarsal bones), Area 4 (first to 

second toes), and Area 5 (third to fifth toes). Table 1 shows 

the test results on the PP in each area of a subject. It can be 

seen that the two peaks of PP existed in Area 1 and Area 3, 

which together accounted for more than 65% of the total PP. 

Areas 2-5 were under relatively small pressure. Among them, 

Area 2 faced the least pressure. 

Figure 8 provides the relationship curve between PP center 

position and pressure. It can be inferred that the peak pressures 

(741N at the maximum) appeared at the PP center of planta 

(0mm, and 100mm) and that of metatarsal bones (240mm, and 

300mm). The results are consistent with the pressure 

distribution in Table 1. 

 

 
 

Figure 8. Relationship between PP center position and 

pressure 

 

 
 

Figure 9. Dynamic PP change curves in different areas 

 

Figure 9 records the dynamic PP change curves in different 

areas. These curves reflect the good gait features of a subject 

during normal walking. The PP data are not greatly disturbed 

by noise, and can serve as the reference data for PP analysis 

and classification. 

Figure 10 displays the force on each area of left and right 

feet under different gait cycles. The mean peak pressures of 

the five plantar areas correspond to the gait phases of the 

subject. It can be learned that a gait cycle can be divided into 

a double support phase where both feet are on the ground, and 

a swing phase where only one foot is on the ground. The first 

phase takes up 59% of the cycle, and the second, 41%. Based 

on the PP images of the two feet, it is possible to determine to 

which phase the subject belongs. As shown in Figure 10, the 

minimum and maximum peak pressures of the two feet both 

appeared in the double support phase. Whether the subject 

belongs to the double support phase can be judged by the peak 

pressures on Areas 1 and 3. 
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(a)                                                                                                  (b) 

 

Figure 10. Force on each area of left and right feet under different gait cycles 

 

Table 2. Classification results on different types of planta 

 
 Left foot Right foot Proportion of correct recognitions Classification accuracy 

Inclined 30/30 29/30 29/30 96.7% 

Broken 30/30 30/30 30/30 100% 

Mixed 30/30 30/30 30/30 100% 

Normal 89/90 87/90 86/90 95.6% 

 

Table 3. Recognition effects of different methods 

 
 Left foot Right foot Proportion of correct recognitions Classification accuracy 

Edge distance 69/70 68/70 67/70 95.7% 

Spectrum feature 67/70 68/70 65/70 92.9% 

Spectrum feature + regional pressure 65/70 69/70 64/70 91.4% 

Our method 69/70 69/70 68/70 97.1% 

 
 

Figure 11. Time cost of each stage of model training and test 

 

The proposed PP image classification model was trained 

with and used to recognize four different types of PP 

distribution images: inclined, broken, mixed, and normal. The 

classification accuracy of each type is listed in Table 2. 

Obviously, our model achieved very high recognition rates and 

classification accuracies on the three abnormal planta (inclined, 

broken, and mixed). The good performance is attributable to 

two factors: First, the zoning of planta helps to extract the key 

features from local PP distribution images, and simplify image 

preprocessing. Second, the feature selection and extraction 

avoid the arch area, but focus on Areas 1 and 3, where the 

pressure changes insignificantly; this contributes to the good 

classification effect on special planta that are inclined or 

broken. 

Observations show that the PP images had smaller shape 

change than the PP distribution data, in which every frame was 

constantly changing. This also manifests that our classification 

strategy, which is based on inter-area distribution difference, 

is highly scientific. To further verify its effectiveness, our PP 

image classification method was compared with three 

common PP recognition approaches (Table 3). 

Finally, the time cost of our PP image classification model 

in each stage of network training and test was counted to 

demonstrate the practicality of the model. As shown in Figure 

11, our model needs to spend extra time in feature selection 

during network training and in classifier reconstruction during 

network test, because feature selection and classifier 

reconstruction are introduced to the traditional CNN. However, 

the time costs of the two parts only accounted for 2% of all the 

time consumed. This means the additional links of our model 

do not greatly affect the time cost. In fact, these links make our 

model more practical, while ensuring the classification effect. 

 

 

8. CONCLUSIONS 

 

This paper envisages a PP image classification method 

based on the CNN. Firstly, the authors introduced the 

strategies for zoning and center calculation for PP images, 

constructed a PP image classification model, and provided the 

methods for PP feature selection and extraction. After that, an 

image classification algorithm was developed based on the 

inter-area PP distribution difference. In addition, the authors 

plotted the relationship between PP center position and 

pressure, and the dynamic changes of PP in different areas, 
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providing valuable reference data for PP analysis and 

classification. Through experiments, the force on each area in 

either foot was obtained under different gait cycles, laying the 

basis for accurate judgement of gait cycle. Further, our PP 

image classification model was proved to have a high 

recognition rate on various kinds of PP distribution images, 

whether the planta is inclined, broken, mixed, or normal. 

Hence, our model enjoys good practicality in PP analysis. 
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